首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
Amphotericin B (AmB) liposome formulations are very successful in the treatment of fungal infections and leishmaniasis. But higher cost limits its widespread use among people in developing countries. Therefore, we have developed a modified ethanol-injection method for the preparation of AmB liposomes. Two liposomal formulations were developed with dimyristoyl phosphatidylcholine [F-1a] and soya phosphatidylcholine [F-2a], along with egg phosphatidyl glycerol and cholesterol. AmB was dissolved in acidified dimethyl acetamide and mixed with ethanolic lipid solution and rapidly injected in 5% dextrose to prepare liposomes. Liposomes were characterized on the basis of size (~100?nm), zeta (–43.3?±?2.8 mV) and percent entrapment efficiency (>95%). The in vitro release study showed an insignificant difference (P?≥?0.05) for 24-hour release between marketed AmB liposomes (AmBisome) and F-1a and F-2a. Proliposome concentrate, used for the preparation of in situ liposomes, was physically stable for more than 3 months at experimental conditions. Similarly, AmB showed no sign of degradation in reconstituted liposomes stored at 2–8°C for more than 3 months. IC50 value of Ambisome (0.18 µg/mL) was comparatively similar to F-1a (0.17 µg/mL) and F-2a (0.16 µg/mL) against intramacrophagic amastigotes. Under experimental conditions, a novel modified method for AmB liposomes is a great success and generates interest for development as a platform technology for many therapeutic drug products.  相似文献   

2.
This study describes the encapsulation of the local anaesthetic lidocaine (LDC) in large unilamellar liposomes (LUV) prepared in a scalable procedure, with hydrogenated soybean phosphatidylcholine, cholesterol and mannitol. Structural properties of the liposomes were assessed by dynamic light scattering, nanoparticle tracking analysis and transmission electron microscopy. A modified, two-compartment Franz-cell system was used to evaluate the release kinetics of LDC from the liposomes. The in vivo anaesthetic effect of liposomal LDC 2% (LUVLDC) was compared to LDC 2% solution without (LDCPLAIN) or with the vasoconstrictor epinephrine (1:100 000) (LDCVASO), in rat infraorbital nerve blockade model. The structural characterization revealed liposomes with spherical shape, average size distribution of 250?nm and low polydispersity even after LDC incorporation. Zeta potential laid around –30?mV and the number of suspended liposomal particles was in the range of 1012 vesicles/mL. Also the addition of cryoprotectant (mannitol) did not provoke structural changes in liposomes properties. In vitro release profile of LDC from LUV fits well with a biexponential model, in which the LDC encapsulated (EE%?=?24%) was responsible for an increase of 67% in the release time in relation to LDCPLAIN (p?<?0.05). Also, the liposomal formulation prolonged the sensorial nervous blockade duration (~70?min), in comparison with LDCPLAIN (45?min), but less than LDCVASO (130?min). In this context, this study showed that the liposomal formulations prepared by scalable procedure were suitable to promote longer and safer buccal anaesthesia, avoiding side effects of the use of vasoconstrictors.  相似文献   

3.
The aims of this study were to design the formulation of curcumin (CUR) liposomes coated with N-trimethyl chitosan chloride (TMC) and to evaluate in vitro release characteristics and in vivo pharmacokinetics and bioavailability of TMC-coated CUR liposomes in rats. The structure of synthesized TMC was examined by infrared spectroscopy, with the presence of trimethyl groups, and by proton nuclear magnetic resonance spectroscopy, indicating the high degree of substitution quaternization (65.6%). Liposomes, composed of soybean phosphotidylcholine, cholestrol, and D-α-tocopheryl polyethylene glycol 1000 succinate, were prepared by a thin-film dispersion method. Characteristics of the CUR liposomes, including entrapment efficiency (86.67%), drug-loading efficiency (2.33%), morphology, particle size (221.4?nm for uncoated liposomes and 657.7?nm for TMC-coated liposomes), and zeta potential (-9.63 mV for uncoated liposomes and +15.64 mV for TMC-coated liposomes) were investigated. Uncoated CUR liposomes and TMC-coated CUR liposomes showed a similar in vitro release profile. Nearly 50% of CUR was released from liposomes, whereas 80% of CUR was released from CUR propylene glycol solution. CUR incorporated into TMC-coated liposomes exhibited different pharmacokinetic parameters and enhanced bioavailability (C(max)?=?46.13 μg/L, t(1/2)?=?12.05 hours, AUC?=?416.58 μg/L·h), compared with CUR encapsulated by uncoated liposomes (C(max)?=?32.12 μg/L, t(1/2)?=?9.79 hours, AUC?=?263.77 μg/L·h) and CUR suspension (C(max)?=?35.46 μg/L, t(1/2)?=?3.85 hours, AUC?=?244.77 μg/L·h). In conclusion, oral delivery of coated CUR liposomes is a promising strategy for poorly water-soluble CUR.  相似文献   

4.
Cochleate delivery vehicles are a novel lipid-based system with potential for delivery of amphotericin B (AmB). In this study, the efficacy of cochleates was evaluated by examining the in vitro activity of AmB cochleates (CAMB) against Leishmania chagasi in a macrophage model of infection. We demonstrate that CAMB is nontoxic to macrophages at concentrations as high as 2.5 μg/mL, whereas the conventional formulation, AmB deoxycholate, showed high toxicity at this concentration. The in vitro activity of CAMB against L. chagasi was found to be similar to that of the reference drug AmB deoxycholate, with ED50s of 0.017 μg/mL and 0.021 μg/mL, respectively. Considering that L. chagasi affects organs amenable to cochleate-mediated delivery of AmB, we hypothesize that CAMB will be an effective lipid system for the treatment of visceral leishmaniasis.  相似文献   

5.
The aims of this study were to design the formulation of curcumin (CUR) liposomes coated with N-trimethyl chitosan chloride (TMC) and to evaluate in vitro release characteristics and in vivo pharmacokinetics and bioavailability of TMC-coated CUR liposomes in rats. The structure of synthesized TMC was examined by infrared spectroscopy, with the presence of trimethyl groups, and by proton nuclear magnetic resonance spectroscopy, indicating the high degree of substitution quaternization (65.6%). Liposomes, composed of soybean phosphotidylcholine, cholestrol, and D-α-tocopheryl polyethylene glycol 1000 succinate, were prepared by a thin-film dispersion method. Characteristics of the CUR liposomes, including entrapment efficiency (86.67%), drug-loading efficiency (2.33%), morphology, particle size (221.4?nm for uncoated liposomes and 657.7?nm for TMC-coated liposomes), and zeta potential (–9.63 mV for uncoated liposomes and +15.64 mV for TMC-coated liposomes) were investigated. Uncoated CUR liposomes and TMC-coated CUR liposomes showed a similar in vitro release profile. Nearly 50% of CUR was released from liposomes, whereas 80% of CUR was released from CUR propylene glycol solution. CUR incorporated into TMC-coated liposomes exhibited different pharmacokinetic parameters and enhanced bioavailability (Cmax?=?46.13 μg/L, t1/2?=?12.05 hours, AUC?=?416.58 μg/L·h), compared with CUR encapsulated by uncoated liposomes (Cmax?=?32.12 μg/L, t1/2?=?9.79 hours, AUC?=?263.77 μg/L·h) and CUR suspension (Cmax?=?35.46 μg/L, t1/2?=?3.85 hours, AUC?=?244.77 μg/L·h). In conclusion, oral delivery of coated CUR liposomes is a promising strategy for poorly water-soluble CUR.  相似文献   

6.
The purpose of this study was to formulate topically effective controlled release ophthalmic acetazolamide liposomal formulations. Reverse-phase evaporation and lipid film hydration methods were used for the preparation of reversephase evaporation (REVs) and multilamellar (MLVs) acetazolamide liposomes consisting of egg phosphatidylcholine (PC) and cholesterol (CH) in the molar ratios of (7∶2), (7∶4), (7∶6), and (7∶7) with or without stearylamine (SA) or dicetyl phosphate (DP) as positive and negative charge inducers, respectively. The prepared liposomes were evaluated for their entrapment efficiency and in vitro release. Multilamellar liposomes entrapped greater amounts of drug than REVs liposomes. Drug loading was increased by increasing CH content as well as by inclusion of SA. Drug release rate showed an order of negatively charged > neutral > positively charged liposomes, which is the reverse of the data of drug loading efficiency. Physical stability study indicated that approximately 89%, 77%, and 69% of acetazolamide was retained in positive, negative, and neutral MLVs liposomal formulations up to a period of 3 months at 4°C. The intraocular pressure (IOP)-lowering activity of selected acetazolamide liposomal formulations was determined and compared with that of plain liposomes and acetazolamide solution. Multilamellar acetazolamide liposomes revealed more prolonged effect than REVs liposomes. The positively charged and neutral liposomes exhibited greater lowering in IOP and a more prolonged effect than the negatively charged ones. The positive multilamellar liposomes composed of PC:CH:SA (7:4:1) molar ratio showed the maximal response, which reached a value of −7.8±1.04 mmHg after 3 hours of topical administration. Published: January 5, 2007  相似文献   

7.
The effect of acyl-chain length of phospholipid on the membrane permeabilizing activity of amphotericin B (AmB) was examined using egg phosphatidylcholine (eggPC) liposomes containing 5% or 20% phosphatidylcholine with various lengths of fatty acyl chains from C(10) to C(18); 1,2-dicapryloyl-sn-glycero-3-phosphocholine (DCPC), 1,2-dilauroyl-sn-glycero-3-phosphocholine (DLPC), 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC), 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC), and 1,2-distearoyl-sn-glycero-3-phosphocholine (DSPC). The membrane activity of AmB was evaluated by two methods; the drug was added to a liposome suspension (added-via-aqua), or mixed with lipids prior to liposome preparation (mixed-with-lipid). In both cases, K(+) influx by AmB was measured as pH change inside liposomes by 31P-NMR. The C(10) and C(12) acyl phospholipids markedly enhanced the activity of AmB, the C(14) and C(16) lipids virtually showed no effect, and the C(18) lipid was inhibitory to the AmB's action. Clear distinction between the C(12) and C(14) lipids, which differ only in acyl chains by two carbons, implies that molecular interaction between phospholipid and AmB is partly due to the matching of their hydrophobic length.  相似文献   

8.
The deadliest type of skin cancer, malignant melanoma, is also the reason for the majority of skin cancer-related deaths. The objective of this article was to investigate the efficiency of free caffeic acid phenethyl ester (CAPE) and liposomal CAPE in inducing apoptosis in melanoma cells (A375) in in vitro. CAPE was loaded into liposomes made up of hydrogenated soybean phosphatidylcholine, cholesterol, and 1,2-distearoyl-sn-glycero-3 phosphoethanolamine-N-[methoxy (polyethylene glycol)-2000], and their physicochemical properties were assessed. (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) test was performed for comparing the cytotoxicity of free CAPE and liposomal CAPE at dosages of 10, 15, 25, 50, 75 and the highest dose of 100 μg/mL for period of 24 and 48 h on A375 cell line to calculate IC50. Apoptosis and necrosis were evaluated in A375 melanoma cancer cells using flow cytometry. Atomic force microscopy was utilized to determine the nanomechanical attributes of the membrane structure of A375 cells. To determine whether there were any effects on apoptosis, the expression of PI3K/AKT1 and BAX/BCL2 genes was analyzed using the real-time polymerase chain reaction technique. According to our results, the maximum amount of drug release from nanoliposomes was determined to be 91% and the encapsulation efficiency of CAPE in liposomes was 85.24%. Also, the release of free CAPE was assessed to be 97%. Compared with liposomal CAPE, free CAPE showed a greater effect on reducing the cancer cell survival after 24 and 48 h. Therefore, IC50 values of A375 cells treated with free and liposomal CAPE were calculated as 47.34 and 63.39 μg/mL for 24 h. After 48 h of incubation of A375 cells with free and liposomal CAPE, IC50 values were determined as 30.55 and 44.83 μg/mL, respectively. The flow cytometry analysis revealed that the apoptosis induced in A375 cancer cells was greater when treated with free CAPE than when treated with liposomal CAPE. The highest nanomechanical changes in the amount of cell adhesion forces, and elastic modulus value were seen in free CAPE. Subsequently, the greatest decrease in PI3K/AKT1 gene expression ratio occurred in free CAPE.  相似文献   

9.
The antifungal and antileishmanial agent amphotericin B (AmB) was formulated in tripalmitin based nanosize lipid partices (emulsomes) for macrophage targeting for the treatment of visceral leishmaniasis (VL). Emulsomes were modified by coating them with macrophage-specific ligand (O-palmitoyl mannan, OPM). The antileishmanial activity of AmB (0.5 and 1?mg/kg) was investigated in-vivo against VL by the inhibition of parasitic load in the spleen of L. donovani infected hamsters after intraperitoneal injections of AmB-Doc (Mycol), plain emulsomes (TPEs) and OPM coated emulsomes (TPEs-OPM). The formulations were found to be less effective at the dose of 0.5?mg/kg. At the dose of 1?mg/kg, formulation TPEs-OPM eliminated intracellular amastigotes of L. donovani within splenic macrophages more efficiently (62.76?±?3.54 % parasite inhibition) than the formulation TPEs (42.68?±?2.36 % parasite inhibition) (P?相似文献   

10.
The purpose of this research was to adapt a colorimetric, phospholipase D-based serum-phospholipid assay for the quantification of phosphatidylcholine (PC) in liposomes using a microtitre plate reader. PC from natural egg PC liposomes was quantified reliably. In contrast, poor sensitivity was found for liposomes composed of saturated PCs (dipalmitoyl-phosphatidylcholine [DPPC], hydrogenated egg PC). Triton X-100 was then added to the liposomes followed by heating above the phase transition temperature. This modified sample preparation resulted in recoveries of 102.6%±1.0%, 104.4%±7.6%, and 109.4%±3.2% for E80, E80-3/cholesterol, and DPPC liposomes, respectively. Absolute quantification of unknown PCs against a choline chloride standard is feasible, but relative measurements against the very same PC are recommended wheneve possible. Validation experiments revealed an absolute quantification limit of 1.25 μg per assay, a good linearity in the range of 25 to 1000μg/mL PC (r2≥0.9990) and a quite high accuracy (99.8%–101.4% of theory) and precision (relative standard deviation ≤3.2%) for all 3 PCs studied. The method is thus regarded as suitable for sensitive, rapid, and reliable routine quantification of PCs in liposomes.  相似文献   

11.
Thermosensitive liposomes are attractive vehicles for the delivery and release of drugs to tumors. To improvethe targeting efficacy for breast cancer treatment, an 8.3-kDa HER2-specific Affibody molecule (ZHER2:342-Cys) was conjugated to the surface of liposomes. The effects of this modification on physical characteristics and stability of the resulting nanoparticles denoted as “Affisomes” were investigated. Thermosensitive small unilamellar vesicle (SUV) liposomes of (80–100 nm) a diameter consisting of dipalmitoyl phosphatidylcholine (DPPC, Tm 41°C) as the matrix lipid and a maleimide-conjugated pegylated phospholipid (DSPE-MaL-PEG2000) were prepared by probe sonication. Fluorescent probes were incorporated into liposomes for biophysical and/or biochemical analysis and/or triggered-release assays. Affibody was conjugated to these liposomes via its C-terminal cysteine by incubation in the presence of a reducing agent (e.g., tributylphosphine) for 16–20 hours under an argon atmosphere. Lipid-conjugated affibody molecule was visible as an 11.3-kDa band on a 4–12% Bis/Tris gel under reducing conditions. Affibody conjugation yields were?~70% at a protein-lipid ratio of 20 μg/mg, with an average number of 200 affibody molecules per Affisome. Affibody conjugation to thermosensitive liposomes did not have any significant effect on the hydrodynamic size distribution of the liposomes. Thermosensitivity of Affisomes was determined by monitoring the release of entrapped calcein (a water-soluble fluorescent probe, λex/em 490/515 nm) as a function of temperature. Calcein was released from Affisomes (thermosensitive liposomes with affibody-Targeted SUV) as well as nontargeted SUV (thermosensitive liposomes without affibody) in a temperature-dependent manner, with optimal leakage (90–100%) at 41°C. In contrast, liposomes prepared from Egg phosphatidyl choline (Egg PC, Tm?~0°C) under similar conditions released only 5–10% calcein at 41°C. Affisomes, when stored at room temperature, retained?>?90% entrapped calcein up to 7 days. Moreover, incubation of liposomes in phosphate-buffered saline, supplemented with 10% heat-inactivated serum (fetal bovine serum) did not result in a destabilization of liposomes. Therefore, Affisomes present promising, novel drug-delivery candidates for breast cancer targeting.  相似文献   

12.
The (1)H NMR technique was applied to study binding of AmB, an antifungal drug, to lipid membranes formed with egg yolk phosphatidylcholine. The analysis of (1)H NMR spectra of liposomes, containing also cholesterol and ergosterol (at 40 mol%), shows that AmB binds preferentially to the polar headgroups. Such a binding restricts molecular motion of the choline fragment in the hydrophilic region at the surface of liposomes but increases the segmental motional freedom in the hydrophobic core. The same effects are also observed in the sterol-containing membranes, except that the effect on the hydrophobic core was exclusively observed in the membranes containing ergosterol.  相似文献   

13.
Intravenous administration of soybean phosphatidylcholine liposomes containing different amounts of tocopherol acetate leads to a dose and time dependent increase of mouse liver tocopherol content, which was not observed when the preparation was given orally. When benzo[a]pyrene pretreated mice intoxicated with 400 mg/kg AAP were pretreated 2 h before with 1 g/kg phosphatidylcholine liposomes containing 4 mg/kg vitamin E acetate, these animals were protected against liver damage. Vitamin E alone or liposomes lacking vitamin E showed no protection. In an inflammatory liver disease model, i.e. fulminant hepatitis induced by intraperitoneal administration of 700 mg/kg galactosamine and 1 microgram/kg lipopolysaccharide phosphatidylcholine liposomes protected at a dose of 1 g/kg i.v. In this case, however, the protection was not due to the presence of vitamin E. These findings demonstrate the usefulness of phosphatidylcholine for liver protection and show that the protective spectrum is improved when they contain vitamin E. The data suggest that phosphatidylcholine is an excellent carrier for delivery of vitamin E to the liver.  相似文献   

14.
This study demonstrates rapid and pH-sensitive release of a highly water-soluble fluorescent aqueous content marker, pyranine, from egg phosphatidylcholine liposomes following incorporation of N-isopropylacrylamide (NIPA) copolymers in liposomal membranes. The pH-sensitivity of this system correlates with the precipitation of the copolymers at acidic pH. In vitro release can be significantly improved by increasing the percentage of anchor in the copolymer and thus favoring its binding to the liposomal bilayer. In the case of liposomes containing a poly(ethylene glycol)-phospholipid conjugate, the insertion of the pH-sensitive copolymer in the liposomal membrane appears to be sterically inhibited. Dye release from these formulations at acidic pH can still be achieved by varying the anchor molar ratio and/or molecular mass of the polymers or by including the latter during the liposome preparation procedure. Removal of unbound polymer results in decreased leakage only when the copolymer is inserted by incubation with preformed liposomes, but can be overcome by preparing liposomes in the presence of polymer. Aqueous content and lipid mixing assays suggest contents release can occur without membrane fusion. The results of this study indicate that the addition of pH-sensitive copolymers of NIPA represents promising strategy for improving liposomal drug delivery.  相似文献   

15.
Amphotericin B (AmB) is one of the most used drugs for the treatment of systemic fungal infections; however, the treatment causes several toxic manifestations, including nephrotoxicity and hemolytic anemia. Chitosan-coated poly(lactide-co-glycolide) (PLGA) nanoparticles containing AmB were developed with the aim to decrease AmB toxicity and propose the oral route for AmB delivery. In this work, the antifungal efficacy of chitosan-coated PLGA nanoparticles containing AmB was evaluated in 20 strains of fungus isolates from patients with vulvovaginal candidiasis (01 Candida glabrata and 03 Candida albicans), bloodstream infections (04 C. albicans and 01 C. tropicalis) and patients with urinary tract infection (04 Candida albicans, 02 Trichosporon asahii, 01 C. guilhermondii, 03 C. glabrata) and 01 Candida albicans ATCC 90028. Moreover, the cytotoxicity over erythrocytes was evaluated. The single-emulsion solvent evaporation method was suitable for obtaining chitosan-coated PGLA nanoparticles containing AmB. Nanoparticles were spherical in shape, presented mean particle size about 460 nm, positive zeta potential and encapsulation efficiency of 42%. Moreover, nanoparticles prolonged the AmB release. All the strains were susceptible to plain AmB and nanostructured AmB, according to EUCAST breakpoint version 8.1 (resistant > 1 μg/mL), using broth microdilution method. In C. albicans (urine, blood, and vulvovaginal secretion isolates, and 1 ATCC), the MIC value of AmB-loaded nanoparticles varied from 0.25 to 0.5 μg/mL and EUCAST varied from 0.03 to 0.5 μg/mL. In urine and vulvovaginal secretion isolates of C. glabrata, the MIC value of AmB-loaded nanoparticles varied from 0.25 to 0.5 μg/mL and EUCAST varied from 0.03 to 0.015 μg/mL. In urine isolates of C. guilhermondii, the MIC value of AmB-loaded nanoparticles was 0.12 μg/mL and EUCAST was 0.06 μg/mL. In blood isolates of C. tropicalis, the MIC value of AmB-loaded nanoparticles was 0.5 μg/mL and EUCAST was 0.25 μg/mL. Finally, in urine isolates of T asahii, the MIC value of AmB-loaded nanoparticles was 1 μg/mL and EUCAST varied from 0.5 to 1 μg/mL. In the cytotoxicity assay, plain AmB was highly hemolytic (100% in 24 h) while AmB-loaded chitosan/PLGA nanoparticles presented negligible hemolysis.  相似文献   

16.
The interaction of sheep erythrocyte membranes with phosphatidylcholine vesicles (liposomes) or human plasma lipoproteins is described. Isolated sheep red cell membranes were incubated with liposomes containing [14C]phosphatidylcholine or [3H]phosphatidylcholine in the presence of EDTA. A time-dependent uptake of phosphatidylcholine into the membranes could be observed. The content of this phospholipid was increased from 2 to 5%. The rate of transfer was dependent on temperature, the amount of phosphatidylcholine present in the incubation mixture and on the fatty acid composition of the liposomal phosphatidylcholine. A possible adsorption of lipid vesicles to the membranes could be monitored by adding cholesteryl [14C]oleate to the liposomal preparation. As cholesterylesters are not transferred between membranes [1], it was possible to differentiate between transfer of phosphatidylcholine molecules from the liposomes into the membranes and adsorption of liposomes to the membranes. The phosphatidylcholine incorporated in the membranes was isolated, and its fatty acids were analysed by gas chromatography. It could be shown that there was a preferential transfer of phosphatidylcholine molecules containing two unsaturated fatty acids.  相似文献   

17.
The anti-tumor efficacy of liposomal formulations of cell cycle dependent anticancer drugs is critically dependent on the rates at which the drugs are released from the liposomes. Previous work on liposomal formulations of vincristine have shown increasing efficacy for formulations with progressively slower release rates. Recent work has also shown that liposomal formulations of vincristine with higher drug-to-lipid (D/L) ratios exhibit reduced release rates. In this work, the effects of very high D/L ratios on vincristine release rates are investigated, and the antitumor efficacy of these formulations characterized in human xenograft tumor models. It is shown that the half-times (T(1/2)) for vincristine release from egg sphingomyelin/cholesterol liposomes in vivo can be adjusted from T(1/2) = 6.1 h for a formulation with a D/L of 0.025 (wt/wt) to T(1/2) = 117 h (extrapolated) for a formulation with a D/L ratio of 0.6 (wt/wt). The increase in drug retention at the higher D/L ratios appears to be related to the presence of drug precipitates in the liposomes. Variations in the D/L ratio did not affect the circulation lifetimes of the liposomal vincristine formulations. The relationship between drug release rates and anti-tumor efficacy was evaluated using a MX-1 human mammary tumor model. It was found that the antitumor activity of the liposomal vincristine formulations increased as D/L ratio increased from 0.025 to 0.1 (wt/wt) (T(1/2) = 6.1-15.6 h respectively) but decreased at higher D/L ratios (D/L = 0.6, wt/wt) (T(1/2) = 117 h). Free vincristine exhibited the lowest activity of all formulations examined. These results demonstrate that varying the D/L ratio provides a powerful method for regulating drug release and allows the generation of liposomal formulations of vincristine with therapeutically optimized drug release rates.  相似文献   

18.
19.
Context: Pirfenidone (PFD) is an anti-fibrotic and anti-inflammatory agent indicated for the treatment of idiopathic pulmonary fibrosis (IPF). The current oral administration of PFD has several limitations including first pass metabolism and gastrointestinal irritation.

Objective: The aim of this study is to investigate the feasibility of transdermal delivery of PFD using liposomal carrier system.

Materials and methods: PFD-loaded liposomes were prepared using soy phosphatidylcholine (SPC) and sodium cholate (SC). Encapsulation efficiency (EE) of PFD in liposomes was optimized using different preparation techniques including thin film hydration (TFH) method, direct injection method (DIM) and drug encapsulation using freeze–thaw cycles. In vitro drug release study was performed using dialysis membrane method. The skin permeation studies were performed using excised porcine ear skin model in a Franz diffusion cell apparatus.

Results and discussion: The average particle size and zeta-potential of liposomes were 191?±?4.1?nm and ?40.4?±?4.5?mV, respectively. The liposomes prepared by TFH followed by 10 freeze–thaw cycles showed the greatest EE of 22.7?±?0.63%. The optimized liposome formulation was incorporated in hydroxypropyl methyl cellulose (HPMC) hydrogel containing different permeation enhancers including oleic acid (OA), isopropyl myristate (IPM) and propylene glycol (PG). PFD-loaded liposomes incorporated in hydrogel containing OA and IPM showed the greatest flux of 10.9?±?1.04?μg/cm2/h across skin, which was 5-fold greater compared with free PFD. The cumulative amount of PFD permeated was 344?±?28.8?μg/cm2 with a lag time of 2.3?±?1.3?h.

Conclusion: The hydrogel formulation containing PFD-loaded liposomes can be developed as a potential transdermal delivery system.  相似文献   

20.
Context: Ropivacaine (RVC) is an aminoamide local anesthetic widely used in surgical procedures. Studies with RVC encapsulated in liposomes and complexed in cyclodextrins have shown good results, but in order to use RVC for lengthy procedures and during the postoperative period, a still more prolonged anesthetic effect is required.

Objective: This study therefore aimed to provide extended RVC release and increased upload using modified liposomes.

Materials and methods: Three types of vesicles were studied: (i) large multilamellar vesicle (LMV), (ii) large multivesicular vesicle (LMVV) and (iii) large unilamellar vesicle (LUV), prepared with egg phosphatidylcholine/cholesterol/α-tocopherol (4:3:0.07?mol%) at pH 7.4. Ionic gradient liposomes (inside: pH 5.5, pH 5.5?+?(NH4)2SO4 and pH 7.4?+?(NH4)2SO4) were prepared and showed improved RVC loading, compared to conventional liposomes (inside: pH 7.4).

Results and discussion: An high-performance liquid chromatography analytical method was validated for RVC quantification. The liposomes were characterized in terms of their size, zeta potential, polydispersion, morphology, RVC encapsulation efficiency (EE(%)) and in vitro RVC release. LMVV liposomes provided better performance than LMV or LUV. The best formulations were prepared using pH 5.5 (LMVV 5.5in) or pH 7.4 with 250?mM (NH4)2SO4 in the inner aqueous core (LMVV 7.4in?+?ammonium sulfate), enabling encapsulation of as much as 2% RVC, with high uptake (EE(%) ~70%) and sustained release (~25?h).

Conclusion: The encapsulation of RVC in ionic gradient liposomes significantly extended the duration of release of the anesthetic, showing that this strategy could be a viable means of promoting longer-term anesthesia during surgical procedures and during the postoperative period.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号