首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Microinjection of a bacterially expressed stable delta 90 sea urchin cyclin B into Xenopus prophase oocytes, in absence or presence of cycloheximide, provokes the activation of histone H1 kinase and the tyrosine dephosphorylation of p34cdc2. Unexpectedly, when prophase oocytes are submitted to a treatment known to elevate the intracellular cAMP level (3-isobutyl-1-methylxanthine and cholera toxin), delta 90 cyclin has no effect and the oocytes remain blocked in prophase. This inhibition is reverted by the microinjection of the inhibitor of cAMP-dependent protein kinase. When delta 90 cyclin is microinjected into oocytes depleted of endogenous cyclins (cycloheximide-treated metaphase I) and in the presence of a high intracellular concentration of cAMP, p34cdc2 kinase is tyrosine rephosphorylated. Altogether, our results indicate that in Xenopus oocyte, cAMP-dependent protein kinase (A-kinase) controls the formation of the cyclin B/p34cdc2 complex which remains inactive and tyrosine phosphorylated.  相似文献   

2.
Culturing of matured porcine oocytes in vitro results in the enhancement of their cytoplasmic ability for oocyte activation (so-called ageing), although they are arrested at metaphase II. The enhanced ability for oocyte activation is related to decreased activity of the maturation promoting factor (MPF). In the present study we clarified the molecular mechanism of MPF inactivation during ageing, especially the changes in the phosphorylation status of p34cdc2, a catalytic subunit of MPF, compared with that in fertilised oocytes. The MPF activity decreased gradually when maturation culture was prolonged from 36 to 72 h, confirming the decreasing MPF activity in aged oocytes. The activity of 48 h matured oocytes also decreased after in vitro fertilisation. Immunoblotting of p34cdc2 with anti-PSTAIRE antibody revealed that the culturing of matured oocytes induces a gradual increase in pre-MPF, which is a p34cdc2 and cyclin B complex inactivated by phosphorylation at the inhibitory phosphorylation site of p34cdc2. In contrast, pre-MPF decreased after fertilisation, indicating the degradation of cyclin B. These results suggest that the molecular mechanisms of inactivation of MPF are different between oocyte activation and ageing, and that the mechanism during ageing might be based on the inhibitory phosphorylation of p34cdc2, whereas that of oocyte activation is based on the degradation of cyclin B.  相似文献   

3.
cdc25+ encodes a protein phosphatase that dephosphorylates p34cdc2.   总被引:38,自引:12,他引:26       下载免费PDF全文
To determine how the human cdc25 gene product acts to regulate p34cdc2 at the G2 to M transition, we have overproduced the full-length protein (cdc25Hs) as well as several deletion mutants in bacteria as glutathione-S-transferase fusion proteins. The wild-type cdc25Hs gene product was synthesized as an 80-kDa fusion protein (p80GST-cdc25) and was judged to be functional by several criteria: recombinant p80GST-cdc25 induced meiotic maturation of Xenopus oocytes in the presence of cycloheximide; p80GST-cdc25 activated histone H1 kinase activity upon addition to extracts prepared from Xenopus oocytes; p80GST-cdc25 activated p34cdc2/cyclin B complexes (prematuration promoting factor) in immune complex kinase assays performed in vitro; p80GST-cdc25 stimulated the tyrosine dephosphorylation of p34cdc2/cyclin complexes isolated from Xenopus oocyte extracts as well as from overproducing insect cells; and p80GST-cdc25 hydrolyzed p-nitrophenylphosphate. In addition, deletion analysis defined a functional domain residing within the carboxy-terminus of the cdc25Hs protein. Taken together, these results suggest that the cdc25Hs protein is itself a phosphatase and that it may function directly in the tyrosine dephosphorylation and activation of p34cdc2 at the G2 to M transition.  相似文献   

4.
Under the influence of maturation-inducing hormone (MIH) secreted from follicle cells, oocyte maturation is finally triggered by maturation-promoting factor (MPF), which consists of a homolog of the cdc2+ gene product of fission yeast (p34cdc2) and cyclin B. Two species of cyclin B clones were isolated from a cDNA library constructed from mature goldfish oocytes. Sequence comparisons revealed that these two clones are highly homologous (95%) and were found to be similar to Xenopus cyclin B1. Using monoclonal antibodies against Escherichia coli-produced goldfish cyclin B and the PSTAIR sequence of p34cdc2, we examined the levels of cyclin B and p34cdc2 proteins during goldfish oocyte maturation induced in vitro by 17 alpha, 20 beta-dihydroxy-4-pregnen-3-one (17 alpha, 20 beta-DP), a natural MIH in fish. Protein p34cdc2 was found in immature oocyte extracts and did not remarkably change during oocyte maturation. Cyclin B was not detected in immature oocyte extracts and appeared when oocytes underwent germinal vesicle breakdown. Cyclin B that appeared during oocyte maturation was labelled with [35S]methionine, indicating its de novo synthesis. Introduction of E. coli-produced cyclin B into immature oocyte extracts induced p34cdc2 (MPF) activation. Although the possibility that immature goldfish oocytes contain an insoluble cyclin B is not completely excluded, these results strongly suggest that 17 alpha, 20 beta-DP induces oocytes to synthesize cyclin B, which in turn activates preexisting p34cdc2, forming active MPF.  相似文献   

5.
Tyrosine-phosphorylated p34cdc2 and cyclin B2 are present and physically associated in small growing stage IV oocytes (800 microns in diameter) of Xenopus laevis. Microinjection of M-phase promoting factor (MPF) into stage IV oocytes induces germinal vesicle breakdown and the activation of the kinase activity of the p34cdc2/cyclin B2 complex measured on p13suc1 beads. During the in vivo activation of MPF in stage IV oocytes, p34cdc2 tyrosine dephosphorylation is not detectable, in contrast to stage VI oocytes. Addition of cycloheximide in MPF-injected stage IV oocytes induces neither the inhibition of histone H1 kinase activity nor the cyclin B2 degradation. Therefore, the activation mechanism of histone H1 kinase in stage IV oocytes does not require detectable tyrosine dephosphorylation of p34cdc2. It is suggested rather that the tyrosine phosphorylation of p34cdc2 plays a role in inhibiting cyclin B2 degradation.  相似文献   

6.
Although high amounts of cyclin B1 mRNA are present in bovine oocytes arrested at the germinal vesicle (GV) stage, the protein is not detectable. Furthermore, there is a depletion of the stored cyclin B1 mRNA in the oocyte as follicular growth progresses. To assess the effect of follicular growth on the accumulation of M-phase promoting factor (MPF) components, mRNA and protein levels of cyclin B1 and p34(cdc2) were measured in GV oocytes collected from diverse follicle size groups (<2 mm, 3-5 mm, and >6 mm). Because oocytes collected from very small follicles have high levels of cyclin B1 mRNA, the onset of its accumulation in the oocytes was evaluated by in situ hybridization of fetal ovaries. Also, a comparative expression map of cell cycle-related genes expressed in the oocyte and cumulus cells was established using nylon-based cDNA arrays, which allowed the detection of 35 different genes transcribed mostly in oocytes. Both components of the pre-MPF complex were expressed at the mRNA level in GV oocytes, whereas p34(cdc2) was the only pre-MPF protein detected at that stage, thus indicating that meiosis resumption in bovine oocytes is differentially regulated as compared with other mammals, and meiosis resumption seems to be regulated by the translation of cyclin B1 mRNA.  相似文献   

7.
The cdc25 phosphatase is a mitotic inducer that activates p34cdc2 at the G2/M transition by dephosphorylation of Tyr15 in p34cdc2. cdc25 itself is also regulated through periodic changes in its phosphorylation state. To elucidate the mechanism for induction of mitosis, phosphorylation of cdc25 has been investigated using recombinant proteins. cdc25 is phosphorylated by both cyclin A/p34cdc2 and cyclin B/p34cdc2 at similar sets of multiple sites in vitro. This phosphorylation retards its electrophoretical mobility and activates its ability to increase cyclin B/p34cdc2 kinase activity three- to fourfold in vitro, as found for endogenous Xenopus cdc25 in M-phase extracts. The threonine and serine residues followed by proline that are conserved between Xenopus and human cdc25 have been mutated. Both the triple mutation of Thr48, Thr67, and Thr138 and the quintuple mutation of these three threonine residues plus Ser205 and Ser285, almost completely abolish the shift in electrophoretic mobility of cdc25 after incubation with M-phase extracts or phosphorylation by p34cdc2. These mutations inhibit the activation of cdc25 by phosphorylation with p34cdc2 by 70 and 90%, respectively. At physiological concentrations these mutants cannot activate cyclin B/p34cdc2 in cdc25-immunodepleted oocyte extracts, suggesting that a positive feed-back loop between cdc2 and cdc25 is necessary for the full activation of cyclin B/p34cdc2 that induces abrupt entry into mitosis in vivo.  相似文献   

8.
A R Nebreda  J V Gannon    T Hunt 《The EMBO journal》1995,14(22):5597-5607
The meiotic maturation of Xenopus oocytes triggered by progesterone requires new protein synthesis to activate both maturation-promoting factor (MPF) and mitogen-activated protein kinase (MAP kinase). Injection of mRNA encoding mutant p34cdc2 (K33R) that can bind cyclins but lacks protein kinase activity strongly inhibited progesterone-induced activation of both MPF and MAP kinase in Xenopus oocytes. Similar results were obtained by injection of GST-p34cdc2 K33R protein or by injection of a monoclonal antibody (A17) against p34cdc2 that blocks its activation by cyclins. Both the dominant-negative p34cdc2 and monoclonal antibody A17 blocked the accumulation of p39mos and activation of MAP kinase in response to progesterone, as well as blocking the appearance of MPF, although they did not inhibit the translation of p39mos mRNA. These results suggest that: (i) activation of free p34cdc2 by newly made proteins, probably cyclin(s), is normally required for the activation of both MPF and MAP kinase by progesterone in Xenopus oocytes; (ii) the activation of translation of cyclin mRNA normally precedes, and does not require either MPF or MAP kinase activity; and (iii) de novo synthesis and accumulation of p39mos is probably both necessary and sufficient for the activation of MAP kinase in response to progesterone.  相似文献   

9.
The p34(cdc2) kinase has been identified as a protein factor that is a regulator of meiotic maturation in mammalian oocytes. To investigate the regulatory function of the meiotic resumption in bovine oocytes cultured in vitro, the changes in the phosphorylation states of p34(cdc2) kinase and the histone H1 kinase activity were examined around germinal vesicle breakdown (GVBD). All bovine oocytes just after isolation from their follicles were arrested at the germinal vesicle (GV) stage, and these extracts exhibited two (upper and lower) bands of p34(cdc2) kinase on SDS-PAGE followed by immunoblotting with an antibody against C-terminal peptide of p34(cdc2). When these oocytes were cultured for 24 h in a medium supplemented with 100 microg/ml genistein, tyrosine phosphorylation inhibitor, GVBD was induced in 85% of oocytes, indicating that the upper band of p34(cdc2) kinase in bovine oocytes at the GV stage was already fully phosphorylated tyrosine residue prior to culture. Another (middle) band of p34(cdc2) kinase between the upper and lower bands appeared in the extracts of the oocytes cultured for 4 h, and significant activation of the histone H1 kinase was found in these oocytes (67 +/- 18 fmol/h/oocyte) as compared to that in oocytes cultured for 0 h (46 +/- 11 fmol/h/oocyte). The staining intensity of the middle band and the activity of the histone H1 kinase were further increased after the initiation of GVBD at 6 h of culture, but the quantitative changes of upper and lower bands were not detected throughout the 12 h of culture. Thus, it is concluded that the dephosphorylation of p34(cdc2) kinase followed by activation of the histone H1 kinase after the onset of culture plays a key role in the resumption of meiosis in bovine oocytes.  相似文献   

10.
The p34cdc2 protein kinase is a component of maturation-promoting factor, the master regulator of the cell cycle in all eukaryotes. The activity of p34cdc2 is itself tightly regulated by phosphorylation and dephosphorylation. Predicted regulatory phosphorylation sites of Xenopus p34cdc2 were mutated in vitro, and in vitro-transcribed RNAs were injected into Xenopus oocytes. The cdc2 single mutants Thr-14----Ala and Tyr-15----Phe did not induce germinal vesicle breakdown (BVBD) upon microinjection into oocytes. In contrast, the cdc2 double mutant Ala-14/Phe-15 did induce GVBD. Both the Ala-14 and Ala-14/Phe-15p34cdc2 mutants were shown to coimmunoprecipitate cyclin B1 and to phosphorylate histone H1 in immune complex kinase assays. Microinjection of antisense oligonucleotides to c-mosXe was used to demonstrate the role of mos protein synthesis in the induction of GVBD by the Ala-14/Phe-15 cdc2 mutant. Thr-161 was also mutated. p34cdc2 single mutants Ala-161 and Glu-161 and triple mutants Ala-14/Phe-15/Ala-161 and Ala-14/Phe-15/Glu-161 failed to induce GVBD in oocytes and showed a decreased binding to cyclin B1 in coimmunoprecipitations. Each of the cdc2 mutants was also assayed by coinjection with cyclin B1 or c-mosXe RNA into oocytes. Several of the cdc2 mutants were found to affect the kinetics of cyclin B1 and/or mos-induced GVBD upon coinjection, although none affected the rate of progesterone-induced maturation. We demonstrate here the significance of Thr-14, Tyr-15, and Thr-161 of p34cdc2 in Xenopus oocyte maturation. In addition, these results suggest a regulatory role for mosXe in induction of oocyte maturation by the cdc2 mutant Ala-14/Phe-15.  相似文献   

11.
The meiotic division in oocytes is arrested in the G2 phase of the cell cycle. Resumption of meiosis, also known as oocyte maturation, entails a G2 to M transition. At the G2-M boundary, maturation promoting factor (MPF) activation is usually induced via several ways, including tyrosine dephosphorylation of p34(cdc2) and synthesis of cyclin B according to cell type and species. Previous studies in our laboratory demonstrated that glucocorticoids directly inhibit the meiotic maturation of pig oocytes in vitro. The aim of this study was therefore to investigate the influence of glucocorticoids on the expression of p34(cdc2) and cyclin B1 in resumption of meiosis of pig oocytes. We detected the relative levels and association of p34(cdc2) and cyclin B1. Isolated cumulus-enclosed oocytes were cultured in Waymouth MB752/1 medium supplemented with sodium pyruvate (50 microgram/ml), LH (0.5 microgram/ml), FSH (0.5 microgram/ml), and estradiol-17beta (1 microgram/ml) in the presence or absence of dexamethasone (DEX) for 24 hr; they then were cultured without hormonal supplements in the presence or absence of DEX for an additional 24 hr. We found that cyclin B1, as well as p34(cdc2), was already present in fully grown G2-arrested pig oocytes when removed from the follicle. In these oocytes, cyclin B1 and p34(cdc2) were already associated in complex. Treatment with DEX at concentrations of 1 microgram/ml or above decreased the level of cyclin B1, but had no effect on the level of p34(cdc2). The exposure of oocytes to DEX also decreased the amount of complexed p34(cdc2)-cyclin B1. These findings suggest that the inhibitory action of DEX on meiotic maturation could be due, at least in part, to the reduced amount of p34(cdc2)-cyclin B1 complex.  相似文献   

12.
To investigate the role of mitogen-activated protein (MAP) kinase kinase (MEK)/MAP kinase cascade on p34cdc2 kinase activity and cyclin B1 levels during parthenogenetic activation of porcine oocytes, MEK activity, MAP kinase activity, p34cdc2 kinase activity, and cyclin B1 levels were assayed in mature porcine oocytes after treatment with different concentrations of Ca2+ ionophore. A high concentration of Ca2+ ionophore (50 microM) rapidly reduced MEK activity in oocytes for up to 8 h of culture. MEK activity in the 10-microM treatment group was significantly higher. The low concentration treatment transiently decreased p34cdc2 kinase activity but did not affect MAP kinase activity and ultimately induced reactivation of p34cdc2 kinase via the synthesis of cyclin B1. On the other hand, treatments of a high concentration of Ca2+ ionophore or a low concentration of Ca2+ ionophore plus MEK inhibitor, U0126, linearly decreased MAP kinase activity following the decrease of p34cdc2 kinase activity; most of these oocytes formed pronuclei. These results suggest that decreasing MAP kinase activity is essential to maintaining low p34cdc2 kinase activity resulting from the degradation of cyclin B via a Ca(2+)-dependent pathway; lower activities of both MAP kinase and p34cdc2 kinase induce normal meiotic completion and pronuclear formation of parthenogenetically activated porcine oocytes.  相似文献   

13.
Maturation-promoting factor and a homolog of fission yeast cdc2+ gene product (p34cdc2) were investigated during the final 24 hr of maturation of quail oocytes. Kinase activity of p34cdc2 in the oocyte germinal disk (GD) increased 15 times at maturation. Two bands, at 32 and 34 kDa, were detected in immature oocytes by immunoblotting of SDS-PAGE with anti-p34cdc2 monoclonal antibody. A new band, which is close to the 32-kDa band but with a slightly faster mobility, appeared during maturation. No p34cdc2 could be detected outside the GD. Microinjection of GD extract from mature oocytes caused maturation of Xenopus oocytes.  相似文献   

14.
Activation of the cyclin-dependent protein kinases p34cdc2 and p33cdk2 requires binding with a cyclin partner and phosphorylation on the first threonine residue in the sequence THEVVTLWYRAPE. We present evidence that this threonine residue, number 160 in p33cdk2, can be specifically phosphorylated by a cdc2-related protein kinase from Xenopus oocytes called p40MO15. Binding to cyclin A and phosphorylation of this threonine are both required to activate fully the histone H1 kinase activity of p33cdk2. In cell extracts, a portion of p40MO15 is found in a high molecular weight complex that is considerably more active than a lower molecular weight form. Wild-type MO15 protein expressed in bacteria does not possess kinase activity, but acquires p33cdk2-T160 kinase activity after incubation with cell extract and ATP. We conclude that p40MO15 corresponds to CAK (cdc2/cdk2 activating kinase) and speculate that, like p33cdk2 and p34cdc2, p40MO15 requires activation by phosphorylation and association with a companion subunit.  相似文献   

15.
Maturation-promoting factor (MPF), a final trigger for initiating oocyte maturation, is activated in the oocyte cytoplasm, in response to maturation-inducing hormone (MIH) secreted from follicle cells surrounding the oocyte. MPF consists of cdc2 and cyclin B. We investigated the state of cdc2 and cyclin B in immature and mature oocytes of fishes (carp, catfish and lamprey) and amphibians ( Xenopus, frog [ Rana ] and toad [ Bufo ]) using monoclonal antibodies raised against mouse cdc2, which also recognize fish and amphibian cdc2, and monoclonal antibodies against goldfish cyclin B1 and polyclonal antibodies against Xenopus cyclins B1 and B2. Anti-cdc2 and anti-cyclin B immunoblotting of oocyte extracts fractionated by gel filtration chromatography showed that immature oocytes from all of these species with the exception of Xenopus contained only monomeric cdc2. Cyclin B-bound inactive cdc2 (pre-MPF) was present only in immature Xenopus oocytes. Cdc2-cyclin B complex was, however, found in mature oocytes from all the species examined. After the oocyte is induced to mature by MIH, cdc2 should therefore bind to cyclin B in all of these species, except Xenopus. These results suggest that the complex formation of cdc2 and cyclin B in response to MIH stimulation at the oocyte surface is a critical step for initiating oocyte maturation in fishes and amphibians, with the exception of Xenopus , in which pre-MPF already exists in immature oocytes and only its chemical modification is required for MPF activation.  相似文献   

16.
This paper describes the purification of a 47 kDa protein from Xenopus laevis oocytes that becomes phosphorylated when the oocytes undergo meiotic maturation. This protein (p47) is part of a high molecular mass complex containing at least two other proteins of molecular mass 30 and 36 kDa. This complex can be isolated from stage VI oocytes before maturation. We obtained a pattern for phosphopeptides in p47 phosphorylated in vivo very similar to that of the purified protein phosphorylated in vitro by p34cdc2 (a H1 kinase which is a component of the M-phase promoting factor) and [gamma-32P]ATP. Therefore, the purified p47, already described as a marker of MPF activity, is the first reported in vivo substrate for the cell division control kinase.  相似文献   

17.
The efficient activation of p90rsk by MAP kinase requires their interaction through a docking site located at the C-terminal end of p90rsk. The MAP kinase p42mpk1 can associate with p90rsk in G2-arrested but not in mature Xenopus oocytes. In contrast, an N-terminally truncated p90rsk mutant named D2 constitutively interacts with p42mpk1. In this report we show that expression of D2 inhibits Xenopus oocyte maturation. The inhibition requires the p42mpk1 docking site. D2 expression uncouples the activation of p42mpk1 and p34cdc2/cyclin B in response to progesterone but does not prevent signaling through p90rsk. Instead, D2 interferes with a p42mpk1-triggered pathway, which regulates the phosphorylation and activation of Plx1, a potential activator of the Cdc25 phosphatase. This new pathway that links the activation of p42mpk1 and Plx1 during oocyte maturation is independent of p34cdc2/cyclin B activity but requires protein synthesis. Using D2, we also provide evidence that the sustained activation of p42mpk1 can trigger nuclear migration in oocytes. Our results indicate that D2 is a useful tool to study MAP kinase function(s) during oocyte maturation. Truncated substrates such as D2, which constitutively interact with MAP kinases, may also be helpful to study signal transduction by MAP kinases in other cellular processes.  相似文献   

18.
M phase or maturation promoting factor (MPF), a kinase complex composed of the regulatory cyclin B and the catalytic p34cdc2 kinase, plays important roles in meiosis and mitosis. This study was designed to detect and compare the subcellular localization of cyclin B1, phosphorylated cyclin B1 and p34cdc2 during oocyte meiotic maturation and fertilization in mouse. We found that all these proteins were concentrated in the germinal vesicle of oocytes. Shortly after germinal vesicle breakdown, all these proteins were accumulated around the condensed chromosomes. With spindle formation at metaphase I, cyclin B1 and phosphorylated cyclin B1 were localized around the condensed chromosomes and concentrated at the spindle poles, while p34cdc2 was localized in the spindle region. At the anaphase/telophase transition, phosphorylated cyclin B1 was accumulated in the midbody between the separating chromosomes/chromatids, while p34cdc2 was accumulated in the entire spindle except for the midbody region. At metaphase II, both cyclin B1 and p34cdc2 were horizontally localized in the region with the aligned chromosomes and the two poles of the spindle, while phosphorylated cyclin B1 was localized in the two poles of spindle and the chromosomes. We could not detect a particular distribution of cyclin B1 in fertilized eggs when the pronuclei were initially formed, but in late pronuclei cyclin B1 was accumulated in the pronuclei. p34cdc2 and phosphorylated cyclin B1 were always concentrated in one pronucleus after parthenogenetic activation or in two pronuclei after fertilization. At metaphase of 1-cell embryos, cyclin B1 was accumulated around the condensed chromosomes. Cyclin B1 was accumulated in the nucleus of late 2-cell embryos but not in early 2-cell embryos. Furthermore, we also detected the accumulation of p34cdc2 in the nucleus of 2- and 4-cell embryos. All these results show that cyclin B1, phosphorylated cyclin B1 and p34cdc2 have similar distributions at some stages but different localizations at other stages during oocyte meiotic maturation and fertilization, suggesting that they may play a common role in some events but different roles in other events during oocyte maturation and fertilization.  相似文献   

19.
20.
Inoue D  Sagata N 《The EMBO journal》2005,24(5):1057-1067
During the meiotic cell cycle in Xenopus oocytes, p90(rsk), the downstream kinase of the Mos-MAPK pathway, interacts with and inhibits the Cdc2 inhibitory kinase Myt1. However, p90(rsk) is inactivated after fertilization due to the degradation of Mos. Here we show that the Polo-like kinase Plx1, instead of p90(rsk), interacts with and inhibits Myt1 after fertilization of Xenopus eggs. At the M phase of the embryonic cell cycle, Cdc2 phosphorylates Myt1 on Thr478 and thereby creates a docking site for Plx1. Plx1 can phosphorylate Myt1 and inhibit its kinase activity both in vitro and in vivo. The interaction between Myt1 and Plx1 is required, at least in part, for normal embryonic cell divisions. Finally, and interestingly, Myt1 is phosphorylated on Thr478 even during the meiotic cell cycle, but its interaction with Plx1 is largely inhibited by p90(rsk)-mediated phosphorylation. These results indicate a switchover in the Myt1 inhibition mechanism at fertilization of Xenopus eggs, and strongly suggest that Plx1 acts as a direct inhibitory kinase of Myt1 in the mitotic cell cycles in Xenopus.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号