首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Asymmetric dimethylarginine (ADMA) is an emerging cardiovascular risk factor. Its increased levels have been hypothesized to be a cause of endothelial dysfunction in pathological conditions such as hypertension, dyslipidemia, renal failure, hyperglycemia, and hyperhomocysteinemia. It acts as a potent competitive inhibitor of nitric oxide synthase. Methods using ortho-phthaldialdehyde (OPA) as derivatization reagent are widely performed in HPLC determination of ADMA, but they produce derivatives whose fluorescence rapidly decreases during time. Moreover, these methods do not allow a clear separation of ADMA from its stereoisomer symmetric dimethylarginine (SDMA). Our work describes a new method to determine ADMA, SDMA, and arginine that uses, as derivatizing reagent, naphthalene-2,3-dicarboxaldehyde (NDA). Chromatograms with low background, showing a complete separation of ADMA and SDMA, are obtained. NDA derivatives are considerably more stable than the OPA derivatives. The calibration curves of ADMA and SDMA are linear within the range of 0.01-16.0 microM. Coefficients of variation are less than 1.7% for within day and less then 2.3% for day to day. Absolute mean recoveries from supplemented samples are between 100 and 104%. These characteristics make this method reliable and easily manageable for large routine analyses.  相似文献   

2.
Asymmetric dimethylarginine (ADMA), an endogenous inhibitor of nitric oxide synthase (NOS), may be related to reduced biosynthesis of nitric oxide in diseases associated with accelerated atherosclerosis. The closely related compound symmetric dimethylarginine (SDMA) does not inhibit NOS, but may compete with arginine for cellular uptake, thereby limiting substrate availability for NOS. We report on a method for the simultaneous measurement of arginine, ADMA, and SDMA as a tool to gain insight in the role of these compounds in the regulation of NOS activity. Sample cleanup was performed by solid-phase extraction on polymeric cation-exchange columns using monomethylarginine as internal standard. After derivatization with ortho-phthaldialdehyde reagent containing 3-mercaptopropionic acid, analytes were separated by isocratic reversed-phase HPLC with fluorescence detection. The stable derivatives were separated with near baseline resolution. Using a sample volume of 0.2 ml, linear calibration curves were obtained with limits of quantification of 0.08 microM for arginine and 0.01 microM for ADMA and SDMA. Analytical recovery was 98-102%, and interassay CV was better than 3%. Plasma from healthy volunteers (n = 53) contained 94 +/- 26 microM arginine, 0.42 +/- 0.06 microM ADMA, and 0.47 +/- 0.08 microM SDMA. Due to its high precision and sensitivity this method is a valuable tool in research on the metabolism of dimethylated arginines and their role in the regulation of NOS activity.  相似文献   

3.
A new HPLC assay for the detection of L-arginine, NG, NG-dimethyl-L-arginine (ADMA) and NG, NG' -dimethyl-L-arginine (SDMA) in plasma using the derivatisation reagent AccQ-Fluor (6-aminoquinolyl-N-hydroxysuccinimidyl carbamate) is described. The fluorescent derivatives produced are extremely stable enabling routine processing of large numbers of samples. Arginine and its metabolites are extracted from plasma on strong cation exchange (SCX) cartridges with NG-monomethyl-L-arginine (NMMA) as internal standard, derivatised and separated on a C18 column with acetonitrile in 0.1M sodium acetate buffer pH 6. Separation of the stereoisomers ADMA and SDMA was excellent and improvements to the solid phase extraction (SPE) procedure enabled good recovery (>80%) of arginine, ADMA and SDMA. The utility of the method is exemplified by comparison of plasma concentrations of ADMA, SDMA and arginine in healthy volunteers and diabetic/ischaemic patients.  相似文献   

4.
Using high-performance liquid chromatography (HPLC) with multigradient elution, (asymmetric-DMA, ADMA) and (symmetric-DMA, SDMA) can be separated from human plasma samples. The dimethylarginine compounds in plasma, after extraction with a cation-exchange column, are converted to fluorescent derivatives with o-phthaldialdehyde (OPA) in an alkaline medium and the derivatives are separated simultaneously within 50 min on a reversed-phase column (Ultracarb 3 ODS(20)). The recoveries of ADMA and SDMA are over 80% and the method permits quantitative determination of dimethylated arginines at concentrations as low as 0.1 μmol/l in human plasma.  相似文献   

5.
Post-translational methylation of arginine residues in proteins leads to generation of N(G)-monomethylarginine (MMA) and both symmetric and asymmetric dimethylarginine (SDMA and ADMA), that are released into the cytosol upon proteolysis. Both MMA and ADMA are inhibitors of nitric oxide synthase and especially elevated levels of ADMA are associated with endothelial dysfunction and cardiovascular disease. Plasma concentrations of ADMA and SDMA are very low, typically between 0.3 and 0.8 microM, making their quantification by HPLC an analytical challenge. Sample preparation usually involves a cleanup step by solid-phase extraction on cation-exchange columns followed by derivatization of amino acids into fluorescent adducts. Because ADMA and SDMA concentrations in healthy subjects show a very narrow distribution, with a between-subject variability of 13% for ADMA and 19% for SDMA, very low imprecision is an essential assay feature. Procedures for sample cleanup, derivatization, and chromatographic separation of arginine and its methylated analogs are the main topics of this review. In addition, important aspects of method validation, pre-analytical factors, and reference values are discussed.  相似文献   

6.
The performance of a new ELISA assay kit (DLD Diagnostika GmbH, Hamburg, Germany) for the determination of asymmetric dimethylarginine (ADMA) was evaluated against a reversed phase HPLC method. ADMA concentrations of 55 serum samples were measured with both methods. The intra-assay CV for ADMA-ELISA was 19% (n=10). Inter-assay CVs for ADMA-ELISA were 9% for kit control 1 (0.410+/-0.037 microM) and 14% for kit control 2 (1.174+/-0.165 microM). The intra- and inter-assay CVs for HPLC assay for ADMA were 2.5% (0.586+/-0.015 microM) and 4.2% (0.664+/-0.028 microM), respectively. There was no correlation between these two methods (R(2)=0.0972). The effect of storage conditions of the samples on ADMA concentrations was investigated by HPLC. ADMA concentration was stable after four freezing and thawing cycles. Overall, the HPLC method offered better sensitivity, selectivity and, very importantly, simultaneous determination of ADMA, SDMA, l-homoarginine and l-arginine.  相似文献   

7.
Previously, we demonstrated the utility of a gas chromatography–tandem mass spectrometry (GC–MS/MS) method for the quantitative determination of asymmetric dimethylarginine (ADMA) in biological samples. Here we report the extension of this method to symmetric dimethylarginine (SDMA) in human urine. SDMA and ADMA were simultaneously quantitated in urine by using their in situ prepared trideuteromethyl esters as internal standards. The GC–MS/MS method was validated for SDMA and ADMA in spot urine samples of 19 healthy adults. In these samples, the creatinine-corrected excretion rate was 3.23 ± 0.63 μmol/mmol for SDMA and 3.14 ± 0.98 μmol/mmol for ADMA.  相似文献   

8.
Arginine methylation constitutes a posttranslational modification dependent on the action of protein arginine methyltransferases (PRMTs). Using S-adenosylmethionine as a methyl donor, PRMTs catalyze the formation of monomethylarginine (L-NMMA), asymmetric dimethylarginine (ADMA), or symmetric dimethylarginine (SDMA). Protein arginine methylation is involved in the regulation of signal transduction, RNA export, and cell proliferation, but a quantitative view of arginine methylation of the cell and tissue proteome remains to be performed. In this study, we developed a high-performance liquid chromatography (HPLC)-based method to accurately quantify methylated arginines in free and protein-incorporated amino acid pools of cell and tissue extracts, using protein precipitation and hydrolysis, HPLC separation, and fluorescence detection for the simultaneous quantification of L-arginine (L-Arg), L-NMMA, ADMA, and SDMA. This method permits accurate assessment of the degree of protein arginine methylation in complex biological samples. Using this method, we determined dynamic changes in protein methylation in vitro in cells subjected to proteasome inhibition. We furthermore demonstrate differential methylation patterns in heart and kidney lysates in vivo. Thus, the described method will greatly facilitate our understanding of the role of arginine methylation in physiology and pathophysiology and of the effects of pharmacological interventions on arginine methylation in select cell culture models.  相似文献   

9.
Nitric oxide (NO) is synthesized by NO synthase from L-arginine, which can be competitively blocked by endogenous inhibitors such as asymmetric dimethylarginine (ADMA), but not by symmetric dimethylarginine (SDMA). ADMA is degraded by dimethylarginine dimethylaminohydrolase (DDAH) to dimethylamine and citrulline. A growing number of published clinical studies documented a strong correlation between increased ADMA blood levels and cardiovascular morbidity and mortality. We present here a highly sensitive method for the determination of this compounds in plasma and urine by means of HPLC-MS. The sample preparation is very simple and comprises only protein precipitation and concentration in the case of plasma samples and dilution in the case of urine. The samples are derivatized automatically with orthophthaldialdehyde and 2-mercaptoethanol, are separated on a 250 mm x 4 mm RP18 column by gradient elution with formate buffer/methanol and are detected by ESI-MS. The calibration functions are linear and cover the range from normal to pathologic concentration values of the analytes. The intra-day relative standard deviation (R.S.D.) of the assay for ADMA in plasma is 7.5% and the corresponding inter-day R.S.D. is 5.7%. In urine, these values for ADMA are 3.8 and 6.4%, respectively. All other analytes in plasma as well as in urine exhibit intra-day R.S.D. below 8%. The corresponding inter-day R.S.D. are all below 13%.  相似文献   

10.
Elevated plasma concentrations of symmetrical dimethylarginine (SDMA) and asymmetrical dimethylarginine (ADMA) are repeatedly associated with kidney failure. Both ADMA and SDMA can be excreted in urine. We tested whether renal excretion is necessary for acute, short-term maintenance of plasma ADMA and SDMA. Sprague-Dawley rats underwent sham operation, bilateral nephrectomy (NPX), ureteral ligation, or ureteral section under isoflurane anesthesia. Tail-snip blood samples (250 microl) were taken before and at 6- or 12-h intervals for 72 h after operation. Plasma clearance was assessed in intact and NPX rats. High-performance liquid chromatography determined SDMA and ADMA concentrations. Sodium, potassium, creatinine, blood urea nitrogen (BUN), and body weight were also measured. Forty-eight hours after NPX, SDMA increased 25 times (0.23 +/- 0.03 to 5.68 +/- 0.30 microM), whereas ADMA decreased (1.17 +/- 0.08 to 0.73 +/- 0.08 microM) by 38%. Creatinine and BUN increased, paralleling SDMA. Sham-operated animals showed no significant changes. Increased SDMA confirms continuous systemic production of SDMA and its obligatory renal excretion, much like creatinine. In contrast, decreased plasma ADMA suggests that acute total NPX either reduced systemic ADMA formation and/or systemic hydrolysis of ADMA increased 48-h post-NPX. However, plasma clearance of ADMA appeared unchanged 48 h after NPX. We conclude that renal excretory function is needed for SDMA elimination but not needed for acute, short-term ADMA elimination in that systemic hydrolysis is fully capable of clearing plasma ADMA.  相似文献   

11.
A fully validated gas chromatographic-mass spectrometric (GC-MS) method for the accurate and precise quantification of NG,NG-dimethyl-L-arginine (asymmetric dimethylarginine, ADMA), an endogenous inhibitor of the NO synthase, in cell culture supernatants and in small volumes of plasma is described. ADMA was concentrated by solid phase extraction and converted to its methyl ester pentafluoropropionic amide derivative. The derivatives were analyzed without any further purification. Using gas chromatography-chemical ionization mass spectrometry, fragment ions at m/z 634 and m/z 640 were obtained for ADMA and for NG,NG-[2H6]-dimethyl-L-arginine ([2H6]-ADMA) as internal standard, respectively. [2H6]-ADMA was synthesized by reaction of L-ornithine fastened at bromcyan-agarose with dimethylamine. The limit of detection of the method was 2 fmol, while the limit of quantitation for cell culture supernatants was 0.05 microM. The method was validated in a concentration range of 0-1.2 microM in cell culture medium and 0-2 microM in 50 microl aliquots of human plasma. The precision was > or =97% and the accuracy was determined to be > or =94%. This method is fast, rugged and an alternative to high performance liquid chromatography (HPLC) analysis of ADMA in cell culture supernatants and small volumes of human plasma.  相似文献   

12.
Elevated plasma concentrations of asymmetric dimethylarginine (ADMA) and symmetric dimethylarginine (SDMA) were found in various clinical settings including coronary heart disease. To assess ADMA and SDMA diagnostic validity in patients with different stages of ischemic heart disease, we studied these markers in patients having stable angina pectoris (SAP), unstable angina (USAP), and acute myocardial infarction (AMI). The results were compared with the values of healthy individuals. Plasma ADMA and SDMA levels were measured by high-performance liquid chromatography. In all patient groups both markers were significantly elevated in comparison with control ones (p?<?0.001). In SAP patients, the median ADMA value was 0.75 (0.31–2.73)?μmol/L, and SDMA 1.11 (0.69–0.1.42)?μmol/L, in USAP patients, the marker values were 0.94 (0.34–3.13)?μmol/L and 1.23 (0.88–4.72)?μmol/L, and in AMI patients, 0.98 (0.48–2.01)?μmol/L and 1.26 (0.75–2.93)?μmol/L, while in healthy subjects they were 0.31 (0.17–0.87)?μmol/L and 0.29 (0.20–0.83)?μmol/L, respectively. SDMA was found significantly different in SAP and AMI patients (p?<?0.05). Diagnostic accuracy was determined by receiver operating characteristic (ROC) curve analysis. The highest area under the ROC (AUC) for ADMA was obtained in AMI patients (0.976), while for SDMA in USAP patients (1.000). There was no significant difference between the AUCs. The greatest sensitivity and specificity were found in the USAP group (95.65 and 96.30?% for ADMA, and 100?% for each characteristic of SDMA). Considering these results, SDMA showed better clinical accuracy in assessing ischemic disease, where it could be used as a valid marker and a therapeutic target.  相似文献   

13.
Protein arginine methylation is catalyzed by a family of enzymes called protein arginine methyltransferases (PRMTs). Three forms of methylarginine have been identified in eukaryotes: monomethylarginine (l-NMMA), asymmetric dimethylarginine (ADMA), and symmetric dimethylarginine (SDMA), all characterized by methylation of one or both guanidine nitrogen atoms of arginine. l-NMMA and ADMA, but not SDMA, are competitive inhibitors of all nitric oxide synthase isoforms. SDMA is eliminated almost entirely by renal excretion, whereas l-NMMA and ADMA are further metabolized by dimethylarginine dimethylaminohydrolase (DDAH). To explore the interplay between methylarginine synthesis and degradation in vivo, we determined PRMT expression and DDAH activity in mouse lung, heart, liver, and kidney homogenates. In addition, we employed HPLC-based quantification of protein-incorporated and free methylarginine, combined with immunoblotting for the assessment of tissue-specific patterns of arginine methylation. The salient findings of the present investigation can be summarized as follows: 1) pulmonary expression of type I PRMTs was correlated with enhanced protein arginine methylation; 2) pulmonary ADMA degradation was undertaken by DDAH1; 3) bronchoalveolar lavage fluid and serum exhibited almost identical ADMA/SDMA ratios, and 4) kidney and liver provide complementary routes for clearance and metabolic conversion of circulating ADMA. Together, these observations suggest that methylarginine metabolism by the pulmonary system significantly contributes to circulating ADMA and SDMA levels.  相似文献   

14.
We hypothesise that asymmetric and symmetric dimethylarginine (ADMA, SDMA) are released in cerebrospinal fluid (CSF) due to ischemia-induced proteolysis and that CSF dimethylarginines are related to stroke severity. ADMA and SDMA were measured in CSF of 88 patients with ischemic stroke or TIA within 24 h after stroke onset (mean 8.6 h) and in 24 controls. Stroke severity was assessed by the National Institutes of Health Stroke Scale (NIHSS) score at admission. Outcome was evaluated by institutionalization due to stroke and the modified Rankin scale. Dimethylarginine levels were higher in patients with stroke than in TIA patients, who had higher levels than controls and correlated with the NIHSS. Logistic regression analysis confirmed that dimethylarginines were independently associated with stroke severity. The SDMA/ADMA ratio did not differ significantly between controls and stroke patients. CSF dimethylarginine levels are increased in hyperacute ischemic stroke and are associated with stroke severity. R. Brouns is a research assistant of the Fund for Scientific research Flanders (FWO-Vlaanderen).  相似文献   

15.
Accumulation of symmetric dimethylarginine in hepatorenal syndrome   总被引:4,自引:0,他引:4  
In patients with cirrhosis, nitric oxide (NO), asymmetric dimethylarginine (ADMA), and possibly symmetric dimethylarginine (SDMA) have been linked to the severity of the disease. We investigated whether plasma levels of dimethylarginines and NO are elevated in patients with hepatorenal syndrome (HRS), compared with patients with cirrhosis without renal failure (no-HRS). Plasma levels of NO, ADMA, SDMA, and l-arginine were measured in 11 patients with HRS, seven patients with no-HRS, and six healthy volunteers. SDMA concentration in HRS was higher than in no-HRS and healthy subjects (1.47 +/- 0.25 vs. 0.38 +/- 0.06 and 0.29 +/- 0.04 microM, respectively; P < 0.05). ADMA and NOx concentrations were higher in HRS and no-HRS patients than in healthy subjects (ADMA, 1.20 +/- 0.26, 1.11 +/- 0.1, and 0.53 +/- 0.06 microM, respectively; P < 0.05; NOx, 94 +/- 9.1, 95.5 +/- 9.54, and 37.67 +/- 4.62 microM, respectively; P < 0.05). In patients with HRS there was a positive correlation between serum creatinine and plasma SDMA (r2 =0.765, P < 0.001) but not between serum creatinine and ADMA or NOx. The results suggest that renal dysfunction is a main determinant of elevated SDMA concentration in HRS. Accumulation of ADMA as a result of impaired hepatic removal may be the causative factor initiating renal vasoconstriction and SDMA retention in the kidney.  相似文献   

16.
17.
Summary. The aim of this study was to investigate the possible relationship among dimethylarginines (asymmetric, ADMA; symmetric, SDMA) and homocysteine (Hcy) levels in subjects affected by chronic, mild to intermediate, hyperhomocysteinemia.ADMA and SDMA were assayed by an optimised HPLC method in 75 patients (Hcy = 20.8 μmol/L, 17.1–30.2; median and percentile range) and, for comparison, in 85 healthy subjects (Hcy = 8.0 μmol/L, 7.0–9.1). In controls, the cut-off values were set at 0.61 μmol/L for ADMA and 0.56 or 0.48 μmol/L for male and female SDMA, respectively. In patients, ADMA and SDMA levels were increased (p<0.001) with respect to controls, but no correlation with Hcy was observed. Hyperhomocysteinemic subjects showed a different behaviour in respect to ADMA and SDMA levels and this allowed their stratification in 3 subgroups characterized by ADMA and SDMA in the normal range, only SDMA, or both ADMA and SDMA over the cut-off values. A lack of correlation with Hcy was again observed, thus minimizing the direct role of Hcy on ADMA and SDMA metabolism and suggesting the need for further studies on this issue.  相似文献   

18.
Plasma concentrations of the nitric oxide synthase inhibitor asymmetric dimethylarginine (ADMA) and symmetric dimethylarginine (SDMA) increase already in the early stages of renal insufficiency. There is no agreement as to whether reduced renal plasma clearance (RPCL) contributes to this increase. Therefore, we investigated the relationship between estimated glomerular filtration rate (eGFR), RPCL, and plasma ADMA and SDMA in essential hypertensive patients with mild to moderate renal insufficiency. In 171 patients who underwent renal angiography, we drew blood samples from the aorta and both renal veins and measured mean renal blood flow (MRBF) using the (133)Xe washout technique. RPCL was calculated using arteriovenous concentration differences and MRBF. After correction for potential confounders, reduced eGFR was associated with higher plasma ADMA and SDMA [standardized regression coefficient (β) = -0.22 (95% confidence intervals: -0.41, -0.04) and β = -0.66 (95% confidence intervals: -0.83, -0.49), respectively]. However, eGFR was not independently associated with RPCL of ADMA. Moreover, reduced RPCL of ADMA was not associated with higher plasma ADMA. Contrary to ADMA, reduced eGFR was indeed associated with lower RPCL of SDMA [β = 0.21 (95% confidence intervals: 0.02, 0.40)]. In conclusion, our findings indicate that RPCL of ADMA is independent of renal function in hypertensive patients with mild to moderate renal insufficiency. Unlike the case for SDMA, reduced RPCL of ADMA is of minor importance for the increase in plasma ADMA in these patients, which indicates that increased plasma ADMA in this population is not a direct consequence of the kidneys failing as a plasma ADMA-regulating organ.  相似文献   

19.
The enzyme dimethylarginine dimethylaminohydrolase (DDAH) is responsible for the hydrolysis of asymmetric dimethylarginine (ADMA) to L-citrulline and dimethylamine. DDAH is currently investigated as a promising target for therapeutic interventions, as ADMA has been found to be elevated in cardiovascular disease. In many tissues continuous endogenous formation of ADMA and L-citrulline poses considerable limitations to the presently used assays for DDAH activity, which are commonly based on the measurement of ADMA or L-citrulline. We therefore developed a stable-isotope-based assay suitable for 96-well plates to determine DDAH activity. Using deuterium-labeled ADMA ([(2)H(6)]-ADMA) as substrate and double stable-isotope labeled ADMA ([(13)C(5)-(2)H(6)]-ADMA) as internal standard we were able to simultaneously determine formation and metabolism of ADMA in renal and liver tissue of mice by LC-tandem MS. Endogenous formation of ADMA could largely be abolished by addition of protease inhibitors, while metabolism of [(2)H(6)]-ADMA was not significantly altered. The intra-assay coefficient of variation for the determination of endogenous ADMA and [(2)H(6)]-ADMA was 2.4% and 4.8% in renal and liver tissue, respectively. The inter-assay coefficient of variation for DDAH activity based on degradation of [(2)H(6)]-ADMA determined in separate samples from the same organs was determined to be 8.9% and 10% for mouse kidney and liver, respectively. The present DDAH activity assay allows for the first time to simultaneously determine DDAH activity and endogenous formation of ADMA, SDMA, and L-arginine in tissue.  相似文献   

20.
A high-throughput analytical method was developed for the measurement of asymmetric dimethylarginine (ADMA) and L-arginine (ARG) from plasma using LC/MS/MS. The sample preparation was simple and only required microfiltration prior to analysis. ADMA and ARG were assayed using mixed-mode ion-exchange chromatography which allowed for the retention of the un-derivatized compounds. The need for chromatographic separation of ADMA from symmetric dimethylarginine (SDMA) was avoided by using an ADMA specific product ion. As a result, the analytical method only required a total run time of 2 min. The method was validated by linearity, with r2>or=0.995 for both compounds, and accuracy, with no more than 7% deviation from the theoretical value. The estimated limit of detection and limit of quantification were suitable for clinical evaluations. The mean values of plasma ADMA and ARG taken from healthy volunteers (n=15) were 0.66+/-0.12 and 87+/-35 microM, respectively; the mean molar ratio of ARG to ADMA was 142+/-81.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号