首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
Genetic diversity within the Marwari breed of horses was evaluated using 26 different microsatellite pairs with 48 DNA samples from unrelated horses. This molecular characterisation was undertaken to evaluate the problem of genetic bottlenecks also, if any, in this breed. The estimated mean (± s.e.) allelic diversity was 5.9 (± 2.24), with a total of 133 alleles. A high level of genetic variability within this breed was observed in terms of high values of mean (±s.e.) effective number of alleles (3.3 ± 1.27), observed heterozygosity (0.5306 ± 0.22), expected Levene’s heterozygosity (0.6612 ± 0.15), expected Nei’s heterozygosity (0.6535 ± 0.14), and polymorphism information content (0.6120 ± 0.03). Low values of Wright’s fixation index, FIS (0.2433 ± 0.05) indicated low levels of inbreeding. This basic study indicated the existence of substantial genetic diversity in the Marwari horse population. No significant genotypic linkage disequilibrium was detected across the population, suggesting no evidence of linkage between loci. A normal ‘L’ shaped distribution of mode-shift test, non-significant heterozygote excess on the basis of different models, as revealed from Sign, Standardized differences and Wilcoxon sign rank tests as well as non-significantM ratio value suggested that there was no recent bottleneck in the existing Marwari breed population, which is important information for equine breeders. This study also revealed that the Marwari breed can be differentiated from some other exotic breeds of horses on the basis of three microsatellite primers.  相似文献   

2.
Shahabadi sheep represent an important but uninvestigated source of genetic diversity. Eighteen microsatellite markers were employed to analyze the genetic diversity of Shahabadi sheep population found in Bihar, India within fifty samples. Microsatellites were highly polymorphic with a mean allelic number 5.56 ± 1.79. The observed heterozygosity, expected heterozygosity and observed and effective number of alleles were used to estimate the genetic variation of this breed. The observed heterozygosity in the population varied from 0.279–0.739 with the mean of 0.501 ± 0.151, reflecting substantial genetic variation in this population. Population was observed to be heterozygote deficient (21.5%). The results of this study indicated that conservation of genetic variation in Shahabadi population should be considered by breeders, in the interest of long term future of the breed in its native tract.  相似文献   

3.
Siri cattle, a dual-purpose breed of India is currently showing declining population trend. Siri animals have been developed through natural selection and show high adaptation to wide range of hilly terrain (altitudes 150–2500 m). The present work evaluated the genetic diversity of 23 FAO recommended microsatellite loci in a sample of 50 animals. The allele and genotype frequencies, heterozygosities and gene diversity were estimated. A total of 141 alleles were detected by the 23 microsatellite markers investigated. Microsatellites were highly polymorphic with mean allelic number 6.13 ± 1.63 (ranging from 3–10 per locus). The observed heterozygosity in the population varied from 0.26–0.80 with the mean of 0.53 ± 0.16, indicating substantial genetic variation in this population. Heterozygote deficiency and mutation-drift equilibrium hypothesis were also examined. Population exhibited heterozygote deficit of 22.1%. Population was found to be in mutation-drift equilibrium. Substantial genetic variability verified in Siri cattle despite its reducing population size suggests that this breed has a rich reservoir of genetic diversity. This fact and its marked environmental adaptation reinforce the importance of its preservation as a pure breed, and (or) its use in agricultural exploitation.  相似文献   

4.

Isolation and development of new microsatellite markers for any species is still labour-intensive and requires substantial inputs of time, money and expertise. Therefore, cross-species microsatellite amplification can be an effective way in obtaining microsatellite loci for closely related taxa in bird species. We have reported microsatellite loci for Himalayan monal for the first time. Fifteen microsatellite markers developed for chicken were cross-amplified in Himalayan monal. All the tested 15 microsatellite markers were polymorphic, with mean (± s.e.) allelic number of 4 ± 1.51, ranging 2–7 per locus. The observed heterozygosity in the population ranged between 0.285 and 0.714, with mean (± s.e.) of 0.499 ± 0.125, indicating considerable genetic variation in this population. While 12 loci conformed to Hardy–Weinberg equilibrium (P > 0.05), 3 loci, i.e. MCW0295, MCW0081, MCW0330 deviated from it (P < 0.05). No evidence for linkage disequilibrium was observed among pair of loci. Our study show that these 15 microsatellites loci could be employed in population genetic studies for Himalayan monal and their applicability in Jungle Bush Quail, Grey francolin and Kalij pheasant.

  相似文献   

5.
Bellary sheep population variability and structure was investigated genetically utilizing FAO recommended microsatellite markers. Genetic variation at 20 microsatellite loci, population structure, and genetic bottleneck hypothesis were examined. Estimates of genetic variability such as effective number of alleles and gene diversities revealed substantial genetic variation frequently displayed by microsatellite markers. A total of 133 alleles were detected. Average polymorphism across the studied loci and expected gene diversity in the population were 1.419 ± 0.405 and 0.684 ± 0.140, respectively. No significant genotypic linkage disequilibrium was detected across population, suggesting no evidence of linkage between loci. The population was observed to be significantly differentiated into different groups, showed fairly high level of inbreeding (f = 0.253 ± 0.050) and global heterozygote deficit. Population structure analysis indicated the intermixing/introduction of unique/rare alleles in these migrating flocks. A normal L-shaped distribution of mode-shift test, non-significant heterozygosity excess on the basis of different models, as revealed from sign, standardized differences and Wilcoxon sign rank tests suggested that there was no recent bottleneck. The study revealed that even a breed with increasing population trend needs genetic management for the conservation and improvement. The text was submitted by the authors in English.  相似文献   

6.
Gupta AK  Chauhan M  Bhardwaj A  Tandon SN 《Gene》2012,499(2):357-361
Genetic diversity in Zanskari pony breed was evaluated at 48 microsatellite loci using fifty adult, healthy and unrelated animals. Allele frequency data was used to detect genetic diversity and bottleneck. The estimated average number of alleles (±s.e.) was 8.5208±2.5010 with a total of 409 alleles. A high level of genetic diversity within this breed was observed in terms of number of alleles, observed heterozygosity (0.6763±0.1704), expected Leven's heterozygosity (0.7724±0.795), expected Nei's heterozygosity (0.7644±0.0787) and polymorphism information content (>0.5). In-breeding coefficient (F(is)) was 0.115±0.0209, suggesting moderately high in-breeding in Zanskari breed. Although analysis of bottleneck revealed no bottleneck in recent past but population of Zanskari ponies has decreased drastically and only a few thousand pure-bred animals are left. The information is useful for proposing effective population management strategies for future.  相似文献   

7.
Genetic variations within and between nine hatchery stocks and seven natural populations of abalone including Ezo-abalone (Haliotis discus hannai) and Kuro-abalone (H. d. discus) were assayed with nine microsatellite markers. Marked reductions of genetic variability in the hatchery stocks were recognized in the allelic diversity and mean heterozygosity compared with the natural populations. Thirteen of 16 significant HWE deviations in hatchery stocks revealed heterozygotes excess, while all natural populations did not show such a tendency. Highly significant F ST values were observed for all cases between the hatchery stocks, and between the hatchery stocks and natural populations. Genetic distance (D A) between each hatchery stock and the geographically proximal population (mean ± SD, 0.108 ± 0.035) were similar to those estimated for between the natural Ezo-abalone and Kuro-abalone (0.101 ± 0.021). The self-assignment test, which allocated individuals to their own stock with a high success rate, provided evidence of solid genetic differences among the nine hatchery stocks. These results suggests that the allelic composition and diversity in the natural populations was not necessarily reflected in the hatchery stocks owing to population bottleneck and genetic drift through seedling process, and thus the seedling and stocking practice of these hatchery stocks should take much notice of the results to conserve the genetic diversity of natural populations.  相似文献   

8.
For studying the genetic diversity and bottleneck problem in Bhutia and Manipuri pony breeds of India, we analysed DNA samples of 34 Bhutia and 50 Manipuri, true to breed, ponies using 47 polymorphic microsatellite markers. All the microsatellites were observed to be highly polymorphic in nature in both Bhutia and Manipuri breeds with mean no. of alleles as 8.702 ± 0.0493 and 8.416 ± 0.0548 respectively. Genetic diversity values in terms of heterozygosity values within individual breeds were also high with very low inbreeding (Fis 0.102 and 0.055 in Bhutia and Manipuri ponies, respectively). Number of alleles in both the populations together ranged from 3 to 18 with an average of 10.851 ± 1.583 per locus. The mean effective number of alleles was observed to 5.34 ± 0.253. All loci except ASB017 and HTG004 showed high values of allele richness (>5.0). The mean observed and expected heterozygosities were 0.7159 ± 0.022, 0.7986 ± 0.011 (Levene’s) and 0.7936 ± 0.011 (Nei’s), respectively. The high mean values of heterozygosity indicated the presence of high genetic diversity in both the pony populations. The overall mean value of within-population inbreeding estimates (Fis) was low (0.101 ± 0.023) indicating low to moderate level of inbreeding. Bottleneck studies revealed that no recent bottleneck problem has taken place in both the populations. Both pony populations were found to be in mutation drift equilibrium. The study reveals that both the pony breeds have high diversity and timely action needs to be taken to conserve them.  相似文献   

9.
The Cook Islands endemic kakerori (Pomarea dimidiata) underwent a severe population decline following the introduction of ship rats (Rattus rattus) in the late 1800s. By 1989, the sole population on Rarotonga consisted of 29 known birds. Subsequent intensive management efforts enabled this population to recover to around 250?C300 birds in recent years. This study, using microsatellite and mitochondrial DNA markers, assesses the level of genetic diversity and the genetic structure of the contemporary kakerori population on Rarotonga. No mitochondrial control region and cytochrome b haplotype diversity was found in the 11 samples examined at each locus. In 81 samples genotyped at 7 polymorphic microsatellite loci, an average of 4 alleles per locus were found, with an average observed heterozygosity of 0.65. No subpopulation division was found in this population. There was no evidence of inbreeding, but genetic bottleneck tests showed that the population had indeed experienced a significant genetic bottleneck. Recovery of the kakerori was successful in the past two decades despite low genetic diversity in terms of allelic diversity. Our data suggested that low allelic diversity did not hamper population expansion and the continued survival of this species, however, longer-term effects are still possible.  相似文献   

10.
Preservation of rare genetic stocks requires assessment of within-population genetic diversity and between-population differentiation to make inferences on their degree of uniqueness. A total of 194 Tuscan cattle (44 Calvana, 35 Chianina, 25 Garfagnina, 31 Maremmana, 31 Mucca Pisana and 28 Pontremolese) individuals were genotyped for 34 microsatellite markers. Moreover, 56 samples belonging to Argentinean Creole and Asturiana de la Montaña cattle breeds were used as an outgroup. Genetic diversity was quantified in terms of molecular coancestry and allelic richness. STRUCTURE analyses showed that the Tuscan breeds have well-differentiated genetic backgrounds, except for the Calvana and Chianina breeds, which share the same genetic ancestry. The between-breed Nei's minimum distance (Dm) matrices showed that the pair Calvana–Chianina was less differentiated (0.049 ± 0.006). The endangered Tuscan breeds (Calvana, Garfagnina, Mucca Pisana and Pontremolese) made null or negative contributions to diversity, except for the Mucca Pisana contribution to allelic richness (CT = 1.8%). The Calvana breed made null or negative within-breed contributions (f¯W = 0.0%; CW = −0.4%). The Garfagnina and Pontremolese breeds made positive contributions to between-breed diversity but negative and high within-breed contributions, thus suggesting population bottleneck with allelic losses and increase of homozygosity in the population. Exclusion of the four endangered Tuscan cattle breeds did not result in losses in genetic diversity (f¯T = −0.7%; CT = −1.2%), whereas exclusion of the non-endangered breeds (Chianina and Maremmana) did (f¯T = 2.1%; CT = 3.9%); the simple exclusion of the Calvana breed from the former group led to losses in genetic diversity (f¯T = 0.47%; CT = 2.34%), indicating a diverse significance for this breed. We showed how quantifying both within-population diversity and between-population differentiation in terms of allelic frequencies and allelic richness provides different and complementary information on the genetic backgrounds assessed and may help to implement priorities and strategies for conservation in livestock.  相似文献   

11.
The present study estimates genetic variability with a set of 25 microsatellite markers in a random sample of 50 animals of Tharparkar breed of Indian zebu (Bos indicus) cattle. Tharparkar is a dual-purpose breed, valued for its milk as well as draught utility, and is adapted to the inhospitable Thar desert conditions of Rajasthan typified by summer temperature hovering above 50 degrees C, sparse rainfall and vegetation, and scarcity of even drinking water. The observed number of alleles ranged from 4 (ETH3, ILSTS030, INRA5, INRA63 and MM8) to 11 (HEL9 and ILSTS034), with allelic diversity (average number of observed alleles per locus) of 6.20. Observed and expected heterozygosity ranged from 0.25 (INRA63) to 0.77 (ETH10), and from 0.51 (HEL5 and HAUT27) to 0.88 (HEL9) respectively. Wide range of genetic variability supported the utility of these microsatellite loci in measurement of genetic diversity indices in other Indian cattle breeds too. Various average genetic variability measures, namely allele diversity (6.20), observed heterozygosity (0.57), expected heterozygosity (0.67) and mean polymorphism information content (0.60) values showed substantial within-breed genetic variability in this major breed of Rajasthan, despite accumulated inbreeding as reflected by high average inbreeding coefficient (F(IS) = 0.39). The Tharparkar population has not experienced a bottleneck in the recent past.  相似文献   

12.
In this study, 25 heterologous bovine microsatellite markers have been used for the assessment of genetic diversity in Nagpuri buffalo, an important breed of Central India. For this, 48 DNA samples of unrelated individuals of Nagpuri buffalo were PCR amplified and microsatellite alleles were resolved in 6% denaturing, silver stained Urea-PAGE gel. Genotypic status of individuals at each locus was identified manually and data analysis carried out using POPGENE software. Observed number of alleles varied from 2 (ILSTS073 locus) to 8 (HEL13 & ILSTS058 loci) with a mean of 5.24 alleles per locus. Moderate level of heterozygosity (0.45) indicated sufficient genetic diversity existing in this buffalo population. PIC values for the microsatellite loci analysed, ranged from 0.10 (ILSTS0I9 locus) to 0.81 (ILSTS058 locus) with a mean of 0.53. No shift in the frequency distribution of alleles and a normal L-shaped curve indicated non-existence of any bottleneck in Nagpuri. The study thus highlights the usefulness of heterologous bovine microsatellite markers to assess the genetic variability in buffalo breds as well. Also various diversity indices suggest sufficient genetic variability within Nagpuri buffalo that can be utilized as initial guidelines for future breeding strategies and conservation. The article is published in the original.  相似文献   

13.
The black-footed ferret (Mustela nigripes) is an endangered North American carnivore that underwent a well-documented population bottleneck in the mid-1980s. To better understand the effects of a bottleneck on a free-ranging carnivore population, we used 24 microsatellite loci to compare genetic diversity before versus during the bottleneck, and compare the last wild population to two historical populations. We also compared genetic diversity in black-footed ferrets to that of two sibling species, the steppe polecat (Mustela eversmanni) and the European polecat (Mustela putorius). Black-footed ferrets during the bottleneck had less genetic diversity than steppe polecats. The three black-footed ferret populations were well differentiated (F(ST) = 0.57 +/- 0.15; mean +/- SE). We attributed the decrease in genetic diversity in black-footed ferrets to localized extinction of these genetically distinct subpopulations and to the bottleneck in the surviving subpopulation. Although genetic diversity decreased, female fecundity and juvenile survival were not affected by the population bottleneck.  相似文献   

14.
The variability of 21 allozyme and three microsatellite loci of chloroplast DNA (cpDNA) was studied in the populations of Siberian spruce (Picea obovata Ledeb.) from Irkutsk oblast, Magadan oblast, Buryatia, and Mongolia. It was demonstrated that the highest level of genetic diversity among the examined populations at both allozyme and microsatellite loci was observed in the Tulyushka population from Irkutsk oblast. The lowest level of genetic diversity was observed in marginal isolated populations of Bogd Uul and Magadan. In the relict spruce population from Olkhon Island, differing from the other populations in the lowest allelic diversity of both types of markers, no expected decline of expected heterozygosity and haplotype diversity was observed. In this population, the variability parameters mentioned were close to the population mean. The obtained intrapopulation and intraspecific variability parameters of allozyme and microsatellite loci of chloroplast DNA and the data on the population differentiation at these loci indicate that the given markers can be used for the analysis of the population structure of Siberian spruce.  相似文献   

15.
德宏水牛微卫星标记分析的群体遗传变异   总被引:6,自引:0,他引:6  
德宏水牛是云南省地方水牛的优良品种之一,为了进一步阐明其群体遗传变异和遗传结构,筛选了分别位于水牛14条染色体上的15对微卫星引物,对德宏水牛81个个体进行了检测分析.共检测到62个等位基因,每个座位等位基因数目从2到6个不等,平均等位基因数为4.13,该水牛群体期望杂合度和多态信息含量分别为0.6520±0.1526和0.5863±0.1789,各座位的遗传分化系数在0~0.0919之间,平均值为0.0202.每个座位的基因流较大,平均12.1502.研究结果表明德宏水牛群体遗传多样性较丰富,亚群间的遗传分化程度低,基因流较大,且很少发生近交.  相似文献   

16.
Hunted to near extinction in the late 19th century, the endangered and endemic Hawaiian monk seal (Monachus schauinslandi) exhibits low variation at all molecular markers tested to date. Here we confirm extreme paucity of genetic diversity, finding polymorphisms at only 8 of 154 microsatellite loci tested (143 novel species-specific loci, 10 loci from Antarctic seals, and 1 previously characterized locus). This screening revealed unprecedentedly low levels of allelic diversity and heterozygosity (A = 1.1, H(e) = 0.026). Subsequent analyses of 2409 Hawaiian monk seals at the 8 polymorphic loci provide evidence for a bottleneck (P = 0.002), but simulations indicate low genetic diversity (H(e) < 0.09) prior to recorded human influence. There is little indication of contemporary inbreeding (F(IS) = 0.018) or population structure (K = 1 population). Minimal genetic variation did not prevent partial recovery by the late 1950s and may not be driving the current population decline to approximately 1200 seals. Nonetheless, genotyping nearly every individual living during the past 25 years sets a new benchmark for low genetic diversity in an endangered species.  相似文献   

17.
Sawfish (family Pristidae) are among the most critically endangered marine fish in the world, yet very little is known about how genetic bottlenecks, genetic drift, and inbreeding depression may be affecting these elasmobranchs. In the US Atlantic, the smalltooth sawfish (Pristis pectinata) has declined to 1-5% of its abundance in the 1900s, and its core distribution has contracted to southwest Florida. We used 8 polymorphic microsatellite markers to show that this remnant population still exhibits high genetic diversity in terms of average allelic richness (18.23), average alleles per locus (18.75, standard deviation [SD] 6.6) and observed heterozygosity (0.43-0.98). Inbreeding is rare (mean individual internal relatedness = -0.02, SD 0.14; F(IS) = -0.011, 95% confidence interval [CI] = -0.039 to 0.011), even though the estimated effective population size (N(e)) is modest (250-350, 95% CI = 142-955). Simulations suggest that the remnant smalltooth sawfish population will probably retain >90% of its current genetic diversity over the next century even at the lower estimate of N(e). There is no evidence of a genetic bottleneck accompanying last century's demographic bottleneck, and we discuss hypotheses that could explain this. We also discuss features of elasmobranch life history and population biology that could make them less vulnerable than other large marine vertebrates to genetic change associated with reduced population size.  相似文献   

18.
Genetic diversity and divergence patterns of smallmouth bass Micropterus dolomieu spawning groups are analysed across its northern native range with mtDNA cytochrome b gene sequences and eight unlinked nuclear DNA microsatellite loci. Results reveal high levels of genetic variability and significant differences in allelic representation among populations (mtDNA: mean ± s.e ., HD = 0·50 ± 0·06, mean ± s.e ., θST = 0·41 ± 0·02 and microsatellites: mean ± s.e . HO = 0·46 ± 0·03, mean ± s.e . θST = 0·25 ± 0·01). The distributions of 28 variant mtDNA haplotypes, which differ by an average of 3·94 nucleotides (range = 1–8), denote divergent representation among geographic areas. Microsatellite data support nine primary population groups, whose high self‐assignment probabilities likewise display marked divergence. Genetic patterns demonstrate: (1) high genetic diversity in both genomes, (2) significant divergence among populations, probably resulting from natal site homing and low lifetime migration, (3) support for three post‐glacial refugia that variously contributed to the current northern populations, which remain evident today despite waterway connectivity and (4) a weak yet significant genetic isolation by geographic distance pattern, indicating that other processes affect the differences among populations, such as territoriality and site fidelity.  相似文献   

19.
The use of DNA markers to evaluate genetic diversity is an important component of the management of animal genetic resources. The Food and Agriculture Organisation of the United Nations (FAO) has published a list of recommended microsatellite markers for such studies; however, other markers are potential alternatives. This paper describes results obtained with a set of amplified fragment length polymorphism (AFLP) markers as part of a genetic diversity study of European pig breeds that also utilized microsatellite markers. Data from 148 AFLP markers genotyped across samples from 58 European and one Chinese breed were analysed. The results were compared with previous analyses of data from 50 microsatellite markers genotyped on the same animals. The AFLP markers had an average within-breed heterozygosity of 0.124 but there was wide variation, with individual markers being monomorphic in 3-98% of the populations. The biallelic and dominant nature of AFLP markers creates a challenge for their use in genetic diversity studies as each individual marker contains limited information and AFLPs only provide indirect estimates of the allelic frequencies that are needed to estimate genetic distances. Nonetheless, AFLP marker-based characterization of genetic distances was consistent with expectations based on breed and regional distributions and produced a similar pattern to that obtained with microsatellites. Thus, data from AFLP markers can be combined with microsatellite data for measuring genetic diversity.  相似文献   

20.
Few studies have investigated the genetic diversity of populations of common and widespread lichenized fungi using microsatellite markers, especially the relationships between different measures of genetic diversity and environmental heterogeneity. The main aim of our study was to investigate the population genetics of a widespread and mainly clonally reproducing Usnea subfloridana at the landscape scale, focusing on the comparison of lichen populations within hemiboreal forest stands. Particular attention has been paid to the genetic differentiation of lichen populations in two geographically distinct regions in Estonia and the relationships between forest characteristics and measures of genetic diversity. We genotyped 578 Usnea thalli from eleven lichen populations using seven specific fungal microsatellite markers. Measures of genetic diversity (allelic richness, Shannon's information index, Nei's unbiased genetic diversity, clonal diversity, the number of multilocus genotypes, the number of private alleles, and the minimum number of colonization events) were calculated and compared between Usnea populations. Shared haplotypes, gene flow and AMOVA analyses suggest that unconstrained gene flow and exchange of multilocus genotypes exist between the two geographically remote regions in Estonia. Stand age, mean circumference of the host tree, size of forest site and tree species composition did not show any significant influence on allelic richness, Shannon's information index, Nei's unbiased genetic diversity, clonal diversity, the number of private alleles, and the minimum number of colonization events of U. subfloridana populations. Therefore it was concluded that other factors of habitat heterogeneity could probably have a more significant effect on population genetics of U. subfloridana populations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号