首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Neurotrophins play an essential role in nerve systems. Recent reports indicated that neurotrophins [nerve growth factor (NGF), brain-derived neurotrophic factor (BDNF), neurotrophin-3 (NT-3), and neurotrophin-4/5 (NT-4/5)] have numerous effects on non-neural cells, especially on immune cells. However, whether lung cells express neurotrophins and/or their receptors (TrkA for NGF, TrkB for BDNF and NT-4/5, and TrkC for NT-3) has never been systematically investigated. We investigated constitutive expression of neurotrophin family and their Trk receptor family in alveolar macrophages and other peripheral lung cells of mice. New findings were: (1) RT-PCR for neurotrophins and their receptors detected NT-3 and NT-4/5 in alveolar macrophages, BDNF, NT-4/5, trkA, the truncated form of trkB, and trkC in lung homogenate, but no trks in alveolar macrophages, (2) immunohistochemistry for neurotrophin receptors detected TrkA in capillary cells, the truncated form of TrkB, and TrkC in interstitial macrophages, (3) immunoelectron microscopy for TrkC revealed expression of TrkC on the surface of interstitial macrophages, and (4) in situ hybridization for neurotrophins detected BDNF in interstitial macrophages and alveolar type I cells, NT-3 in alveolar macrophages, and NT-4/5 in alveolar and interstitial macrophages. These findings indicate that a previously unknown signal trafficking occurs through neurotrophins in peripheral lung.  相似文献   

2.
Immunohistochemical distribution and cellular localization of neurotrophins was investigated in adult monkey brains using antisera against nerve growth factor (NGF), brain-derived neurotrophic factor (BDNF), neurotrophin-3 (NT-3), and neurotrophin-4 (NT-4). Western blot analysis showed that each antibody specifically recognized appropriate bands of approximately 14.7 kDa, 14.2 kDa, 13.6 kDa, and 14.5 kDa, for NGF, BDNF, NT-3, and NT-4, respectively. These positions coincided with the molecular masses of the neurotrophins studied. Furthermore, sections exposed to primary antiserum preadsorbed with full-length NGF, BDNF, NT-3, and NT-4 exhibited no detectable immunoreactivity, demonstrating specificities of the antibodies against the tissues prepared from rhesus monkeys. The study provided a systematic report on the distribution of NGF, BDNF, NT-3, and NT-4 in the monkey brain. Varying intensity of immunostaining was observed in the somata and processes of a wide variety of neurons and glial cells in the cerebrum, cerebellum, hippocampus, and other regions of the brain. Neurons in some regions such as the cerebral cortex and the hippocampus, which stained for neurotrophins, also expressed neurotrophic factor mRNA. In some other brain regions, there was discrepancy of protein distribution and mRNA expression reported previously, indicating a retrograde or anterograde action mode of neurotrophins. Results of this study provide a morphological basis for the elucidation of the roles of NGF, BDNF, NT-3, and NT-4 in adult primate brains.  相似文献   

3.
4.
Neonatal sciatic nerve injury is known to result in an extensive loss of lumbar motor neurons as well as the disappearance of their respective muscle fibers in the hindlimb musculature. The loss of motor neurons and muscle fibers can be prevented by immediate administration of target-derived neurotrophic factors to the site of injury. In the present study, we investigated the role of ciliary neurotrophic factor (CNTF) and brain-derived neurotrophic factor (BDNF) in the survival and maturation of a subset of motor neurons innervating the extensor digitorum longus (EDL) and tibialis anterior (TA) muscles. We have shown that combined administration of CNTF and BDNF prevented the loss of motor units after neonatal nerve injury and contributed to the maintenance of muscle mass. Importantly, this combined neurotrophin regimen also prevented the disappearance of muscle fibers that express myosin heavy chain IIB (MyHC IIB) in both EDL and TA muscles 3 mo after neonatal sciatic nerve crush. In parallel studies, we observed a higher level of BDNF in EDL muscle during the critical period of development when motor neurons are highly susceptible to target removal. Given our previous findings that combined administration of CNTF with neurotrophin-3 (NT-3) or neurotrophin-4/5 (NT-4/5) did not result in the rescue of MyHC IIB fibers in EDL, the present results show the importance of muscle-derived BDNF in the survival and maturation of a subpopulation of motor neurons and of MyHC IIB muscle fibers during neonatal development of the neuromuscular system. motor neurons; neuromuscular development; neurotrophins  相似文献   

5.
Retinal ganglion cell (RGC) survival and neurite outgrowth were investigated in retinal explants from adult rats. Neutrotrophin-4/5 (NT-4/5) caused dose-dependent increases in neurite outgrowth with one-half maximal effects at approximately 0.5 ng/ml and maximal effects at 5 ng/ml. In explants treated for 7 days, the actions of NT-4/5 were similar to those of brain-derived neurotrophic factor (BDNF); with either neurotrophin, nearly twice as many RGCs survived and there was a two- to threefold increase in the number of neurites formed by RGCs. Combinations of saturating concentrations of NT-4/5 and BDNF did not enhance these in vitro effects, implying that both neurotrophins share a common signaling pathway. In contrast, nerve growth factor (NGF), neurotrophin-3 (NT-3), or ciliary nuerotrophic factor (CNTF) appeared to exert minimal influences on RGC survival or neurite outgrowth. 1994 John Wiley & Sons, Inc.  相似文献   

6.
R A Segal  H Takahashi  R D McKay 《Neuron》1992,9(6):1041-1052
Neurotrophins and their receptors are widespread in the developing and mature CNS. Identifying the differentiation state of neurotrophin-responsive cells provides a basis for understanding the developmental functions of these factors. Studies using dissociated and organotypic cultures of rat cerebellum demonstrated that the neurotrophins brain-derived neurotrophic factor (BDNF) and neurotrophin-3 (NT-3) affect developing granule cells at distinct stages in differentiation. While early granule neurons in the external germinal layer responded to BDNF, more mature granule cells responded to NT-3. BDNF, but not NT-3, enhanced survival of granule cells in cultures of embryonic cerebella. Thus, BDNF and NT-3 have distinct sequential functions that are likely to be critical in the development of the cerebellum. BDNF may promote the initial commitment, while NT-3 may direct the subsequent maturation of granule cells.  相似文献   

7.
We have examined the ability of different neurotrophic and growth factors to prevent axotomy-induced motoneuron cell death in the developing mouse spinal cord. After postnatal unilateral section of the mouse sciatic nerve, most motoneuron (MN) loss occurs in the lateral motor column of the fourth lumbar segment (L4). Significant axotomy-induced cell death occurred after surgery performed on or before postnatal day (PN) 5. In contrast, no significant cell loss was found when axotomy was performed after PN10. Axotomy on PN2 or PN5 resulted in a 44% loss of L4 motoneurons by 7 days, and a 66% loss of motoneurons by 10 days postsurgery. Implantation of gelfoam presoaked in various neurotrophic factors at the lesion site rescued axotomized motoneurons. Nerve growth factor (NGF), nedurotrophin-4/5 (NT-4/5) and ciliary neurotrophic factor (CNTF) rescued 20%–30% of motoneurons, whereas brain-derived neurotrophic factor (BDNF), neurotrophin-3 (NT-3), and insulin-like growth factor 1 (IGF-1) rescued virtually all motoneurons from axotomy-induced death. By contrast, platelet-derived growth factor (PDGF)-AA, PDGF-AB, basic fibroblast growth factor (bFGF), and interleukin (IL-6) were ineffective on motoneuron survival following axotomy. NGF, BDNF, NT-3, IGF-1, and CNTF also prevented axotomy-induced atrophy of surviving motoneurons. These data show that mouse lumbar motoneurons continue to be vulnerable to axotomy up to about 1 week after birth and that a number of trophic agents, including the neurotrophins, CNTF, and IGF-1, can prevent the death of these neurons following axotomy. Our studies confirm and extend previous reports on the time course of axotomy-induced mouse motoneuron death and the survival promoting effects of neurotrophic factors. 1994 John Wiley & Sons, Inc.  相似文献   

8.
The pattern of retrograde axonal transport of the target-derived neurotrophic molecule, nerve growth factor (NGF), correlates with its trophic actions in adult neurons. We have determined that the NGF-related neurotrophins, brain-derived neurotrophic factor (BDNF) and neurotrophin-3 (NT-3), are also retrogradely transported by distinct populations of peripheral and central nervous system neurons in the adult. All three 125I-labeled neurotrophins are retrogradely transported to sites previously shown to contain neurotrophin-responsive neurons as assessed in vitro, such as dorsal root ganglion and basal forebrain neurons. The patterns of transport also indicate the existence of neuronal populations that selectively transport NT-3 and/or BDNF, but not NGF, such as spinal cord motor neurons, neurons in the entorhinal cortex, thalamus, and neurons within the hippocampus itself. Our observations suggest that neurotrophins are transported by overlapping as well as distinct populations of neurons when injected into a given target field. Retrograde transport may thus be predictive of neuronal types selectively responsive to either BDNF or NT-3 in the adult, as first demonstrated for NGF.  相似文献   

9.
The neurotrophins influence survival and maintenance of vertebrate neurons in the embryonic, early post-natal and post-developmental stages of the nervous system. Binding of neurotrophins to receptors encoded by the gene family trk initiates signal transduction into the cell. trkA interacts preferably with nerve growth factor (NGF), trkB with brain-derived neurotrophic factor (BDNF) and neurotrophin-4/5 (NT-4/5) and trkC with neurotrophin-3 (NT-3). By constructing 17 different chimeras and domain deletions of the human trk receptors and analyzing their binding affinities to the neurotrophins we have shown that an immunoglobulin-like domain located adjacent to the transmembrane domain is the structural element that determines the interaction of neurotrophins with their receptors. Chimeras of trkC where this domain was exchanged for the homologous sequences from trkB or trkA gained high affinity binding to BDNF or NGF respectively, while deletion of this domain in trkC or trkA abolished binding to NT-3 or NGF respectively. This domain alone retained affinities to neurotrophins similar to the full-length receptors and when expressed on NIH 3T3 cells in fusion with the kinase domain showed neurotrophin-dependent activation.  相似文献   

10.
Recent evidence showing a distinctive cell loss in vestibular and cochlear ganglia of brain-derived neurotrophic factor (BDNF) versus neurotrophin-3 (NT-3) null mutant mice demonstrates that these neurotrophins play a critical role in inner ear development. In this study, biological functions of BDNF and NT-3 in the chick vestibular and cochlear ganglion development was assessed in vitro and compared to those of other neurotrophic factors. The embryonic day (E)8-12 vestibular ganglion neurons showed an extensive outgrowth in response to BDNF with less outgrowth to NT-3. In contrast, NT-3 had stronger neurotrophic effects on the E12 cochlear ganglion neurons compared to BDNF. These results support previous evidence that neurotrophins play important roles in the vestibular and cochlear ganglion neuron development. However, the responsiveness to the neurotrophins declined and became undetectable by E16. Unexpectedly, glial cell line-derived neurotrophic factor (GDNF) promoted neurite outgrowth from vestibular ganglia at E12-16, later than the stages at which BDNF had neurotrophic effects. The time of switching sensitivity of the vestibular ganglion neurons from BDNF to GDNF correlated with the time of completion of synaptogenesis on their peripheral and central targets. Furthermore, a factor released from E12 inner ears exerted neurotrophic effects on late-stage vestibular ganglion neurons that were not responsive to the E4 otocyst-derived factor. These results raise the possibility that the vestibular ganglion neurons become responsive to GDNF upon target innervation and that the changes in sensitivity are regulated by changes in available factors released from their peripheral targets, the inner ear epithelia.  相似文献   

11.
BACKGROUND: The neurotrophins, which include nerve growth factor (NGF), brain-derived neurotrophic factor (BDNF), neurotrophin-3 (NT-3), NT-4/5 and NT-6, are a family of proteins that play fundamental roles in the differentiation, survival and maintenance of peripheral and central neurons. Much research has focused on the role of neurotrophins as target-derived, retrogradely transported trophic molecules. Although there is recent evidence that BDNF and NT-3 can be transported in an anterograde direction along peripheral and central axons, there is as yet no conclusive evidence that these anterograde factors have direct post-synaptic actions. RESULTS: We report that BDNF travels in an anterograde direction along the optic nerve. The anterogradely transported BDNF had rapid effects on retinal target neurons in the superior colliculus and lateral geniculate nucleus of the brain. When endogenous BDNF within the developing superior colliculus was neutralised, the rate of programmed neuronal death increased. Conversely, provision of an afferent supply of BDNF prevented the degeneration of geniculate neurons after removal of their cortical target. CONCLUSIONS: BDNF released from retinal ganglion cells acts as a survival factor for post-synaptic neurons in retinal target fields.  相似文献   

12.
The availability of relatively large amounts of nerve growth factor (NGF) has allowed extensive in vitro and in vivo characterization of the neuronal specificity of this neurotrophic factor. The restricted neuronal specificity of NGF (sympathetic neurons, neural crest-derived sensory neurons, basal forebrain cholinergic neurons) has long predicted the existence of other neurotrophic factors possessing different neuronal specificities. Whereas there have been many reports of "activities" distinct from NGF, full characterization of such molecules has been hampered by their extremely low abundance. The recent molecular cloning of brain-derived neurotrophic factor (BDNF) revealed that this protein is closely related to NGF and suggested that these two factors might be members of an even larger gene family. A PCR cloning strategy based on homologies between NGF and BDNF has allowed us to identify and clone a third member of the NGF family which we have termed neurotrophin-3 (NT-3). The establishment of suitable expression systems has now made available sufficient quantities of these proteins to allow us to begin to establish the neuronal specificity of each member of the neurotrophin family, and the role of each in development, maintenance and repair of the PNS and CNS. Using primary cultures of various PNS and CNS regions of the developing chick and rat, and Northern blot analysis, we describe novel neuronal specificities of BDNF, NT-3 and an unrelated neurotrophic factor-ciliary neurotrophic factor (CNTF).  相似文献   

13.
Regulation of neuropeptide expression in the brain by neurotrophins   总被引:3,自引:0,他引:3  
Neurotrophins, which are structurally related to nerve growth factor, have been shown to promote survival of various neurons. Recently, we found a novel activity of a neurotrophin in the brain: Brain-derived neurotrophic factor (BDNF) enhances expression of various neuropeptides. The neuropeptide differentiation activity was then compared among neurotrophins both in vivo and in vitro. In cultured neocortical neurons, BDNF and neurotrophin-5 (NT-5) remarkably increased levels of neuropeptide Y and somatostatin, and neurotrophin-3 (NT-3) also increased these peptides but required higher concentrations. At elevating substance P, however, NT-3 was as potent as BDNF. In contrast, NGF had negligible or no effect. Neurotrophins administered into neonatal brain exhibited slightly different potencies for increasing these neuropeptides: The most marked increase in neuropeptide Y levels was obtained in the neocortex by NT-5, whereas in the striatum and hippocampus by BDNF, although all three neurotrophins increased somatostatin similarly in all the brain regions examined. Overall spatial patterns of the neuropeptide induction were similar among the neurotrophins. Neurons in adult rat brain can also react with the neurotrophins and alter neuropeptide expression in a slightly different fashion. Excitatory neuronal activity and hormones are known to change expression of neurotrophins. Therefore, neurotrophins, neuronal activity, and hormones influence each other and all regulate neurotransmitter/peptide expression in developing and mature brain. Physiological implication of the neurotransmitter/peptide differentiation activities is also discussed.  相似文献   

14.
To obtain insight into which subpopulations of sensory neurons in dorsal root ganglia are supported by different neurotrophins, we retrogradely labeled cutaneous and muscle afferents in embryonic day 9 chick embryos and followed their survival in neuron-enriched cultures supplemented with either nerve growth factor (NGF), brain-derived neurotrophic factor (BDNF), or neurotrophin-3 (NT-3). We found that NGF is a wide survival factor for subpopulations of both cutaneous and muscle afferents, whereas the survival effects of BDNF and NT-3 are restricted primarily to muscle afferents. We also measured soma size in each neurotrophic factor. These new data show that BDNF- and NT-3–dependent cells appear to be a mixture of two populations of neurons: one small diameter and the other large diameter. In contrast, based on size alone, NGF-dependent cells appear to be a single population of only small-diameter neurons. Thus, BDNF and NT-3 may have some new, previously unreported effects on small-diameter afferent neurons. © 1994 John Wiley & Sons, Inc. 1994 John Wiley & Sons, Inc.  相似文献   

15.
Adrenal chromaffin cells have been characterized by the ability to change the phenotype in response to neurotrophic factor stimulation. The adrenal gland expresses numerous trophic factors endogenously, but there is still a lack of knowledge as to how the adrenal medullary cells respond to these factors. Accordingly, we evaluated nerve fiber outgrowth and cell morphology, and measured catecholamine content in adult rat adrenal medullary tissue transplanted to the anterior chamber of the eye after exposure to neurotrophin-3 (NT-3), neurotrophin-4/5 (NT-4/5), basic fibroblast growth factor (bFGF), ciliary neurotrophic factor (CNTF), or glial cell line-derived neurotrophic factor (GDNF) compared with the effects after exposure to recombinant human nerve growth factor (rhNGF). The results show that rhNGF was the most potent factor in inducing neurite outgrowth from the grafted chromaffin cells. CNTF was also a powerful inducer of nerve fiber formation, while NT-4/5, GDNF, and bFGF were less potent. NT-3 did not produce neurite outgrowth above that seen in vehicle-treated eyes. Combining two neurotrophins, rhNGF and NT-3, reduced nerve fiber formation. Tyrosine hydroxylase (TH) immunohistochemistry revealed good cell survival in all grafts, and no morphological differences were detected with the different treatments. The adrenaline: noradrenaline: dopamine ratio was approximately 49%: 49%: 2%, independent of treatment, and the catecholamine content was equal irrespective of treatment. In conclusion, all neurotrophic factors used, except for NT-3, promoted neurite outgrowth from adult rat chromaffin transplants. Differences in outgrowth induced by the various trophic factors did not, however, change the catecholamine content in grafts when analyzed together with the graft-derived nerve plexus.  相似文献   

16.
The ability of neurotrophin-4/5 (NT-4/5), brain-derived neurotrophic factor (BDNF), neurotrophin-3 (NT-3), and nerve growth factor (NGF) to promote survival of postnatal rat vestibular ganglion neurons (VGNs) was examined in dissociated cell cultures. Of the four neurotrophins, NT-4/5 and BDNF were equally effective but more potent than NT-3 in promoting the survival of VGNs. In contrast, NGF showed no detectable effects. As expected, TrkB-IgG (a fusion protein of extracellular domain of TrkB and Fc domain of human immunoglobulin G) specifically inhibited the survival-promoting effects by NT-4/5 or BDNF and TrkC-IgG fusion protein completely blocked that of NT-3. Immunohistochemistry with TrkB, TrkA, and p75 antisera revealed that VGNs made TrkB and p75 proteins, but not TrkA protein. Ototoxic therapeutic drugs such as cisplatin and gentamicin often induce degeneration of hair cells and ganglion neurons in both auditory and vestibular systems that leads to impairment of hearing and balance. When cisplatin and gentamicin were added to the dissociated VGN culture in which the hair cells were absent, additional cell death of VGNs was induced, suggesting that the two ototoxins may have a direct neurotoxic effect on ganglion neurons in addition to their known toxicity on hair cells. However, if the cultures were co-treated with neurotrophins, NT-4/5, BDNF, and NT-3, but not NGF, prevented or reduced the neurotoxicity of the two ototoxins. Thus, the three neurotrophins are survival factors for VGNs and are implicated in the therapeutic prevention of VGN loss caused by injury and ototoxins. © 1995 John Wiley & Sons, Inc.  相似文献   

17.
To obtain insight into the site and stage specificity of nerve growth factor (NGF), brain-derived neurotrophic factor (BDNF), and neurotrophin-3 (NT-3) action in vivo, we compared the expression patterns of the genes for these three related neurotrophic factors as well as for the NGF receptor in developing and adult rats. Initial embryonic expression of these related neurotrophic factors approximately coincides with the onset of neurogenesis. However, the levels at which the three factors are expressed at this time and throughout the developing nervous system are dramatically different. NT-3 is by far the most highly expressed in immature regions of the CNS in which proliferation, migration, and differentiation of neuronal precursors is ongoing. NT-3 expression dramatically decreases with maturation of these regions. By contrast, BDNF expression is low in developing regions of the CNS and increases as these regions mature. NGF expression varies during the development of discrete CNS regions, but not in any consistent manner compared with NT-3 and BDNF. Despite the dramatic variations, NT-3, BDNF, and NGF do share one striking similarity--high level expression in the adult hippocampus. Our observations are consistent with the idea that NT-3, BDNF, and NGF have paralleled as well as reciprocal roles in vivo.  相似文献   

18.
Neurotrophins are a family of proteins with pleiotropic effects mediated by two distinct receptor types, namely the Trk family, and the common neurotrophin receptor p75NTR. Binding of four mammalian neurotrophins, nerve growth factor (NGF), brain-derived neurotrophic factor (BDNF), neurotrophin-3 (NT-3), and neurotrophin-4/5 (NT-4/5), to p75NTR is studied by molecular modeling based on X-ray structures of the neurotrophins and the extracellular domain of p55TNFR, a homologue of p75NTR. The model of neurotrophin/receptor interactions suggests that the receptor binding domains of neurotrophins (loops I and IV) are geometrically and electrostatically complementary to a putative binding site of p75NTR, formed by the second and part of the third cysteine-rich domains. Geometric match of neurotrophin/receptor binding domains in the complexes, as characterized by shape complementarity statistic Sc, is comparable to known protein/protein complexes. All charged residues within the loops I and IV of the neurotrophins, previously determined as being critical for p75NTR binding, directly participate in receptor binding in the framework of the model. Principal residues of the binding site of p75NTR include Asp47, Lys56, Asp75, Asp76, Asp88, and Glu89. The additional involvement of Arg80 and Glu53 is specific for NGF and BDNF, respectively, and Glu73 participates in binding with NT-3 and NT-4/5. Neurotrophins are likely to induce similar, but not identical, conformational changes within the p75NTR binding site.  相似文献   

19.
Abstract: The ability of the neurotrophins nerve growth factor (NGF), brain-derived neurotrophic factor (BDNF), neurotrophin-3 (NT-3), and neurotrophin-4/5 (NT-4/5) to promote neuronal survival and phenotypic differentiation was examined in dissociated cultures from embryonic day 16 rat cerebellum. BDNF treatment increased the survival of neuron-specific enolase-immunopositive cells by 250 and 400% after 8 and 10 days in culture, respectively. A subpopulation of these neurons, the Purkinje cells, identified by calbindin staining, was increased to an equivalent extent, ∼200%, following BDNF, NT-4/5, or NT-3 treatment. The number of GABAergic neurons, identified by GABA immunoreactivity, was greatly increased by treatment with BDNF (470%) and moderately by NT-4/5 (46%), whereas NT-3 was without effect. NGF failed to increase the number of either Purkinje cells or GABAergic neurons. Addition of BDNF within 48 h of cell plating was required to obtain a maximal increase in Purkinje cell number after 8 days. In contrast, the NT-3 responses were nearly equivalent even if treatment was delayed for 96 h after plating. BDNF, NT-4/5, and NT-3, but not NGF, induced the rapid expression of the immediate early gene c- fos . Immunocytochemical double-labeling with antibodies to c-fos and calbindin was used to identify Purkinje cells that responded to neurotrophin treatment by induction of c-fos. After 4 days in vitro, both BDNF and NT-3 induced the formation of c-fos protein in calbindin-immunopositive neurons, whereas NT-4/5 did not. The latter results suggest that although BDNF and NT-4/5 have been shown to act through a common receptor, TrkB, it appears that the effects of BDNF and NT-4/5 are not identical.  相似文献   

20.
The neurotrophin family includes NGF, brain-derived neurotrophic factor (BDNF), neurotrophin-3 (NT-3), and neurotrophin-4 (NT-4). Previous studies have demonstrated that expression of NGF and its low-affinity receptor is induced in nonneuronal cells of the distal segment of the transected sciatic nerve suggesting a role for NGF during axonal regeneration (Johnson, E. M., M. Taniuchi, and P. S. DeStefano. 1988. Trends Neurosci. 11:299-304). To assess the role of the other neurotrophins and the members of the family of Trk signaling neurotrophin receptors, we have here quantified the levels of mRNAs for BDNF, NT-3, and NT-4 as well as mRNAs for trkA, trkB, and trkC at different times after transection of the sciatic nerve in adult rats. A marked increase of BDNF and NT-4 mRNAs in the distal segment of the sciatic nerve was seen 2 wk after the lesion. The increase in BDNF mRNA was mediated by a selective activation of the BDNF exon IV promoter and adrenalectomy attenuated this increase by 50%. NT-3 mRNA, on the other hand, decreased shortly after the transection but returned to control levels 2 wk later. In Schwann cells ensheathing the sciatic nerve, only trkB mRNA encoding truncated TrkB receptors was detected with reduced levels in the distal part of the lesioned nerve. Similar results were seen using a probe that detects all forms of trkC mRNA. In the denervated gastrocnemius muscle, the level of BDNF mRNA increased, NT-3 mRNA did not change, while NT-4 mRNA decreased. In the spinal cord, only small changes were seen in the levels of neutrophin and trk mRNAs. These results show that expression of mRNAs for neurotrophins and their Trk receptors is differentially regulated after a peripheral nerve injury. Based on these results a model is presented for how the different neurotrophins could cooperate to promote regeneration of injured peripheral nerves.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号