首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The clinical use of doxorubicin (DXR) is limited by cardiotoxicity partially due to interference with intracellular Ca(2+) homeostasis and involving the activation of the sarcoplasmic reticulum (SR) Ca(2+) release channels. It is known that docosahexaenoic acid (DHA) is able to potentiate the sensitivity of cancer cells to DXR. The aim of our study was to further evaluate the effects of DHA on [Ca(2+)](i) overload induced by DXR in adult rat ventricular cardiomyocytes in order to verify if DHA interferes with DXR-induced cardiotoxicity too. [Ca(2+)](i) was measured by microfluorimetry. Our data demonstrated that 100 microM DXR induced a statistically significant [Ca(2+)](i)-increase in cardiomyocytes perfused with CaCl(2) Krebs solution (from 135.7 +/- 15 nM to 560.2 +/- 49 nM, n = 9, p < 0.01) and with Ca(2+)-free Krebs solution (from 89.3 +/- 15 nM to 551.1 +/- 35 nM, n = 9, p < 0.01). Treatment with 10 microM DHA for 20 min significantly suppressed DXR [Ca(2+)](i)- increase in cells perfused with CaCl(2) Krebs solution (142.3 +/- 12 nM, n = 9, p < 0.01) and in Ca(2+)-free procedures (100.4 +/- 12 nM, n = 9, p < 0.01). Caffeine 10 mM significantly increased [Ca(2+)](i) in cardiomyocytes perfused with CaCl(2) Krebs solution (from 135.7 +/- 15 nM to 979.2 +/- 17.8 nM, n = 9, p < 0.01) and with Ca(2+)-free Krebs solution (from 89.3 +/- 15 nM to 891.1 +/- 30 nM, n = 9, p < 0.01). Treatment with 10 microM DHA for 20 min suppressed caffeine [Ca(2+)](i)-increase in cardiomyocytes perfused with CaCl(2) Krebs solution (174.2 +/- 28 nM, n = 9, p < 0.01) and in Ca(2+)-free procedures (161.9 +/- 34 nM, n = 9, p < 0.01). In conclusion, our results suggest that DHA is able to prevent acute modifications of calcium homeostasis induced by DXR probably interfering with SR Ca(2+) release channels.  相似文献   

2.
To characterize the effect that a phosphatidylinositol 3-kinase (PI3-kinase) inhibitor, LY294002, has on cytosolic calcium concentrations ([Ca2+]i), bovine airway smooth muscle cells (BASMC) and cultured human bronchial smooth muscle cells (HBSMC) were loaded with fura 2-AM, imaged as single cells and [Ca2+]i measured ratiometrically. LY294002 (50 microM) increased [Ca2+]i by 294+/-76 nM (P<0.01, n=13) and 230+/-31 nM (P<0.001, n=10) in BASMC and HBSMC, respectively, and increases occurred in the absence of extracellular calcium. In contrast, after pre-treatment with thapsigargin, LY294002 no longer increased [Ca2+]i. This calcium mobilization by LY294002 was associated with a significant functional effect since LY294002 also inhibited calcium transients to carbachol (45+/-23 nM), caffeine (45+/-32 nM), and histamine (20+/-22 nM), with controls of 969+/-190, 946+/-156, and 490+/-28 nM, respectively. Wortmannin, a different PI3-kinase inhibitor, neither increased [Ca2+]i nor inhibited transients. Also, LY294002 increased [Ca2+]i in the presence of wortmannin, U-73122, and xestospongin C. We concluded that LY294002 increased [Ca2+]i, at least in part, by mobilizing intracellular calcium stores and inhibited calcium transients. The effects of LY294002 on [Ca2+]i were not dependent on wortmannin-sensitive PI3-kinases, phospholipase C, or inositol trisphosphate receptors (IP3R). For BASMC and HBSMC, LY294002 has effects on calcium regulation that could be important to recognize when studying PI3-kinases.  相似文献   

3.
A strong premature electrical stimulus (S(2)) induces both virtual anodes and virtual cathodes. The effects of virtual electrodes on intracellular Ca(2+) concentration ([Ca(2+)](i)) transients and ventricular fibrillation thresholds (VFTs) are unclear. We studied 16 isolated, Langendorff-perfused rabbit hearts with simultaneous voltage and [Ca(2+)](i) optical mapping and for vulnerable window determination. After baseline pacing (S(1)), a monophasic (10 ms anodal or cathodal) or biphasic (5 ms-5 ms) S(2) was applied to the left ventricular epicardium. Virtual electrode polarizations and [Ca(2+)](i) varied depending on the S(2) polarity. Relative to the level of [Ca(2+)](i) during the S(1) beat, the [Ca(2+)](i) level 40 ms after the onset of monophasic S(2) increased by 36+/-8% at virtual anodes and 20+/-5% at virtual cathodes (P<0.01), compared with 25+/-5% at both virtual cathode-anode and anode-cathode sites for biphasic S(2). The VFT was significantly higher and the vulnerable window significantly narrower for biphasic S(2) than for either anodal or cathodal S(2) (n=7, P<0.01). Treatment with thapsigargin and ryanodine (n=6) significantly prolonged the action potential duration compared with control (255+/-22 vs. 189+/-6 ms, P<0.05) and eliminated the difference in VFT between monophasic and biphasic S(2), although VFT was lower for both cases. We conclude that virtual anodes caused a greater increase in [Ca(2+)](i) than virtual cathodes. Monophasic S(2) is associated with lower VFT than biphasic S(2), but this difference was eliminated by the inhibition of the sarcoplasmic reticulum function and the prolongation of the action potential duration. However, the inhibition of the sarcoplasmic reticulum function also reduced VFT, indicating that the [Ca(2+)](i) dynamics modulate, but are not essential, to ventricular vulnerability.  相似文献   

4.
It was hypothesized that the caffeine derivative paraxanthine results in subcontracture increases in intracellular calcium concentration ([Ca(2+)](i)) in resting skeletal muscle. Single fibers obtained from mouse flexor digitorum brevis were loaded with a fluorescent Ca(2+) indicator, indo 1-acetoxymethyl ester. After a stable baseline was recorded, the fiber was superfused with physiological salt solution (Tyrode) containing 0.5, 1.0, 2.5, or 5 mM paraxanthine, resulting in [Ca(2+)](i) increases of 6.4 +/- 2.5, 9.7 +/- 3.6, 26.8 +/- 11.7, and 39.6 +/- 9.6 nM, respectively. The increases in [Ca(2+)](i) were transient and were also observed with exposure to 5 mM theophylline and theobromine. Six fibers were exposed to 5 mM paraxanthine followed by 5 mM paraxanthine in the presence of 10 mM procaine (sarcoplasmic reticulum Ca(2+) release channel blocker). There was no increase from baseline [Ca(2+)](i) when fibers were superfused with paraxanthine and procaine, suggesting that the sarcoplasmic reticulum is the primary Ca(2+) source in the paraxanthine-induced response. In separate experiments, intact flexor digitorum brevis (n = 13) loaded with indo 1-acetoxymethyl ester had a significant increase in [Ca(2+)](i) with exposure to 0.01 mM paraxanthine. It is concluded that physiological and low pharmacological concentrations of paraxanthine result in transient, subcontracture increases in [Ca(2+)](i) in resting skeletal muscle, the magnitude of which is related to paraxanthine concentration.  相似文献   

5.
Transient outward K(+) current density (I(to)) has been shown to vary between different regions of the normal myocardium and to be reduced in heart disease. In this study, we measured regional changes in action potential duration (APD), I(to), and intracellular Ca(2+) concentration ([Ca(2+)](i)) transients of ventricular myocytes derived from the right ventricular free wall (RVW) and interventricular septum (SEP) 8 wk after myocardial infarction (MI). At +40 mV, I(to) density in sham-operated hearts was significantly higher (P < 0.01) in the RVW (15.0 +/- 0.8 pA/pF, n = 47) compared with the SEP (7.0 +/- 1.1 pA/pF, n = 18). After MI, I(to) density was not reduced in SEP myocytes but was reduced (P < 0.01) in RVW myocytes (8.7 +/- 1.0 pA/pF, n = 26) to levels indistinguishable from post-MI SEP myocytes. These changes in I(to) density correlated with Kv4.2 (but not Kv4.3) protein expression. By contrast, Kv1.4 expression was significantly higher in the RVW compared with the SEP and increased significantly after MI in RVW. APD measured at 50% or 90% repolarization was prolonged, whereas peak [Ca(2+)](i) transients amplitude was higher in the SEP compared with the RVW in sham myocytes. These regional differences in APD and [Ca(2+)](i) transients were eliminated by MI. Our results demonstrate that the significant regional differences in I(to) density, APD, and [Ca(2+)](i) between RVW and SEP are linked to a variation in Kv4.2 expression, which largely disappears after MI.  相似文献   

6.
The early effects of metabolic inhibition on intracellular Ca(2+) concentration ([Ca(2+)](i)), Ca(2+) current, and sarcoplasmic reticulum (SR) Ca(2+) content were studied in single pacemaker cells from the sinus venosus of the cane toad. The amplitude of the spontaneous elevations of systolic [Ca(2+)](i) (Ca(2+) transients) was reduced after 5-min exposure to 2 mM NaCN from 338 +/- 30 to 189 +/- 37 nM (P < 0.005, n = 9), and the spontaneous firing rate was reduced from 27 +/- 2 to 12 +/- 4 beats/min (P < 0.002, n = 9). It has been proposed that CN(-) acts by inhibition of cytochrome P-450, resulting in a reduction of cAMP and Ca(2+) current. To test this proposal, we used clotrimazole, a cytochrome P-450 inhibitor, which also decreased the Ca(2+) transients and firing rate. CN(-) caused an insignificant fall of Ca(2+) current (23 +/- 11%) but a substantial reduction of SR Ca(2+) content (by 65 +/- 5%), whereas clotrimazole produced a larger reduction of Ca(2+) current and did not affect the SR Ca(2+) content. Thus the main effect of CN(-) does not seem to be through inhibition of cytochrome P-450. In conclusion, CN(-) appears to reduce Ca(2+) release from the SR mainly by reducing SR Ca(2+) content. A likely cause of the decreased SR content is reduced Ca(2+) uptake by the SR pump.  相似文献   

7.
Role of mitochondria in Ca(2+) homeostasis of mouse pancreatic acinar cells   总被引:1,自引:0,他引:1  
The effects of mitochondrial Ca(2+) uptake on cytosolic Ca(2+) concentration ([Ca(2+)](c)) were investigated in mouse pancreatic acinar cells using cytosolic and/or mitochondrial Ca(2+) indicators. When calcium stores of the endoplasmic reticulum (ER) were emptied by prolonged incubation with thapsigargin (Tg) and acetylcholine (ACh), small amounts of calcium could be released into the cytosol (Delta[Ca(2+)](c)=46 +/- 6 nM, n=13) by applying mitochondrial inhibitors (combination of rotenone (R) and oligomycin (O)). However, applications of R/O, soon after the peak of Tg/Ach-induced Ca(2+) transient, produced a larger cytosolic calcium elevation (Delta[Ca(2+)](c)=84 +/- 6 nM, n=9), this corresponds to an increase in the total mitochondrial calcium concentration ([Ca(2+)](m)) by approximately 0.4 mM. In cells pre-treated with R/O or Ru360 (a specific blocker of mitochondrial Ca(2+) uniporter), the decay time-constant of the Tg/ACh-induced Ca(2+) response was prolonged by approximately 40 and 80%, respectively. Tests with the mitochondrial Ca(2+) indicator rhod-2 revealed large increases in [Ca(2+)](m) in response to Tg/ACh applications; this mitochondrial uptake was blocked by Ru360. In cells pre-treated with Ru360, 10nM ACh elicited large global increases in [Ca(2+)](c), compared to control cells in which ACh-induced Ca(2+) signals were localised in the apical region. We conclude that mitochondria are active elements of cellular Ca(2+) homeostasis in pancreatic acinar cells and directly modulate both local and global calcium signals induced by agonists.  相似文献   

8.
The intracellular calcium ([Ca(2+)](i)) response of outer medullary descending vasa recta (OMDVR) endothelia to ANG II was examined in fura 2-loaded vessels. Abluminal ANG II (10(-8) M) caused [Ca(2+)](i) to fall in proportion to the resting [Ca(2+)](i) (r = 0. 82) of the endothelium. ANG II (10(-8) M) also inhibited both phases of the [Ca(2+)](i) response generated by bradykinin (BK, 10(-7) M), 835 +/- 201 versus 159 +/- 30 nM (peak phase) and 169 +/- 26 versus 103 +/- 14 nM (plateau phase) (means +/- SE). Luminal ANG II reduced BK (10(-7) M)-stimulated plateau [Ca(2+)](i) from 180 +/- 40 to 134 +/- 22 nM without causing vasoconstriction. Abluminal ANG II added to the bath after luminal application further reduced [Ca(2+)](i) to 113 +/- 9 nM and constricted the vessels. After thapsigargin (TG) pretreatment, ANG II (10(-8) M) caused [Ca(2+)](i) to fall from 352 +/- 149 to 105 +/- 37 nM. This effect occurred at a threshold ANG II concentration of 10(-10) M and was maximal at 10(-8) M. ANG II inhibited both the rate of Ca(2+) entry into [Ca(2+)](i)-depleted endothelia and the rate of Mn(2+) entry into [Ca(2+)](i)-replete endothelia. In contrast, ANG II raised [Ca(2+)](i) in the medullary thick ascending limb and outer medullary collecting duct, increasing [Ca(2+)](i) from baselines of 99 +/- 33 and 53 +/- 11 to peaks of 200 +/- 47 and 65 +/- 11 nM, respectively. We conclude that OMDVR endothelia are unlikely to be the source of ANG II-stimulated NO production in the medulla but that interbundle nephrons might release Ca(2+)-dependent vasodilators to modulate vasomotor tone in vascular bundles.  相似文献   

9.
The dynamics of carbachol (CCh)-induced [Ca(2+)](i) changes was related to the kinetics of muscarinic cationic current (mI(cat)) and the effect of Ca(2+) release through ryanodine receptors (RyRs) and inositol 1,4,5-trisphosphate receptors (IP(3)Rs) on mI(cat) was evaluated by fast x-y or line-scan confocal imaging of [Ca(2+)](i) combined with simultaneous recording of mI(cat) under whole-cell voltage clamp. When myocytes freshly isolated from the longitudinal layer of the guinea-pig ileum were loaded with the Ca(2+)-sensitive indicator fluo-3, x-y confocal imaging revealed CCh (10 microM)-induced Ca(2+) waves, which propagated from the cell ends towards the myocyte centre at 45.9 +/- 8.8 microms(-1) (n = 13). Initiation of the Ca(2+) wave preceded the appearance of any measurable mI(cat) by 229 +/- 55 ms (n = 7). Furthermore, CCh-induced [Ca(2+)](i) transients peaked 1.22 +/- 0.11s (n = 17) before mI(cat) reached peak amplitude. At -50 mV, spontaneous release of Ca(2+) through RyRs, resulting in Ca(2+) sparks, had no effect on CCh-induced mI(cat) but activated BK channels leading to spontaneous transient outward currents (STOCs). In addition, Ca(2+) release through RyRs induced by brief application of 5 mM caffeine was initiated at the cell centre but did not augment mI(cat) (n = 14). This was not due to an inhibitory effect of caffeine on muscarinic cationic channels (since application of 5 mM caffeine did not inhibit mI(cat) when [Ca(2+)](i) was strongly buffered with Ca(2+)/BAPTA buffer) nor was it due to an effect of caffeine on other mechanisms possibly involved in the regulation of Ca(2+) sensitivity of muscarinic cationic channels (since in the presence of 5 mM caffeine, photorelease of Ca(2+) upon cell dialysis with 5 mM NP-EGTA/3.8 mM Ca(2+) potentiated mI(cat) in the same way as in control). In contrast, IP(3)R-mediated Ca(2+) release upon flash photolysis of "caged" IP(3) (30 microM in the pipette solution) augmented mI(cat) (n = 15), even though [Ca(2+)](i) did not reach the level required for potentiation of mI(cat) during photorelease of Ca(2+) (n = 10). Intracellular calcium stores were visualised by loading of the myocytes with the low-affinity Ca(2+) indicator fluo-3FF AM and consisted of a superficial sarcoplasmic reticulum (SR) network and some perinuclear formation, which appeared to be continuous with the superficial SR. Immunostaining of the myocytes with antibodies to IP(3)R type 1 and to RyRs revealed that IP(3)Rs are predominant in the superficial SR while RyRs are confined to the central region of the cell. These results suggest that IP(3)R-mediated Ca(2+) release plays a central role in the modulation of mI(cat) in the guinea-pig ileum and that IP(3) may sensitise the regulatory mechanisms of the muscarinic cationic channels gating to Ca(2+).  相似文献   

10.
Zhang W  Segura BJ  Mulholland MW 《Peptides》2002,23(10):1793-1801
The responsiveness of cultured myenteric neurons to cholecystokinin (CCK-8) was examined using fura-2-based digital microfluorimetric measurement of intracellular calcium ([Ca(2+)](i)). CCK-8 (10(-10)-10(-6)M) evoked concentration-dependent increases in percentage of neurons responding (8-52%) and delta[Ca(2+)](i) (76-169 nM). Gastrin (1 microM) also induced an increase in [Ca(2+)](i) in 29+/-6% of neurons (delta[Ca(2+)](i): 71+/-3 nM). L-364,718, an antagonist for the CCK-A receptor, blocked [Ca(2+)](i) response to CCK-8. Removal of extracellular calcium eliminated CCK-induced [Ca(2+)](i) increments, as did the addition of the calcium channel inhibitors nickel (1mM) and lanthanum (5mM). Nifedipine (1-50 microM) dose-dependently attenuated CCK-caused [Ca(2+)](i) responses. CCK evokes [Ca(2+)](i) signaling in myenteric neurons by the influx of extracellular calcium, likely through L-type calcium channels.  相似文献   

11.
The neuropeptide gastrin releasing peptide (GRP) stimulates insulin secretion and induces oscillations of the cytoplasmic Ca(2+) concentration ([Ca(2+)](cyt)) in clonal insulinoma cells. It is not known whether GRP affects [Ca(2+)](cyt) in normal beta cells. We investigated, in single, normal, mouse islet beta cells, the effects of GRP on [Ca(2+)](cyt), by dual wavelength spectrophotofluorometry. Beta cells were identified by their typical response to glucose or tolbutamide. At 15 mM glucose, GRP (100 nM) evoked an immediate [Ca(2+)](cyt) transient to 423 +/- 48 nM compared to 126 +/- 18 nM before GRP (P < 0.001). After the initial transient, [Ca(2+)](cyt) exhibited either a sustained elevation or oscillations. At 3.3 mM glucose, in cells with a non-oscillating [Ca(2+)](cyt), GRP stimulated a prompt increase in [Ca(2+)](cyt) (from 60 +/- 6 to 285 +/- 30 nM, P = 0.024) followed by either a sustained increase in [Ca(2+)](cyt) or [Ca(2+)](cyt) oscillations. We conclude that GRP promptly elevates [Ca(2+)](cyt) by a direct action in normal mouse pancreatic beta cells.  相似文献   

12.
BACKGROUND: The effect of bradykinin on intracellular free Ca(2+) levels ([Ca(2+)](i)) in MG63 human osteosarcoma cells was explored using fura-2 as a Ca(2+) dye. METHODS/RESULTS: Bradykinin (0.1 nM-1 microM) increased [Ca(2+)](i) in a concentration-dependent manner with an EC(50) value of 0.5 nM. The [Ca(2+)](i) signal comprised an initial peak and a fast decay which returned to baseline in 2 min. Extracellular Ca(2+) removal inhibited the peak [Ca(2+)](i )signals by 35 +/- 3%. Bradykinin (1 nM) failed to increase [Ca(2+)](i) in the absence of extracellular Ca(2+ )after cells were pretreated with thapsigargin (an endoplasmic reticulum Ca(2+) pump inhibitor; 1 microM). Bradykinin (1 nM)-induced intracellular Ca(2+) release was nearly abolished by inhibiting phospholipase C with 2 microM 1-(6-((17 beta-3-methoxyestra-1,3,5(10)-trien-17-yl)amino)hexyl)-1H-pyrrole-2,5-dione (U73122). The [Ca(2+)](i )increase induced by 1 nM bradykinin in Ca(2+)- free medium was abolished by 1 nM HOE 140 (a B2 bradykinin receptor antagonist) but was not altered by 100 nM Des-Arg-HOE 140 (a B1 bradykinin receptor antagonist). Pretreatment with 1 pM pertussis toxin for 5 h in Ca(2+) medium inhibited 30 +/- 3% of 1 nM bradykinin-induced peak [Ca(2+)](i) increase. CONCLUSIONS: Together, this study shows that bradykinin induced [Ca(2+)](i) increases in a concentration-dependent manner, by stimulating B2 bradykinin receptors leading to mobilization of Ca(2+) from the thapsigargin-sensitive stores in a manner dependent on inositol-1,4,5-trisphosphate, and also by inducing extracellular Ca(2+) influx. The bradykinin response was partly coupled to a pertussis toxin-sensitive G protein pathway.  相似文献   

13.
We studied intracellular calcium ([Ca(2+)](i)) in acid-secreting bone-attached osteoclasts, which produce a high-calcium acidic extracellular compartment. Acid secretion and [Ca(2+)](i) were followed using H(+)-restricted dyes and fura-2 or fluo-3. Whole cell calcium of acid-secreting osteoclasts was approximately 100 nM, similar to cells on inert substrate that do not secrete acid. However, measurements in restricted areas of the cell showed [Ca(2+)](i) transients to 500-1000 nM consistent with calcium puffs, transient (millisecond) localized calcium elevations reported in other cells. Spot measurements at 50-ms intervals indicated that puffs were typically less than 400 ms. Transients did not propagate in waves across the cell in scanning confocal measurements. Calcium puffs occurred mainly over regions of acid secretion as determined using lysotracker red DND99 and occurred at irregular periods averaging 5-15 s in acid secreting cells, but were rare in lysotracker-negative nonsecretory cells. The calmodulin antagonist trifluoperazine, cell-surface calcium transport inhibitors lanthanum or barium, and the endoplasmic reticulum ATPase inhibitor thapsigargin had variable acute effects on the mean [Ca(2+)](i) and puff frequency. However, none of these agents prevented calcium puff activity, suggesting that the mechanism producing the puffs is independent of these processes. We conclude that [Ca(2+)](i) transients in osteoclasts are increased in acid-secreting osteoclasts, and that the puffs occur mainly near the acid-transporting membrane. Cell membrane acid transport requires calcium, suggesting that calcium puffs function to maintain acid secretion. However, membrane H(+)-ATPase activity was insensitive to calcium in the 100 nM-1 microM range. Thus, any effects of calcium puffs on osteoclastic acid transport must be indirect.  相似文献   

14.
Changes in the intracellular Ca(2+) concentration ([Ca(2+)](i)) induced by depolarization have been measured in glial cells acutely isolated from antennal lobes of the moth Manduca sexta at different postembryonic developmental stages. Depolarization of the glial cell membrane was elicited by increasing the external K(+) concentration from 4 to 25 mM. At midstage 5 and earlier stages, less than 20% of the cells responded to 25 mM K(+) (1 min) with a transient increase in [Ca(2+)](i) of approximately 40 nM. One day later, at late stage 5, 68% of the cells responded to 25 mM K(+), the amplitude of the [Ca(2+)](i) transients averaging 592 nM. At later stages, all cells responded to 25 mM K(+) with [Ca(2+)](i) transients with amplitudes not significantly different from those at late stage 5. In stage 6 glial cells isolated from deafferented antennal lobes, i.e., from antennal lobes chronically deprived of olfactory receptor axons, only 30% of the cells responded with [Ca(2+)](i) transients. The amplitudes of these [Ca(2+)](i) transients averaged 93 nM and were significantly smaller than those in normal stage 6 glial cells. [Ca(2+)](i) transients were greatly reduced in Ca(2+)-free, EGTA-buffered saline, and in the presence of the Ca(2+) channel blockers cadmium and verapamil. The results suggest that depolarization of the cell membrane induces Ca(2+) influx through voltage-activated Ca(2+) channels into antennal lobe glial cells. The development of the depolarization-induced Ca(2+) transients is rapid between midstage 5 and stage 6, and depends on the presence of afferent axons from the olfactory receptor cells in the antenna.  相似文献   

15.
Experiments assessed whether long term exposure to 50 Hz pulsed electromagnetic fields with a peak magnetic field of 3 mT can alter the dynamics of intracellular calcium in human astrocytoma U-373 MG cells. Pretreatment of cells with 1.2 microM substance P significantly increased the [Ca(2+)](i). The same effect was also observed when [Ca(2+)](i) was evaluated in the presence of 20 mM caffeine. After exposure to electromagnetic fields the basal [Ca(2+)](i) levels increased significantly from 143 +/- 46 nM to 278 +/- 125 nM. The increase was also evident after caffeine addition, but in cells treated with substance P and substance P + caffeine we observed a [Ca(2+)](i) decrease after exposure. When we substituted calcium-free medium for normal medium immediately before the [Ca(2+)](i) measurements, the [Ca(2+)](i) was similar to that measured in the presence of Ca(2+). In this case, after EMFs exposure of cells treated with substance P, the [Ca(2+)](i), measured without and with addition of caffeine, declined from 824 +/- 425 to 38 +/- 13 nM and from 1369 +/- 700 to 11 +/- 4 nM, respectively, indicating that electromagnetic fields act either on intracellular Ca(2+) stores or on the plasma membrane. Moreover the electromagnetic fields that affected [Ca(2+)](i) did not cause cell proliferation or cell death and the proliferation indexes remained unchanged after exposure.  相似文献   

16.
Previous studies have shown that myocytes isolated from sedentary (Sed) rat hearts 3 wk after myocardial infarction (MI) undergo hypertrophy, exhibit altered intracellular Ca(2+) concentration ([Ca(2+)](i)) dynamics and abnormal contraction, and impaired sarcoplasmic reticulum (SR) function manifested as prolonged half-time of [Ca(2+)](i) decline. Because exercise training elicits positive adaptations in cardiac contractile function and myocardial Ca(2+) regulation, the present study examined whether 6-8 wk of high-intensity sprint training (HIST) would restore [Ca(2+)](i) dynamics and SR function in MI myocytes toward normal. In MI rats, HIST ameliorated myocyte hypertrophy as indicated by significant (P 相似文献   

17.
The highly selective fluorescent Ca2+ indicator 'quin 2' has been loaded into ram and boar spermatozoa as the acetoxymethyl ester, 'quin 2/AM', which is hydrolysed and trapped in the cytoplasm. Loadings of several mM were not toxic to spermatozoa as judged by motility. Fluorescence measurements (mean +/- S.E.M.) indicated a normal cytoplasmic free-calcium concentration, [Ca2+]i, of 193 nM +/- 0.2 (n = 10) for ejaculated ram sperm, 175 nM +/- 3.9 (n = 10) for cauda epididymal boar sperm and 105 nM +/- 10 (n = 10) for the caput sperm. After cold shock ejaculated ram and cauda epididymal boar sperm did not retain quin 2, due presumably to structural damage. However, cold shocked caput boar sperm could be readily loaded with quin 2 and had a [Ca2+]i similar to control sperm. Sodium azide, propranolol and caffeine did not affect the [Ca2+]i of ram and boar sperm, however theophylline, dibutyryl c-AMP and La3+ significantly reduced it. The inhibitors rotenone and antimycin A, and the uncouplers 2,4-DNP and CCCP caused a transient elevation of [Ca2+]i, most likely resulting from release of mitochondrial calcium. The increased [Ca2+]i following addition of the ionophore A23187, was highly pH dependent in ram spermatozoa and it was critical to increase the pH of the medium above 7.5; the increase in [Ca2+]i was apparently not dependent on the oxidative metabolism of the sperm as addition of the uncouplers 2,4-DNP and CCCP had no effect on [Ca2+ )i. Addition of filipin to ram and boar sperm resulted in a large increase in [Ca2+]i but addition of filipin to ionophore-treated sperm caused [Ca2+]i to fall well below control levels.  相似文献   

18.
Vascular resistance and arterial pressure are reduced during normal pregnancy, but dangerously elevated during pregnancy-induced hypertension (PIH), and changes in nitric oxide (NO) synthesis have been hypothesized as one potential cause. In support of this hypothesis, chronic inhibition of NO synthesis in pregnant rats has been shown to cause significant increases in renal vascular resistance and hypertension; however, the cellular mechanisms involved are unclear. We tested the hypothesis that the pregnancy-associated changes in renal vascular resistance reflect changes in contractility and intracellular Ca(2+) concentration ([Ca(2+)](i)) of renal arterial smooth muscle. Smooth muscle cells were isolated from renal interlobular arteries of virgin and pregnant Sprague-Dawley rats untreated or treated with the NO synthase inhibitor nitro-L-arginine methyl ester (L-NAME; 4 mg. kg(-1). day(-1) for 5 days), then loaded with fura 2. In cells of virgin rats incubated in Hanks' solution (1 mM Ca(2+)), the basal [Ca(2+)](i) was 86 +/- 6 nM. Phenylephrine (Phe, 10(-5) M) caused a transient increase in [Ca(2+)](i) to 417 +/- 11 nM and maintained an increase to 183 +/- 8 nM and 32 +/- 3% cell contraction. Membrane depolarization by 51 mM KCl, which stimulates Ca(2+) entry from the extracellular space, caused maintained increase in [Ca(2+)](i) to 292 +/- 12 nM and 31 +/- 2% contraction. The maintained Phe- and KCl-induced [Ca(2+)](i) and contractions were reduced in pregnant rats but significantly enhanced in pregnant rats treated with L-NAME. Phe- and KCl-induced contraction and [Ca(2+)](i) were not significantly different between untreated and L-NAME-treated virgin rats or between untreated and L-NAME + L-arginine treated pregnant rats. In Ca(2+)-free Hanks', application of Phe or caffeine (10 mM), to stimulate Ca(2+) release from the intracellular stores, caused a transient increase in [Ca(2+)](i) and a small cell contraction that were not significantly different among the different groups. Thus renal interlobular smooth muscle of normal pregnant rats exhibits reduction in [Ca(2+)](i) signaling that involves Ca(2+) entry from the extracellular space but not Ca(2+) release from the intracellular stores. The reduced renal smooth muscle cell contraction and [Ca(2+)](i) in pregnant rats may explain the decreased renal vascular resistance associated with normal pregnancy, whereas the enhanced cell contraction and [Ca(2+)](i) during inhibition of NO synthesis in pregnant rats may, in part, explain the increased renal vascular resistance associated with PIH.  相似文献   

19.
In this study we examined the effect of polyunsaturated fatty acids (PUFAs), in particular of docosahexaenoic acid (DHA), on calcium homeostasis in isolated adult rat cardiomyocytes exposed to KCl, ET-1 and anoxia. Free [Ca(2+)](i) in rat cardiomyocytes was 135.7 +/- 0.5 nM. Exposure to 50 mM KCl or 100 nM ET-1 resulted in a rise in free [Ca(2+)](i) in freshly isolated cells (465.4 +/- 15.6 nM and 311.3 +/- 12.6 nM, respectively) and in cultured cells (450.8 +/- 14.8 nM and 323.5 +/- 14.8 nM respectively). An acute treatment (20 minutes) with 10 microM DHA significantly reduced the KCl- and ET-1-induced [Ca(2+)](i) increase (300.9 +/- 18.1 nM and 232.08 +/- 11.8 nM, respectively). This reduction was greater after chronic treatment with DHA (72 h; 257.7 +/- 13.08 nM and 192.18 +/- 9.8 nM, respectively). Rat cardiomyocytes exposed to a 20 minute superfusion with anoxic solution, obtained by replacing O(2) with N(2) in gas mixture, showed a massive increase in cytosolic calcium (1200.2 +/- 50.2 nM). Longer exposure to anoxia induced hypercontraction and later death of rat cardiomyocytes. Preincubation with DHA reduced the anoxic effect on [Ca(2+)](i) (498.4 +/- 7.3 nM in acute and 200.2 +/- 12.2 nM in chronic treatment). In anoxic conditions 50 mM KCl and 100 nM ET-1 produced extreme and unmeasurable increases of [Ca(2+)](i.) Preincubation for 20 minutes with DHA reduced this phenomenon (856.1 +/- 20.3 nM and 782.3 +/- 7.6 nM, respectively). This reduction is more evident after a chronic treatment with DHA (257.7 +/- 10.6 nM and 232.2 +/- 12.5 nM, respectively). We conclude that in rat cardiomyocytes KCl, ET-1 and anoxia interfered with intracellular calcium concentrations by either modifying calcium levels or impairing calcium homeostasis. Acute, and especially chronic, DHA administration markedly reduced the damage induced by calcium overload in those cells.  相似文献   

20.
Intracellular free calcium concentration ([Ca2+]i) was measured in fura-2-loaded single rat mesangial cells by dual wavelength spectrofluorometry. Stimulation with arginine vasopressin (AVP) caused an initial sharp rise of [Ca2+]i followed by repetitive spikes. The frequency of the oscillations was dependent on the concentration of AVP. At 0.1, 1.0, 10.0, and 100.0 nM AVP, the frequencies of oscillations were 0.17 +/- 0.05 (n = 6), 0.32 +/- 0.05 (n = 6), 0.49 +/- 0.05 (n = 6), and 0.48 +/- 0.05 min-1 (n = 5), respectively. Reduction in extracellular [Ca2+] reduced the frequency of AVP-induced oscillations but did not abolish the oscillations. The frequency of calcium oscillations, upon stimulation with 1.0 nM AVP, was directly correlated with the basal [Ca2+]i prior to stimulation. Oscillation frequency increased with increasing temperature. An Arrhenius plot between 24 and 37 degrees C indicated a strong temperature dependency of the oscillations with a Q10 of 3.0. Protein kinase C stimulation by active phorbol esters inhibited AVP-induced calcium oscillations but not the initial [Ca2+] response to AVP. These observations are consistent with a model incorporating a feedback loop linking [Ca2+]i to the mechanism of [Ca2+]i increase. Ca(2+)-induced Ca2+ release may be involved, whereby inositol 1,4,5-trisphosphate (inositol 1,4,5-P3) formation releases Ca2+ from an inositol 1,4,5-P3-sensitive pool, with subsequent Ca2+ uptake and release from an inositol 1,4,5-P3-insensitive pool.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号