首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 578 毫秒
1.
In temperate environments, insects appearing in several generations in the growth season typically have to decide during the larval period whether to develop into adulthood, or to postpone adult emergence until next season by entering a species-specific diapause stage. This decision is typically guided by environmental cues experienced during development. An early decision makes it possible to adjust growth rate, which would allow the growing larva to respond to time stress involved in direct development, whereas a last-minute decision would instead allow the larva to use up-to-date information about which developmental pathway is the most favourable under the current circumstances. We study the timing of the larval pathway decision-making between entering pupal winter diapause and direct development in three distantly related butterflies (Pieris napi, Araschnia levana and Pararge aegeria). We pinpoint the timing of the larval diapause decision by transferring larvae from first to last instars from long daylength (inducing direct development) to short daylength conditions (inducing diapause), and vice versa. Results show that the pathway decision is typically made in the late instars in all three species, and that the ability to switch developmental pathway late in juvenile life is conditional; larvae more freely switched from diapause to direct development than in the opposite direction. We contend that this asymmetry is influenced by the additional physiological preparations needed to survive the long and cold winter period, and that the reluctance to make a late decision to enter diapause has the potential to be a general trait among temperate insects.  相似文献   

2.
Insects typically spend the winter in a species‐specific diapause stage. The speckled wood butterfly, Pararge aegeria, is unique in having two alternative diapause stages, hibernating as larvae or pupae. In southern Sweden this creates a seasonal flight pattern with four annual adult flight periods: the first in May (pupal diapause), the second in June (larval diapause), and the third and fourth directly developing offspring generations in July and August, respectively. We address the raison d'être of the two diapause pathways by (1) outdoor rearing of cohorts, and (2) performing transect censuses throughout the season for 20 years. We contend that an early start of next season provides a benefit accruing to pupal diapause; conversely, a large proportion of the offspring from adults of the fourth flight peak are unable to reach the pupal stage before winter, providing a benefit accruing to larval winter diapause. The results obtained show that the two hibernation pathways are unlikely to be genetically distinct because of a strong overlap between the two offspring generations, and because sibling offspring from the third and fourth flight periods are likely to choose either of the two hibernation pathways, thereby resulting in a genetic mixing of the pathways. © 2011 The Linnean Society of London, Biological Journal of the Linnean Society, 2011, 102 , 635–649.  相似文献   

3.
The temperate‐zone butterfly Pararge aegeria can use three developmental pathways corresponding to different seasonal cohorts: (1) development with a pupal winter diapause resulting in early spring adults; (2) development with a larval winter diapause resulting in late‐spring adults and (3) direct development resulting in summer or second generation adults. In order to test adaptive predictions, we compared variation in flight‐ and thermoregulation‐related morphology among adult males and females from the three pathways using both field data (i.e. wild‐caught butterflies) and experimental breeding data (i.e. reared under different photoperiod regimes). Morphological patterns among the pathways were largely similar in the field and rearing data. Seasonal patterns differed between the sexes for most traits, including (relative) size measures and wing colour. Our results suggest sex‐related, adaptive seasonal plasticity for morphological traits related to flight behaviour in a multivoltine insect.  相似文献   

4.
To investigate the physiology of Chrysopa pallens, the effect of photoperiod on diapause and development was examined in a Japanese population (33.4°N). The response stage for diapause of C. pallens was considered to be the prepupal stage. The critical photoperiod for diapause induction at 20.0°C was between 13 h light : 11 h dark (LD 13:11) and LD 14:10. The larval developmental period was affected by photoperiod: larvae in diapause took longer to complete their development. This difference of larval developmental period in relation to photoperiod was considered to be an adjustment of larval diapause timing.  相似文献   

5.
The yellow peach moth, Conogethes punctiferalis (Guenée), a multivoltine species that overwinters as diapausing larvae, is one of the most serious insect pests on maize in China. Effect of photoperiod and temperature on larval diapause was examined under empirical laboratory conditions. Short‐day treatments caused larval diapause at 25°C, and the critical photoperiod was between 12 and 13 h (or 12 h 51 min) light per day. No sensitive instar was identified for diapause induction under alternated short‐ (L : D 11 : 13 h) and long‐day (L : D 14 : 10 h) treatments at different larval stages. However, accumulative treatment of three instars and 10 d under short‐day treatment was required for the induction of 50% larval diapause. All larvae entered diapause at 20°C, whereas less than 3% did so at 30°C, irrespective of the long‐ or short‐day treatment. Furthermore, under the short‐day treatment, more than 90% of larvae went into diapause with temperatures ≤ 25°C, but less than 17% did so at 28°C. In contrast, under the long‐day treatment, less than 19% of larvae went into diapause with temperatures ≥ 23°C. The forward shift (5°C) of critical temperature under the long‐day regime demonstrated the compensatory effect of temperature and photoperiod on diapause induction. In conclusion, C. punctiferalis had a temperature‐dependent type I photoperiodic diapause response; there was no sensitive instar for diapause determination, but the photoperiodic accumulation time countermeasures both of the short‐day cycles and the number of instars exposed, and the photoperiodic diapause response, was a temperature‐compensated phenomenon.  相似文献   

6.
Abstract To investigate the seasonal adaptation strategies of Ophraella communa to new habitats, the effects and regulation mechanisms of photoperiod and temperature on the reproductive diapause in a population collected from Changsha, Hunan were examined. Adults showed obvious reproductive diapause, which was regulated by photoperiod and temperature. At 30°C, there was no adult diapause occurring under either long‐day or short‐day conditions; at 25°C the pre‐oviposition period was short and fecundity was high in adult females under L : D 16 : 8 h, whereas under L : D 12 : 12 h, a few females entered reproductive diapause; at 20°C under short‐day conditions, all female adults entered diapause. The pre‐oviposition period was significantly prolonged when the pupae and adults were transferred from long‐days to short‐days, but the day length influence was not obvious when they were transferred only in the adult stage. However, the fecundity dropped greatly no matter whether the photoperiod shifted to short‐days only in the adult stage or whether the shift occurred in both the pupal and adult stage. The fecundity was extremely low when photoperiod shifted from long‐days to short‐days in both pupal and adult stages. This was an indication that the pupal and adult stages were the photoperiod‐sensitive stage for adult reproductive diapause. This was especially true for the photoperiod in the pupal stage, which has a distinctly significant regulative effect on reproductive diapause. Additionally, this article also addresses the reason for different photoperiodic response patterns in reproductive diapause induction between the Changsha strain and the Tsukuba strain (Japan) of O. communa.  相似文献   

7.
The role of photoperiod and temperature in the induction of overwintering diapause inPhyllonorycter blancardella (F.) (Lepidoptera: Gracillariidae) was examined in the laboratory and field using leafminers from commercial apple orchards in Ontario, Canada.P. blancardella exhibited a long-day response to photoperiod: long daylengths resulted in uninterrupted development whereas short daylengths induced diapause. The estimated critical photoperiod for diapause induction was L14.25∶D9.75. The larvae of leafminers destined to enter diapause took ca. 3× longer to complete development than the larvae of non-diapausing leafminers. The development prolonging effect of photoperiod decreased with decreasing daylength. Temperature modified the diapause inducing effect of photoperiod. At L14.25∶D9.75, diapause incidence was similar at 15 and 20°C but was lower at 25°C. Photoperiod also altered the normal relationship between development rate and temperature. At L14.25∶D9.75, the duration of larval development of diapausing leafminers was similar at 15, 20 and 25°C. Temperature alone is unlikely to have a role in the induction of diapause because leafminers exposed to natural late summer and fall temperature regimes and L16∶D8 did not enter diapause.  相似文献   

8.
We investigated whether interpopulational variation in life-cycle regulation and life-history plasticity, in response to photoperiod, is predictable from considerations of what would be the adaptive life cycle and life history in a given environment. The investigation was performed on five populations of the speckled wood butterfly, Pararge aegeria (L.) (Lepidoptera: Nymphalidae), from central and south Sweden, England, Spain and Madeira. Insects from all five populations were reared at all daylengths from 10 h to 20 h at 17oC. Larval and pupal development times were noted. Predictions were met regarding the type of life-cycle regulation and the shape of reaction norms. Evidence for diapause (larval summer and winter diapause, pupal winter diapause) was found in the three northern populations (P. a. tircis) but not in the two southern populations (P. a. aegeria). Photoperiodic thresholds for diapause induction followed the predicted latitudinal patterns, and this was also the case regarding quantitative regulation of development time (by photoperiod) among directly developing individuals. Under direct development, development time was progressively shorter in shorter daylengms in the two Swedish populations, where this signals progressively later dates. This was not found in the English, Spanish and Madeiran populations where such a response is likely to be maladaptive, because one or more generations of larvae are present before summer solstice. There were also unexpected results, for which we propose preliminary adaptive explanations.  相似文献   

9.
A study was made of photoperiodic induction of the facultative pupal diapause in the tobacco hornworm, Manduca sexta, reared on artificial diet in the laboratory. The species entered a prolonged diapause when the egg and larval feeding stages were reared in daily photoperiods of 13·5 hr or less. Diapause was induced in all insects at photoperiods ranging from 1 to 13 hr, and part of the population entered diapause at only 15 to 30 min of light per day. Photoperiods of 14 hr or more and continous darkness prevented diapause. Duration of diapause varied with the inductive photoperiod in which the hornworms were reared during the sensitive period. Insects reared in longer diapause-inducing photoperiods within a range of 12 to 13·25 hr remained in diapause longer than those reared in shorter photoperiods. There was no difference in the rate of larval development of hornworms reared in diapause-inducing vs diapause-preventing photoperiods. Temperatures of 26 to 30°C were most favourable for the photoperiodic induction of diapause; at 21°C, the critical photoperiod and incidence of diapause were decreased. Diapause induction was suppressed by low (18°C) and higher (33°C) temperatures. The number of inductive 12L:12D (light = 12 hr; dark = 12 hr) cycles required to induce diapause ranged from as few as 5 for some insects to as many as 12 for others when the post-inductive régimen was continuous light, but with insects previously held in continuous dark, as few as 2 12L:12D cycles during the last 2 days of larval feeding induced diapause in 38 per cent of the population. Only 3 to 4 cycles of 15L:9D during the final larval instar reversed inductive effects of 14 to 15 12L:12D cycles. Photoperiodic sensitivity extended from the late embryo to the end of larval feeding but showed considerable fluctuation during development with maximum sensitivity occurring just before egg hatch and during larval growth.Light breaks applied at different times during the dark period of 12L:12D cycles generated different response curves, depending on the number of cycles in which light breaks were repeated. When repeated for 6 cycles, a unimodal response curve was obtained; 10 cycles produced a bimodal curve and light breaks given for 18 cycles throughout the sensitive period averted diapause regardless of time of night applied. It is suggested that diapause is regulated by a photo- and thermolabile substance that accumulates during long nights (11 hr or more) and acts during the early pupal stage to inhibit the translocation and release of development-promoting neurosecretion from the brain.  相似文献   

10.
Insects in temperate areas spend the inhospitable winter conditions in a resting stage known as diapause. In species that diapause in the larval or pupal stage, the decision whether to diapause or develop directly is customarily taken during the late instars, with long days (i.e., long light phases) and high temperatures promoting direct development. Among butterflies that overwinter as adults, data are rare and variable, but imply that the larval daylength conditions can affect the pathway decision. We studied the small tortoiseshell, Aglais urticae L. (Lepidoptera: Nymphalidae, Nymphalini), which is partially bivoltine from Central Scandinavia and southwards, and tested whether the pathway decision is taken in the larval or adult stage. We reared larvae under long‐day (L22:D2) or short‐day (L12:D12) photoperiods, and recorded the pathway taken by the eclosing adults by scoring their propensity to mate and produce eggs. We also tested whether the larval photoperiod influenced adult ability to diapause by assessing adult survival. The results clearly indicate that (1) there is no detectable effect of larval photoperiod treatment on the pathway decision taken by adults whether to enter diapause or to develop directly, (2) some individuals are obligately univoltine and insensitive to photoperiod during adulthood, whereas (3) other individuals can facultatively enter diapause or direct development, depending on the photoperiod experienced after adult eclosion.  相似文献   

11.
To determine the larval diapause and the effect of photoperiod on development in Monochamus urussovi (Coleoptera: Cerambycidae), larvae were reared on Abies sachalinensis and Picea jezoensis logs and bolts. Larvae stopped developing in the final instar at 25°C and 16L : 8D (16 h light and 8 h dark) whereas an exposure to 5°C in the dark (134 days) following acclimation at 12°C under natural daylength led to adult emergence. When larvae were reared under 8L : 16D or 16L : 8D at 25°C with an intervening period of chilling at 5°C in the dark (112 days), a photoperiod of 8L : 16D induced a shorter time required for adult emergence after being returned to 25°C, and smaller adult body size than 16L : 8D.  相似文献   

12.
H. Dautel  W. Knülle 《Oecologia》1997,113(1):46-52
The occurrence of diapause and quiescence was investigated in Argas reflexus engorged larvae, nymphs I and nymphs II. For diapause experiments, larvae were maintained at five different locations: at constant 20°C long day (LD; 17 h light:7 h dark) or short day (SD; 10 h light:14 h dark), at two locations with natural photoperiod and temperature and at one location with natural photoperiod but constant 15°C. At 20°C, diapause incidence was low in physiologically young larvae, increased with larval age, and then decreased to zero in specimens of increased physiological age. This pattern, observed both at constant LD and SD, suggests that the propensity to diapause changes with the physiological age of the unfed larva. The duration of diapause decreased with increasing larval physiological age at all locations, resulting in a seasonally synchronized moulting pattern. The results suggest that A. reflexus larvae are photoperiodically sensitive both before and after feeding and that decreasing daylengths may be particularly strong inductive stimuli. The developmental zero and thermal constant of the larvae were determined as 13.24°C and 220 degree-days, respectively. Degree-day measurements revealed that larval A. reflexus may enter a diapause of different length when fed between August and December and kept at natural daylength. Development of engorged nymphs I and nymphs II, but not of larvae, was ultimatively restricted at a temperature of 37.5°C, but immediately resumed at 25°C, demonstrating the occurrence of quiescence at high temperatures. Similarly, at a low temperature of 15°C, many nymphs I and II did not develop within 58 months, but did so successfully after transfer to 25°C, without additional food intake. Received: 20 May 1997 / Accepted: 4 August 1997  相似文献   

13.
Many insects in temperate zones withstand the adverse conditions of winter through entering diapause and the two most important environmental stimuli that induce diapause are photoperiod and ambient temperature. The Large Copper butterfly, Lycaena dispar Haworth (Lepidoptera: Lycaenidae), is a Palearctic butterfly that hibernates as larvae. Since this butterfly is a near threatened species in some regions, there has been a growing need for a standardized protocol for mass rearing of this butterfly based on the adequate knowledge of its ecology. In the present study, we first identified that L. dispar larvae were sensitive to the photoperiodic induction of diapause during their first larval instar. We then investigated to what extent the diapause-inducing effects of photoperiod could be modified by ambient temperatures in L. dispar larvae by exposing them to the range of day-lengths (L:D 14:10, 12:12, 10:14 and 8:16) at three different temperatures (15, 20 and 25 °C). All larvae were induced to enter diapause at low ambient temperature (15 °C) regardless of photoperiod, whereas most of them (86 %) exhibited direct development when temperature was high (25 °C). The photoperiodic induction of diapause was evident when day-length was shorter than 14 h at intermediate temperature (20 °C). Pre-diapause development was prolonged at low temperatures. Finally, we found that post-diapause development of L. dispar larvae was determined by both the chilling temperature experienced by diapausing larvae and the duration of larval diapause. Adult emergence was enhanced when larvae were chilled at 8 °C and when they had been under the state of diapause for 20 days before they were treated to terminate diapause.  相似文献   

14.
Chlorops oryzae is bivoltine in northern Japan but trivoltine in the southern part of the country. In the bivoltine strain, both the egg and larval stages were found to be sensitive to photoperiod. When the egg stage was exposed to a long-day photoperiod (16L:8D), larval development showed a short-day type response, and mature third-instar larvae entered a summer diapause under a long-day photoperiod (15L:9D). When eggs experienced short days, the first-instar larvae entered a winter diapause under short-day conditions, and the critical photoperiod in the larval stage ranged from about 14L:10D to about 12L:12D as the photoperiod experienced by the eggs increased from 12L:12D to 14L:10D. However, the development of the larvae after overwintering was not influenced by the photoperiod. In the trivoltine strain, larval development was retarded under a 14L:10D photoperiod but not under either shorter or longer photoperiods, when larvae had spent the egg stage under a 16L:8D photoperiod. The critical photoperiod of the larval stage for the induction of a winter diapause in the first instar was about 12L:12D, though it varied to some extent with the photoperiod during the egg stage. Thus, Chlorops oryzae was able to adapt itself to the local climatic conditions by the development of variable and complicated photoperiodic responses.  相似文献   

15.
The effects of global warming on the life cycle and life‐history traits of the fall webworm, Hyphantria cunea (Drury) (Lepidoptera: Arctiidae), were investigated in Fukui, Japan. Our previous studies showed that the Fukui population had a predominantly bivoltine life cycle, but recently the life cycle has changed. In the present study, the life‐history traits of individuals collected in 2002 in Fukui were clarified and compared to those in the previous studies. The lower threshold temperature for development and the thermal constant for one generation were 10.6 °C and 724.4 degree days, respectively. Although these developmental parameters were not investigated in the previous studies, the difference of the developmental period between the present and previous results was negligible in the larval and pupal stages at 20 °C. The critical photoperiod for diapause induction was 14 h 29 min at 20 °C and 14 h 10 min at 25 °C. The critical photoperiod at 25 °C was shortened to 14 min from that of the previous studies for individuals collected in 1995. The incidence of pupal diapause in the second generation was investigated in individuals that were collected as fourth and fifth instars in the field. Some portion of individuals averted diapause even if they were kept under a short photoperiod of L14:D10 at 25 °C after collection. These results, together with climate data and field observations in Fukui, suggest that at least a part of the population has three generations per year at present. This shift of the life cycle occurred within 7 years and is probably related to global warming in recent years.  相似文献   

16.
Larvae of the bean blister beetle Epicauta gorhami Marseul (Coleoptera: Meloidae) feed on grasshopper eggs in soil and undergo hypermetamorphosis. This beetle undergoes larval diapause in the fifth instar as a pseudopupa, a form characteristic of hypermetamorphosis in meloid beetles. The effects of temperature, photoperiod and soil humidity on larval development of E. gorhami are examined in a population in Miyazaki, Japan, using egg pods of Locusta migratoria L. as food. At lower temperatures (20 and 22.5 °C), all larvae become pseudopupae, regardless of the photoperiod. By contrast, at higher temperatures (27.5 and 30 °C), almost all larvae pupate at the end of the fourth instar, again regardless of the photoperiod. A long‐day photoperiodic response occurs only at an intermediate temperature (25 °C): under an LD 12 : 12 h photocycle, all larvae enter diapause, although the diapause incidence tends to decrease as the day length becomes longer. Pseudopupae are immobile and remain in diapause for ≥120 days when they are kept under the same conditions, except that diapause terminates within a relatively short time at 30 °C. Although lower soil humidity retards post‐feeding development, soil humidity has no effect on the diapause incidence. On the basis of the short developmental period and diapause avoidance under summer conditions, it is suggested that this beetle partially produces two generations a year in southwestern Japan.  相似文献   

17.
Larvae of wild type (WT) strain of Chymomyza costata Zetterstedt (Diptera: Drosophilidae) enter diapause (stop developing) in response to short‐day signal at a constant 18 °C, whereas larvae of a non‐photoperiodic‐diapause (NPD) strain do not respond to photoperiodic signalling and continue in larval development irrespective of daylength. The present study shows that WT larvae also respond reliably to thermoperiodic signalling (daily cycles of temperature) under constant darkness, whereas the NPD larvae do not, suggesting that the pathways transducing the environmental token stimuli (photoperiod and thermoperiod) onto the diapause developmental programme might merge functionally in the central biological clock system known to be mutated in NPD strain. Temperature and larval population density modify the output of token stimuli signalling. High temperatures (>24 °C) tend to avert, whereas low temperatures (<18 °C), especially in combination with constant darkness, stimulate diapause induction in WT strain. Overcrowding (>200 larvae per 5 g of larval diet) lengthens the duration of larval development and induces a ‘diapause‐like’ developmental arrest of relatively weak intensity in up to 60% of larvae of both strains. At high temperatures (>30 °C), all WT larvae continue direct development but subsequently die during the pupal stage. Low temperature exposure (<12 °C) causes quiescence in the majority of the larvae of both strains. Starvation blocks development and causes mortality when applied in larvae younger than day 3 of the third instar. Older larvae survive starvation and their photoperiodically‐induced developmental pre‐programming is not affected. Collectively, the results show that diapause induction in C. costata is a result of various interacting effects of multiple environmental factors.  相似文献   

18.
When a light pulse of 1 h duration was given 3 h after lights off in a photoperiod of 11 h light : 13 h dark (LD 11 : 13) at 20°C, the phase of the major peak of locomotor activity rhythm in Delia antiqua was delayed for approximately 0.6 h. In contrast, it was advanced by approximately 0.6 h by a light pulse given 9 h after lights off. It is suggested that in the circadian clock, a pulse falling in the early scotophase is taken as a new dusk and a pulse falling in the late scotophase is taken as a new dawn. Although a sharply defined critical photoperiod did not exist in the diapause response to photoperiod in D. antiqua, the percentage of pupal diapause decreased by these pulses in LD 11 : 13 at 20°C. The effect of a 15 min light pulse on both locomotor activity rhythm and pupal diapause induction was stronger at 3 h than at 9 h after lights off, while a 1 min light pulse was ineffective at both times. The parallel effects of light pulse on locomotor activity rhythm and diapause response might be based on the same chronobiological functions.  相似文献   

19.
Sensitivity to the daily photoperiod, particularly with respect to pupal diapause induction, was studied during ovarian, embryonic, and larval development of the flesh flySarcophaga argyrostoma. Large flies were shown to have a greater number of primary follicles in their ovaries and to be capable of limited ovarian maturation in the absence of exogenous protein (autogeny). Such ovarian development occurred independently of photoperiod. However, long days experienced during embryogenesis caused more rapid development, and earlier larviposition, than short days. Short days during embryonic and subsequent larval development also induced pupal diapause, whereas long days led to continuous or non-diapause development of the pupae. Pupal diapause could not be induced by photoperiods during the vitellogenic phase of ovarian development. InSarcophaga argyrostoma, a maternal effect preventing pupal diapause among the progeny of files with a diapause history was not observed.  相似文献   

20.
The cabbage beetle, Colaphellus bowringi, is a short-day species undergoing an imaginal summer and winter diapause. Its photoperiodic response highly depends on temperature. All adults entered diapause at ≤ 20 °C regardless of photoperiods. High temperatures strongly weakened the diapause-inducing effects of long daylengths. The diapause-averting influence of short daylengths was expressed only at high temperatures (above 20 °C). This indicates that the beetle has a cryptic ability to reproduce in summer. In fact, summer and winter diapause were induced principally by relatively low temperatures in the field, whereas photoperiod had less influence on diapause induction. The critical daylength for the autumnal population was between 12 h and 13 h. By transferring from a long day to a short day or vice versa at different times after hatching, it was shown that the sensitive stage with regard to photoperiod was the larva, whereas a long day was photoperiodically more potent than a short day. The sensitive stage to temperature encompassed the larval, pupal and adult stages. This different response pattern serves to ensure that the beetle enters summer and winter diapause in time. The selections for non-diapause trait under laboratory (at 25 °C) and natural conditions (at >24 °C) showed that the beetle could lose its sensitivity to photoperiod very rapidly.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号