首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 381 毫秒
1.
Carotenoid supplementation in the treatment of diseases associated with oxidative stress has been recently questioned because of the cell damage and the increased risk of lung cancer in male smokers. Because of the complex role of neutrophils in lung diseases, we investigated whether carotenoid derivatives could affect respiratory burst and apoptosis of human neutrophils purified from peripheral blood. Stimulation of superoxide production was induced by nanomolar and micromolar concentrations of carotenoid cleavage products with aliphatic chains of different length, but not by carotenoids lacking the carbonyl moiety. The stimulatory effect of carotenoid cleavage products was observed in cells activated by phorbol myristate acetate (PMA), while a slight inhibition of superoxide production was noticed with cells activated by the chemotactic tripeptide N-formyl-Met-Leu-Phe (f-MLP). At higher concentrations, carotenoid cleavage products inhibited superoxide production in the presence of both PMA and f-MLP. In the presence of 20 microM carotenoid cleavage products, inhibition of superoxide production was accompanied by DNA fragmentation and increased level of intracellular caspase-3 activity.  相似文献   

2.
Burkholderia cepacia complex is a life-threatening group of pathogens for patients with chronic granulomatous disease (CGD), whose phagocytes are unable to produce reactive oxygen species (ROS). Unlike other CGD pathogens, B. cepacia complex is particularly virulent, characteristically causing septicemia, and is the bacterial species responsible for most fatalities in these patients. We found that a nonmucoid Burkholderia cenocepacia (a predominant species in the B. cepacia complex) isolate was readily ingested by normal human neutrophils under nonopsonic conditions and promoted apoptosis in these cells. The proapoptotic effect was not due to secreted bacterial products, but was dependent on bacterial viability. Phagocytosis was associated with a robust production of ROS, and the apoptotic neutrophils could be effectively cleared by monocyte-derived macrophages. The proapoptotic effect of B. cenocepacia was independent of ROS production because neutrophils from CGD patients were rendered apoptotic to a similar degree as control cells after challenge. More importantly, neutrophils from CGD patients, but not from normal individuals, were rendered necrotic after phagocytosis of B. cenocepacia. The extreme virulence of B. cepacia complex bacteria in CGD, but not in immunocompetent hosts, could be due to its necrotic potential in the absence of ROS.  相似文献   

3.
With the aim of investigating whether cholesterol oxidation products could contribute to the pathogenesis of the intestinal epithelial barrier dysfunction that occurs in human inflammatory bowel disease (IBD), differentiated versus undifferentiated CaCo-2 cells, an accepted model for human intestinal epithelial cells, were challenged with a dietary-representative mixture of oxysterols. Only differentiated colonic cells were susceptible to the proapoptotic action of the oxysterol mixture, checked both by enzymatic and by morphological methods, mainly because of a very low AKT phosphorylation pathway compared to the undifferentiated counterparts. Enhanced production of reactive oxygen species by a colonic NADPH oxidase hyperactivation seemed to represent the key event in oxysterol-induced up-regulation of the mitochondrial pathway of programmed death of differentiated CaCo-2 cells. These in vitro findings point to the pro-oxidant and cytotoxic potential of cholesterol oxidation products, of both dietary and endogenous origin, as an important mechanism of induction and/or worsening of the functional impairment of enteric mucosa that characterizes IBD.  相似文献   

4.
Pseudomonas aeruginosa colonizes and infects human tissues, although the mechanisms by which the organism evades the normal, predominantly neutrophilic, host defenses are unclear. Phenazine products of P. aeruginosa can induce death in Caenorhabditis elegans. We hypothesized that phenazines induce death of human neutrophils, and thus impair neutrophil-mediated bacterial killing. We investigated the effects of two phenazines, pyocyanin and 1-hydroxyphenazine, upon apoptosis of neutrophils in vitro. Pyocyanin induced a concentration- and time-dependent acceleration of neutrophil apoptosis, with 50 microM pyocyanin causing a 10-fold induction of apoptosis at 5 h (p < 0.001), a concentration that has been documented in sputum from patients colonized with P. aeruginosa. 1-hydroxyphenazine was without effect. In contrast to its rapid induction of neutrophil apoptosis, pyocyanin did not induce significant apoptosis of monocyte-derived macrophages or airway epithelial cells at time points up to 24 h. Comparison of wild-type and phenazine-deleted strains of P. aeruginosa showed a highly significant reduction in neutrophil killing by the phenazine-deleted strain. In clinical isolates of P. aeruginosa pyocyanin production was associated with a proapoptotic effect upon neutrophils in culture. Pyocyanin-induced neutrophil apoptosis was not delayed either by treatment with LPS, a powerfully antiapoptotic bacterial product, or in neutrophils from cystic fibrosis patients. Pyocyanin-induced apoptosis was associated with rapid and sustained generation of reactive oxygen intermediates and subsequent reduction of intracellular cAMP. Treatment of neutrophils with either antioxidants or synthetic cAMP analogues significantly abrogated pyocyanin-induced apoptosis. We conclude that pyocyanin-induced neutrophil apoptosis may be a clinically important mechanism of persistence of P. aeruginosa in human tissue.  相似文献   

5.
《Free radical research》2013,47(3-6):335-339
Upon activation, human neutrophils generate 5-lipoxygenase products which are involved in inflammation as well as other physiological and pathophysiological processes. We have examined the influence of red cells on the generation of lipoxygenase-derived products by neutrophils utilizing high pressure liquid chromato-graphy system which permitted quantitation of SHETE, leukotriene B4 (and its isomers) and the omega oxidation products of leukotriene B4 (20-hydroxyleukotriene B4, 20-carboxyleukotriene B4) within the same sample. Co-incubation of red cells with neutrophils (50:1, red cells:neutrophils) resulted in a 722 percent increase in 5-hydroxyeicosatetraenoic acid production and a slight increase in leukotriene B4 and its omega oxidation products which were not accompanied by increases in 15-hydroxyeicosatetraenoic acid production. The role of the sulfhydryl status of the red cell and its ability to scavenge hydrogen peroxide were assessed in relationship to the interaction of red cells on the neutrophil-derived lipoxygenase products. Together, these findings indicate that red cells can regulate the levels of lipid-derived mediators produced by neutrophils. Moreover, they suggest that red cell-neutrophil interactions may be of importance in inflammatory reactions.  相似文献   

6.
Ergothioneine (ESH), an aromatic thiol occurring in the human diet and which accumulates in particular cells, is believed to act as an antioxidant. However, its redox mechanism remains unclear and it does not seem to provide any advantage compared to other antioxidants, such as alkylthiols, which are better reducing agents and generally present in cells at higher levels. Here, we investigated by ESI–MS the products of ESH oxidation produced by neutrophils during oxidative burst and, to further elucidate ESH redox behavior, we also analyzed the oxidation products of the reaction of ESH with hypochlorite in cell-free solutions. Indeed, neutrophils are the main source of hypochlorite in humans. Furthermore, we also tested other biologically relevant oxidants, such as peroxynitrite and hydrogen peroxide. Our results indicate that treatment of human neutrophils with phorbol 12-myristate 13-acetate in the presence of ESH leads to a remarkable production of the sulfonated form (ESO3H), a compound never described before, and hercynine (EH), the desulfurated form of ESH. Similar results were obtained when ESH was subjected to cell-free oxidation in the presence of hypochlorite, as well as hydrogen peroxide or peroxynitrite. Furthermore, when the disulfide of ESH was reacted with those oxidants, we found that it was also oxidized, with production of EH and ESO3H, whose amount was dependent on the oxidant strength. These data reveal a unique ESH redox behavior, entirely different from that of alkylthiols, and suggest a mechanism, so far overlooked, through which ESH performs its antioxidant action in cells.  相似文献   

7.
In addition to direct bactericidal activities, such as phagocytosis and generation of reactive oxygen species (ROS), neutrophils can regulate the inflammatory response by undergoing apoptosis. We found that infection of human neutrophils with Mycobacterium tuberculosis (Mtb) induced rapid cell death displaying the characteristic features of apoptosis such as morphologic changes, phosphatidylserine exposure, and DNA fragmentation. Both a virulent (H37Rv) and an attenuated (H37Ra) strain of Mtb were equally effective in inducing apoptosis. Pretreatment of neutrophils with antioxidants or an inhibitor of NADPH oxidase markedly blocked Mtb-induced apoptosis but did not affect spontaneous apoptosis. Activation of caspase-3 was evident in neutrophils undergoing spontaneous apoptosis, but it was markedly augmented and accelerated during Mtb-induced apoptosis. The Mtb-induced apoptosis was associated with a speedy and transient increase in expression of Bax protein, a proapoptotic member of the Bcl-2 family, and a more prominent reduction in expression of the antiapoptotic protein Bcl-x(L). Pretreatment with an inhibitor of NADPH oxidase distinctly suppressed the Mtb-stimulated activation of caspase-3 and alteration of Bax/Bcl-x(L) expression in neutrophils. These results indicate that infection with Mtb causes ROS-dependent alteration of Bax/Bcl-x(L) expression and activation of caspase-3, and thereby induces apoptosis in human neutrophils. Moreover, we found that phagocytosis of Mtb-induced apoptotic neutrophils markedly increased the production of proinflammatory cytokine TNF-alpha by human macrophages. Therefore, the ROS-dependent apoptosis in Mtb-stimulated neutrophils may represent an important host defense mechanism aimed at selective removal of infected cells at the inflamed site, which in turn aids the functional activities of local macrophages.  相似文献   

8.
The oxidation and inactivation of protein tyrosine phosphatases is one mechanism by which reactive oxygen species influence tyrosine phosphorylation-dependent signaling events and exert their biological functions. In the present study, we determined the redox status of endogenous protein tyrosine phosphatases in HepG2 and A431 human cancer cells, in which reactive oxygen species are produced constitutively. We used mass spectrometry to assess the state of oxidation of the catalytic cysteine residue of endogenous PTP1B and show that this residue underwent both reversible and irreversible oxidation to high stoichiometry in response to intrinsic reactive oxygen species production. In addition, our data show that the oxidation of PTP1B is specific to the active site Cys, with the other Cys residues in the protein remaining in a reduced state. Treatment of these cells with diphenyleniodonium, an inhibitor of NADPH oxidases, decreased reactive oxygen species levels. This resulted in inhibition of protein tyrosine phosphatase oxidation, concomitant with decreased tyrosine phosphorylation of cellular proteins and inhibition of anchorage-independent cell growth. Therefore, our data also suggest that the high level of intrinsic reactive oxygen species may contribute to the transformed phenotype of HepG2 and A431 cells via constitutive inactivation of cellular protein tyrosine phosphatases.  相似文献   

9.
Inducible heat shock protein (HspA1A) promotes tumor cell growth and survival. It also interacts with effector cells of the innate immune system and affects their activity. Recently, we showed that the direct contact of ovarian cancer cells, isolated from tumor specimens, with neutrophils intensified their biological functions. Our current experiments demonstrate that the activation of neutrophils, followed by an increased production of reactive oxygen species, by cancer cells involves the interaction of HspA1A from cancer cells with Toll-like receptors 2 and 4 expressed on the neutrophils’ surface. Our data may have a practical implication for targeted anticancer therapies based, among other factors, on the inhibition of HspA1A expression in the cancer cells.  相似文献   

10.
Synthetic carotenoid analogs, with increased utility for biological applications, are sparingly reported in the literature. Synthetic modification, which may increase the water solubility and/or water dispersibility of lipophilic carotenoids, allows their use in aqueous environments as potent antioxidants against potentially deleterious reactive oxygen species (ROS) that can be generated in vivo. Superoxide anion, produced by activated human neutrophils, can be a source of additional harmful ROS and nonradical species such as singlet oxygen in vivo. In the current study, direct scavenging of superoxide anion by a well-characterized C30 carotenoid phospholipid mixture was evaluated in a standard in vitro isolated human neutrophil assay by electron paramagnetic resonance (EPR) spectroscopy, employing the spin-trap DEPMPO. The carotenoid phospholipid was tested in aqueous formulation (aqueous dispersibility >60 mg/mL), in which supramolecular assembly takes place, as well as in ethanolic formulation as a monomeric solution of the carotenoid phospholipids. The carotenoid phospholipid (a highly unsaturated zwitterionic surfactant) was compared with a previously characterized rigid, long-chain, highly unsaturated dianionic bolaamphiphile, which contains an additional three conjugated double bonds in its extended conjugated system. As previously reported, direct scavenging by the carotenoid phospholipid derivatives in monomeric ethanolic formulation was superior at each tested concentration to aqueous, aggregated formulations of the compounds. Additionally, the percent inhibition of superoxide signal was related to the apparent or effective length of the conjugated chromophore, consistent with previous reports of radical inhibition and singlet oxygen quenching by polyene carotenoids of differing length.  相似文献   

11.
Oxygen radicals, inflammation, and tissue injury   总被引:8,自引:0,他引:8  
Inflammatory reactions often result in the activation and recruitment of phagocytic cells (e.g., neutrophils and/or tissue macrophages) whose products result in injury to the tissue. In killing of endothelial cells by activated neutrophils as well as in lung injury produced by either activated neutrophils or activated macrophages there is evidence that H2O2 and iron play a role. HO. may be a key oxygen product related to the process of injury. Endothelial cells in some vascular compartments may be susceptible to neutrophil mediated injury in a manner that is independent of oxygen radicals. On the basis of in vitro observations, a synergy exits between platelets and neutrophils, resulting in enhanced oxygen radical formation by the latter. Finally, the cytokines, interleukin 1 and tumor necrosis factor, released from macrophages have both direct stimulatory effects on oxygen radical formation in neutrophils and can "prime" macrophages for enhanced oxygen radical responses to other agonists. Cytokines may also alter endothelial cells rendering them more susceptible to oxygen radical mediated injury by neutrophils. This suggests a complex network of interactions between phagocytic cells and peptide mediators, the result of which is acute, oxygen radical mediated tissue injury.  相似文献   

12.
Carotenoid oxidative degradation products inhibit Na+-K+-ATPase   总被引:1,自引:0,他引:1  
This study investigates the biological significance of carotenoid oxidation products using inhibition of Na+-K+-ATPase activity as an index. β-Carotene was completely oxidized by hypochlorous acid and the oxidation products were analyzed by capillary gasliquid chromatography and high performance liquid chromatography. The Na+-K+-ATPase activity was assayed in the presence of these oxidized carotenoids and was rapidly and potently inhibited. This was demonstrated for a mixture of β-carotene oxidative breakdown products, β-Apo-10'-carotenal and retinal. Most of the β-carotene oxidation products were identified as aldehydic. The concentration of the oxidized carotenoid mixture that inhibited Na+-K+-ATPase activity by 50% (IC50) was equivalent to 10μM non-degraded β-carotene, whereas the IC50 for 4-hydroxy-2-nonenal, a major lipid peroxidation product, was 120 μM. Carotenoid oxidation products are more potent inhibitors of Na+-K+-ATPase than 4-hydroxy-2-nonenal. Enzyme activity was only partially restored with hydroxylamine and/or β-mercaptoethanol. Thus, in vitro binding of carotenoid oxidation products results in strong enzyme inhibition. These data indicate the potential toxicity of oxidative carotenoid metabolites and their activity on key enzyme regulators and signal modulators.  相似文献   

13.
This study investigates the biological significance of carotenoid oxidation products using inhibition of Na+-K+-ATPase activity as an index. β-Carotene was completely oxidized by hypochlorous acid and the oxidation products were analyzed by capillary gasliquid chromatography and high performance liquid chromatography. The Na+-K+-ATPase activity was assayed in the presence of these oxidized carotenoids and was rapidly and potently inhibited. This was demonstrated for a mixture of β-carotene oxidative breakdown products, β-Apo-10′-carotenal and retinal. Most of the β-carotene oxidation products were identified as aldehydic. The concentration of the oxidized carotenoid mixture that inhibited Na+-K+-ATPase activity by 50% (IC50) was equivalent to 10μM non-degraded β-carotene, whereas the IC50 for 4-hydroxy-2-nonenal, a major lipid peroxidation product, was 120 μM. Carotenoid oxidation products are more potent inhibitors of Na+-K+-ATPase than 4-hydroxy-2-nonenal. Enzyme activity was only partially restored with hydroxylamine and/or β-mercaptoethanol. Thus, in vitro binding of carotenoid oxidation products results in strong enzyme inhibition. These data indicate the potential toxicity of oxidative carotenoid metabolites and their activity on key enzyme regulators and signal modulators.  相似文献   

14.
The production of reactive oxygen species is a regular feature of life in the presence of oxygen. Some reactive oxygen species possess sufficient energy to initiate lipid peroxidation in biological membranes, self-propagating reactions with the potential to damage membranes by altering their physical properties and ultimately their function. Two of the most prominent patterns of lipid restructuring in membranes of ectotherms involve contents of polyunsaturated fatty acids and ratios of the abundant phospholipids, phosphatidylcholine and phosphatidylethanolamine. Since polyunsaturated fatty acids and phosphatidylethanolamine are particularly vulnerable to oxidation, it is likely that higher contents of these lipids at low body temperature elevate the inherent susceptibility of membranes to lipid peroxidation. Although membranes from animals living at low body temperatures may be more prone to oxidation, the generation of reactive oxygen species and lipid peroxidation are sensitive to temperature. These scenarios raise the possibility that membrane susceptibility to lipid peroxidation is conserved at physiological temperatures. Reduced levels of polyunsaturated fatty acids and phosphatidylethanolamine may protect membranes at warm temperatures from deleterious oxidations when rates of reactive oxygen species production and lipid peroxidation are relatively high. At low temperatures, enhanced susceptibility may ensure sufficient lipid peroxidation for cellular processes that require lipid oxidation products.  相似文献   

15.
Do neutrophils produce ozone? An appraisal of current evidence   总被引:2,自引:0,他引:2  
Recently, it was proposed that neutrophils generate ozone. Evidence for the proposal is based largely on three experimental systems using probes that are known to react with ozone. However, further assessment of the findings shows that in each case, there is a plausible alternative explanation. Oxidation of indigo carmine to isatin sulfonic can be accounted for by superoxide. Conversion of vinylbenzoic acid to p-carboxybenzaldehyde is analogous to the reactions of other styrene derivatives shown to be catalyzed by myeloperoxidase, and more rigorous assessment of alternative explanations is needed before the formation of secosterol oxidation products of cholesterol can be taken as proof of ozone production. We conclude that the evidence for ozone production by neutrophils is not convincing and studies using the same probes to implicate ozone in other biological processes should also be interpreted with caution.  相似文献   

16.
In vitro natural killer (NK) activity expressed by blood mononuclear cells from patients with chronic granulomatous disease of childhood (CGD) was equivalent to that expressed by cells from normal, healthy volunteers. Because neutrophils and monocytes from these same donors exhibited extremely depressed oxidative functions, our data could be interpreted to show that a) NK cells derived from a unique and separate cellular lineage unaffected by the disease-related oxidative defect, or b) the in vitro cytolytic mechanism(s) of NK cells were not dependent on oxygen metabolites. These hypotheses were examined by using as NK effector cells large granular lymphocytes (LGL) from healthy donors whose monocytes and neutrophils had normal oxidative functions. Such functions were measured in the nitroblue tetrazolium dye reduction assay, which is a qualitative measurement of superoxide anion production; by reduction of ferric cytochrome c, a more specific and quantitative measurement of superoxide anion production; and in the luminol-enhanced chemiluminescence assay, an extremely sensitive measure of several reactive oxygen radicals, including superoxide anion, hydroxyl radical, and singlet oxygen. Whereas monocytes and neutrophils from healthy donors were readily stimulated with zymosan or phorbol myristate acetate (PMA) in each of these assays. LGL produced no detectable amounts of oxygen metabolites when co-incubated either with K562 erythroleukemia cells, PMA, E. coli endotoxin, or the calcium ionophore A23187. Thus, because NK cell activity is normal in CGD patients with major oxidative defects, and because no reactive oxygen metabolites could be detected in LGL that simultaneously exhibited potent NK activity, we conclude that in vitro NK activity by human mononuclear cells involves a lytic mechanism(s) independent of oxygen metabolites.  相似文献   

17.
Recently, J. R. Kanofsky et al. (1988, J. Biol. Chem. 263, 9692-9696) reported that human eosinophils generated modest amounts of singlet oxygen. In the mechanism proposed, hypobromous acid (made from the peroxidase-catalyzed oxidation of bromide ion) reacted with hydrogen peroxide to form singlet oxygen. In contrast, human neutrophils, which generate both hypochlorous acid and hydrogen peroxide, do not make singlet oxygen. The failure of human neutrophils to generate singlet oxygen is due in part to the trapping of hypochlorous acid by endogenous amines. In this paper, I show that amino acids are much more effective traps for hypochlorous acid than for hypobromous acid. Glycine totally inhibits singlet oxygen generation from a model enzyme system composed of chloroperoxidase, hydrogen peroxide, and chloride ion, but causes only a 35% reduction in singlet oxygen generation from an analogous enzyme system containing bromide ion instead of chloride ion. The products of the reaction of hypobromous and glycine (presumably an equilibrium mixture of N-bromoglycine, N,N-dibromoglycine, and hypobromous acid) retain the ability to react with hydrogen peroxide to form singlet oxygen. In contrast, the products of the reaction of hypochlorous acid and glycine do not react with hydrogen peroxide to produce singlet oxygen. Similar results were obtained for L-alanine, L-arginine, L-asparagine, L-aspartic acid, L-cystine, L-glutamic acid, L-glutamine, L-histidine, L-lysine, L-phenylalanine, L-proline, L-serine, and L-tyrosine. Thus, bromine derivatives of amino acids may act as intermediates in the peroxidase-catalyzed generation of singlet oxygen.  相似文献   

18.
A large and increasing volume of wastewater is produced globally by the winery and distillery industries. These wastewaters are generally acidic, high in chemical oxygen demand (COD) and color, and may contain phenolic compounds that can inhibit biological treatment systems. Treatment of distillery and phenolic compound–rich wastewaters by physicochemical, aerobic biological systems and hybrid treatment methods are discussed, as well as products derived from fungal treatment. White-rot fungi have been shown to exhibit unique biodegradation capabilities, primarily due to their production of extracellular and broad substrate range enzymes that are capable of mineralizing lignin, a recalcitrant biopolymer. One of these enzymes, laccase, catalyses the oxidation of various organic compounds with the subsequent reduction of molecular oxygen to water. Laccase synthesis, induction, and inhibition are discussed with the utilization of waste residues for laccase production and the enzyme's potential industrial applications. Distillery wastewaters offer a unique, presterilized, potential growth substrate for the production of lignolytic enzymes such as laccase. Compounds may be utilized for enzyme and biomass production resulting in remediation by the growing fungus.  相似文献   

19.
AIMS: To identify beneficial oxygen vectors for Phaffia rhodozyma in liquid cultures, and to evaluate their use to improve the oxygen transfer and carotenoid production in the yeast cultures. METHODS AND RESULTS: Several liquid hydrocarbons were tested as oxygen vectors for improving the yeast growth and carotenoid production in shake-flask cultures of P. rhodozyma. While all nontoxic organic liquids (Log P: > or =5.6) showed a positive effect, n-hexadecane was proved to be the most beneficial for the yeast growth and carotenoid production. The addition of 9% (v/v) n-hexadecane to the liquid medium at the time of inoculation was found to be optimal, increasing the carotenoid yield by 58% (14.5 mg l(-1) vs 9.2 g l(-1) in the control) and the oxygen transfer rate (OTR) by 90%. CONCLUSIONS: The addition of n-hexadecane to shake-flask cultures of P. rhodozyma significantly improved the oxygen transfer in culture, thus increasing the carotenoid production. SIGNIFICANCE AND IMPACT OF THE STUDY: Use of organic oxygen vectors such as n-hexadecane may be a simple and useful means for enhancing oxygen transfer and carotenoid production in liquid fermentation of P. rhodozyma.  相似文献   

20.
The high-affinity IgE receptor (FcepsilonRI) has recently been reported to be expressed by neutrophils in atopic asthmatic individuals, leading to speculations that IgE could influence biological functions of these cells. In this study, we demonstrate that monomeric human IgE delayed spontaneous apoptosis of primary human neutrophils from atopic asthmatics in vitro. This effect was not dependent on FcepsilonRI cross-linking or autocrine release of soluble mediators; however, it was associated with increased expression of the antiapoptotic myeloid cell leukemia-1 protein, retention of the proapoptotic molecule Bax in the cytoplasm, decreased release of Smac from mitochondria, and reduced caspase-3 activity. Taken together, our results indicate that in vitro IgE can delay programmed cell death of neutrophils from allergic asthmatics and this may possibly contribute to neutrophilic inflammation in atopic asthma.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号