首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 284 毫秒
1.
In order to determine the ratio of phosphates to hormone-binding sites on nonactivated (non-DNA-binding) glucocorticoid receptors in WEHI-7 mouse thymoma cells, we have extracted these receptors from cells grown to a steady state with 32P, labeled them with a saturating concentration of [3H]dexamethasone 21-mesylate, purified them using a monoclonal antibody, and analyzed them by polyacrylamide gel electrophoresis under denaturing and reducing conditions. The complexes contained approximately 5 mol of phosphate/mol of bound steroid. Only half of the phosphates were associated with the approximately 100-kDa protein which is labeled with [3H]dexamethasone 21-mesylate. The remaining phosphates were associated with the approximately 90-kDa non-steroid-binding component of the nonactivated complex. Dual label studies, using [35S]methionine to measure receptor protein and 32P to measure receptor phosphates, have enabled us to determine the phosphate content, relative to receptor protein, of both nonactivated and activated cytosolic complexes generated in intact WEHI-7 cells exposed to triamcinolone acetonide at 37 degrees C. The total amount of phosphate associated with the activated complex is roughly half of that associated with the nonactivated complex, the decrease being accounted for by dissociation of the approximately 90-kDa phosphoprotein which accompanies activation. However, the ratio of 32P to 35S counts associated with the approximately 100-kDa steroid-binding protein is the same for the activated and nonactivated complexes. These results indicate that there is no net change in the phosphorylation of the approximately 100-kDa steroid-binding component of the cytosolic glucocorticoid-receptor complex upon activation in the intact cell.  相似文献   

2.
Several lines of evidence have suggested that glucocorticoid receptor function may be regulated by phosphorylation-dephosphorylation reactions, and it has been proposed that dephosphorylation accompanies activation to the DNA-binding form. The phosphate content of the approximately 100-kDa steroid-binding protein has been determined directly and was found not to change during activation in intact cells (Mendel, D.B., Bodwell, J.E., and Munck, A. (1987) J. Biol. Chem. 262, 5644-5648). We have now determined the effect of interaction with the receptor and of activation on the phosphate content of the approximately 90-kDa heat shock protein (Hsp 90), which is thought to be a non-steroid-binding subunit of nonactivated glucocorticoid receptors that dissociates on activation. Monoclonal antibodies AC88 and BuGR2 were used to purify free Hsp 90 and cytosolic nonactivated glucocorticoid-receptor complexes, respectively, from WEHI-7 cells grown in the presence of 32Pi and [35S] methionine. Cell-free activation of the nonactivated receptor-antibody complexes immobilized on protein A-Sepharose minicolumns allowed the recovery of the Hsp 90 dissociated from the complexes during activation. Proteins were separated by denaturing polyacrylamide gel electrophoresis, and the 32P/35S ratio, which was used as a measure of the phosphate content relative to protein, was determined for the free, receptor-associated, and dissociated forms of the Hsp 90, as well as for the approximately 100-kDa steroid-binding protein of non-activated and activated receptors. The three forms of the Hsp 90 had the same phosphate contents, as did the approximately 100-kDa steroid-binding protein before and after activation. Based upon these results, we conclude that no net change in the phosphorylation occurs when the Hsp 90 associates with the approximately 100-kDa steroid-binding protein to form nonactivated receptors and that neither protein component of nonactivated complexes is dephosphorylated when they dissociate during thermal activation under cell-free conditions.  相似文献   

3.
The steroid-binding subunit of the glucocorticoid receptor is known to be a approximately 100-kDa phosphoprotein composed of an immunogenic, DNA-binding, and steroid-binding domain. When isolated from WEHI-7 cells, this protein contains between two and three phosphoryl groups per steroid-binding site (Mendel WEHI-7 cells, this protein contains between two and three phosphoryl groups per steroid-binding site (Mendel et al., 1987). To identify the domains that contain these phosphorylated sites, we have analyzed the phosphate content of selected proteolytic fragments of the approximately 100-kDa steroid-binding protein from nonactivated and activated receptors. The approximately 100-kDa steroid-binding protein from WEHI-7 cells grown in the presence of [32P]orthophosphate was covalently labeled with [3H]dexamethasone 21-mesylate, purified with the BuGR2 monoclonal antibody, digested with chymotrypsin or trypsin, and analyzed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE). Chymotrypsin digestion of this protein yields a approximately 45-kDa fragment containing both the steroid-binding and DNA-binding domains, which contained both 32P and 3H. Trypsin digestion of the protein yields a approximately 29-kDa fragment encompassing the steroid-binding domain but not the DNA-binding domain of the approximately 100-kDa protein, which also contained both 32P and 3H. The 32P/3H ratio of each fragment provides a measure of phosphate content per steroid-binding site and indicated that each fragment has approximately 30% of the phosphate content of the intact protein. This is sufficient to account for one of the three receptor phosphoryl groups.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

4.
We have observed that the approximately 90-kDa non-steroid-binding component of nonactivated glucocorticoid receptors purified from WEHI-7 mouse thymoma cells (which has been identified as the approximately 90-kDa heat shock protein) consistently migrates as a doublet during polyacrylamide gel electrophoresis under denaturing and reducing conditions. It has recently been reported that murine Meth A cells contain a tumor-specific transplantation antigen (TSTA) which is related or identical to the approximately 90-kDa heat shock protein (Ullrich, S.J., Robinson, E.A., Law, L.W., Willingham, M., and Appella, E. (1986) Proc. Natl. Acad. Sci. U.S.A. 83, 3121-3125). The observation that TSTA and the approximately 90-kDa heat shock protein isolated from these cells exists as two isoforms of similar molecular mass and charge has suggested to us that the doublet we observed is also due to the existence of two isoforms. However, unlike TSTA, which appears to contain the two isoforms in similar relative abundance, nonactivated glucocorticoid-receptor complexes seem to contain predominantly the lower molecular mass isoform. We have therefore conducted this study to determine whether TSTA and the approximately 90-kDa component of glucocorticoid receptors are indeed related, to establish whether the receptor preferentially binds one isoform of the approximately 90-kDa heat shock protein, and to investigate the stoichiometry of the nonactivated receptor complex. By comparing Meth A TSTA and the approximately 90-kDa component of the receptor in their reactions with the AC88 monoclonal antibody (specific for the approximately 90-kDa heat shock protein) and a polyclonal antibody directed against Meth A TSTA, we found that these two proteins are indistinguishable and probably identical. We then used the BuGR1 (directed against the steroid-binding subunit of glucocorticoid receptors) and AC88 monoclonal antibodies to purify, respectively, receptor-associated and free approximately 90-kDa heat shock protein from WEHI-7 cells grown for 48 h with [35S]methionine to metabolically label proteins to steady state. Following analysis of the proteins by polyacrylamide gel electrophoresis under denaturing and reducing conditions, the relative amounts of the two isoforms in each sample were determined from the 35S counts and the known methionine content of each isoform. We found that approximately three-quarters of both the receptor-associated and the free approximately 90-kDa heat shock protein is present as the lower molecular weight isoform, indicating no preferential binding of either isoform in the receptor. The long-term metabolic labeling approach has also enabled us to direc  相似文献   

5.
We have used three methods to measure the stoichiometry of the glucocorticoid receptor and the 90-kDa heat shock protein (hsp90) in L-cell glucocorticoid receptor complexes that were purified by immunoadsorption to protein A-Sepharose with an anti-receptor monoclonal antibody, followed by a minimal washing procedure that permits retention of receptor-associated protein. In two of the methods, receptor was quantitated by radioligand binding, and receptor-specific hsp90 was quantitated against a standard curve of purified hsp90, either on Coomassie blue stained SDS gels by laser densitometry or on Western blots by quantitative immunoblotting with 125I-labeled counterantibody. The stoichiometry values obtained by densitometry and immunoblotting are 7 and 6 mol of hsp90/mol of receptor, respectively. In a third method, which detects total receptor protein rather than just steroid-bound receptor, the ratio of hsp90 to receptor was determined by immunopurifying receptor complexes from [35S]methionine-labeled L cells, and the amount of 35S incorporated into receptor and hsp90 was corrected for the established methionine content of the respective proteins. In complexes from L cells which are labeled to steady state (48 h), the ratio of hsp90 to GR is 4:1. When immunoadsorbed receptor complexes are washed extensively with 0.5 M NaCl and 0.4% Triton X-100 in the presence of molybdate, the ratio of hsp90 to GR is 2:1. In addition to hsp90, preparations of [35S]methionine-labeled untransformed receptor complex also contain a 55-kDa protein that the conclusion that the untransformed L-cell glucocorticoid receptor exists in cytosol in a much larger heteromeric complex than considered to date.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

6.
We have previously reported that molybdate-stabilized cytosol prepared from 32P-labeled L-cells contains two phosphoproteins (a 90-92- and a 98-100-kDa protein) that elute from an affinity resin of deoxycorticosterone-derivatized agarose in a manner consistent with the predicted behavior of the glucocorticoid receptor (Housley, P. R., and Pratt, W. B. (1983) J. Biol. Chem. 258, 4630-4635). In the present work we report that both the 90-92- and 98-100-kDa 32P-labeled proteins are also extracted from molybdate-stabilized cytosol by incubation with a monoclonal antibody and protein A-Sepharose. Only the 98-100-kDa protein is specifically labeled when either L-cell cytosol or L-cell cytosol proteins bound to the affinity resin are labeled with the glucocorticoid binding site-specific affinity ligand [3H]dexamethasone 21-mesylate. The 98-100-kDa protein labeled with [3H]dexamethasone mesylate is adsorbed to protein A-Sepharose in an immune-specific manner after reaction with the monoclonal antibody. Sodium dodecyl sulfate-polyacrylamide gel analysis of the protein A-Sepharose-bound material resulting from incubating the monoclonal antibody with a mixture of 32P-labeled cytosol and [3H]dexamethasone mesylate-labeled cytosol demonstrates identity of the 98-100-kDa [3H]dexamethasone mesylate-labeled band with the 98-100-kDa 32P-labeled band and clear separation from the nonsteroid-binding 90-92-kDa phosphoprotein. The results of immunoblot experiments demonstrate that the 90-92-kDa protein is structurally distinct from the 98-100-kDa steroid-binding protein. As the 90-92-kDa nonsteroid-binding phosphoprotein co-purified with the 98-100-kDa uncleaved form of the glucocorticoid receptor by two independent methods, one of which is based on recognizing a steroid-binding site and the other of which is based on recognizing an antibody binding site, we propose that the 90-92-kDa phosphoprotein is a component of the molybdate-stabilized, untransformed glucocorticoid-receptor complex in L-cell cytosol.  相似文献   

7.
To characterize envelope proteins encoded by the chloroplast genome, envelopes were isolated from Chlamydomonas reinhardtii cells labeled with [35S] sulfate while blocking synthesis by cytoplasmic ribosomes. One and two-dimensional gel electrophoresis of envelopes and fluorography revealed four highly labeled proteins. Two with masses of 29 and 30 kDa and pI 5.5 were absent from the stroma and thylakoid fractions, while the others at 54 kDa, pI 5.2 and 61 kDa, pI 5.4 were detected there in smaller amounts. The 29- and 30-kDa proteins were associated with outer envelope membranes separated from inner envelope membranes after chloroplast lysis in hypertonic solution. A 32-kDa protein not labeled by [35S]sulfate was found exclusively in the inner membrane fraction, suggesting the existence of a phosphate translocator in C. reinhardtii. To identify envelope proteins exposed on the chloroplast surface, isolated active chloroplasts were surface-labeled with 125I and lactoperoxidase. The 54-kDa, pI 5.2 protein as well as a protein corresponding to either of the 29- or 30-kDa proteins described above were among the labeled components. These results show that envelope proteins of C. reinhardtii are encoded by the chloroplast genome and two are located on the outer envelope membranes.  相似文献   

8.
The effect of insulin to increase the cell surface concentration of various receptors is accompanied by an increase in the concentration of clathrin assembled on the plasma membrane (Corvera, S. (1990) J. Biol. Chem. 265, 2413-2416). In the present study, clathrin-coated membranes were purified from isolated adipocytes labeled isotopically with [32P]orthophosphate. Analysis of the coated vesicle preparation by polyacrylamide gel electrophoresis and autoradiography revealed the presence of a cluster of phosphopeptides of 90-100 kDa as well as other phosphorylated species of 125, 70, 58, 50, 43, and 32 kDa. Incubation of the coated vesicles in alkaline pH resulted in the elution of the majority of the phosphopeptides, suggesting that these components are part of the clathrin coat and not integral membrane proteins. A pronounced increase in the amount of phosphate incorporated into the 125-kDa species was observed in response to stimulation of labeled cells by low concentrations of insulin. Phosphoamino acid analysis of an acid hydrolysate of this band revealed that its phosphorylation occurred exclusively on serine residues. The increased serine phosphorylation of this protein was apparent after only 2 min of exposure of cells to insulin and persisted for at least 60 min. The effect of insulin to increase the cell surface concentration of receptors and the assembly of clathrin on the plasma membrane displays a similar time course. Phorbol esters or dibutyryl cyclic AMP did not mimic the effects of insulin to stimulate the incorporation of [32P]phosphate into the 125-kDa polypeptide. Phosphorylation of the 125-kDa polypeptide was not observed after incubation of purified adipocyte-coated vesicles with [gamma-32P]ATP, suggesting that the kinase responsible for this reaction may not be contained within the clathrin-coated vesicle itself. These results suggest that phosphorylation of this 125-kDa polypeptide in intact cells may play a role in the regulation of clathrin-coated membrane formation and receptor-mediated endocytosis in response to insulin.  相似文献   

9.
We have shown previously that growth hormone (GH) promotes the phosphorylation of its receptor on tyrosyl residues (Foster, C. M., Shafer, J. A., Rozsa, F. W., Wang, X., Lewis, S. D., Renken, D. A., Natale, J. E., Schwartz, J., and Carter-Su, C. (1988) Biochemistry 27, 326-334). In the present study, we investigated the possibility that a tyrosine kinase is specifically associated with the GH receptor. GH-receptor complexes were first partially purified from GH-treated 3T3-F442A fibroblasts, a GH-responsive cell, by immunoprecipitation using anti-GH antiserum. 35S-Labeled proteins of Mr = 105,000-125,000 were observed in the immunoprecipitate from GH-treated cells labeled metabolically with 35S-amino-acids. These proteins were not observed in immunoprecipitates from cells not exposed to GH or when non-immune serum replaced the anti-GH antiserum, consistent with the proteins being GH receptors. GH receptors appeared to be phosphorylated, as evidenced by the presence of 32P-labeled bands, comigrating with the 105-125 kDa 35S-labeled proteins, in the immunoprecipitate of GH-treated cells labeled metabolically with [32P]Pi. When partially purified GH receptor preparation was incubated with [gamma-32P]ATP (7-15 microM) for 10 min at 30 degrees C in the presence of MnCl2, a protein of Mr = 121,000 was phosphorylated exclusively on tyrosyl residues. As expected for the GH receptor, this protein was not observed in immunoprecipitates when cells had not been treated with GH nor when non-immune serum replaced the anti-GH antiserum. GH-receptor complexes were also purified to near homogeneity by sequential immunoprecipitation with phosphotyrosyl-binding antibody followed by anti-GH antiserum. When cells were labeled metabolically with 35S-amino acids, the 35S label migrated almost exclusively as an Mr = 105,000-125,000 protein. This protein also incorporated 32P into tyrosyl residues when incubated in solution with [gamma-32P]ATP. These results show that highly purified GH receptor preparations undergo tyrosyl phosphorylation, suggesting that either the GH receptor itself is a tyrosine kinase or is tightly associated with a tyrosine kinase.  相似文献   

10.
Detection of G Proteins in Purified Bovine Brain Myelin   总被引:5,自引:5,他引:0  
Following a previous report on detection of muscarinic receptors in myelin with the implied presence of G proteins, we now demonstrate by more direct means the presence of such proteins and their quantification. Using [35S]guanosine 5'-O-(3-thiotriphosphate) ([35S]GTP gamma S) as the binding ligand, purified myelin from bovine brain was found to contain approximately half the binding activity of whole white matter (138 +/- 9 vs. 271 +/- 18 pmol/mg of protein). Scatchard analysis of saturation binding data revealed two slopes, a result suggesting at least two binding populations. This binding was inhibited by GTP and its analog but not by 5'-adenylylimidodiphosphate [App(NH)p], GMP, or UTP. Following sodium dodecyl sulfate (SDS)-polyacrylamide gel electrophoresis (PAGE) of myelin proteins and blotting on nitrocellulose, [alpha-32P]GTP bound to three bands in the 21-27-kDa range in a manner inhibited by GTP and GTP gamma S but not App(NH)p. ADP-ribosylation of myelin with [32P]NAD+ and cholera toxin labeled a protein of 43 kDa, whereas reaction with pertussis toxin labeled two components of 40 kDa. Cholate extract of myelin subjected to chromatography on a column of phenyl-Sepharose gave at least three major peaks of [35S]GTP gamma S binding activity. SDS-PAGE and immunoblot analyses of peak I indicated the presence of Go alpha, Gi alpha, and Gs alpha. Further fractionation of peak II by diethyl-aminoethyl-Sephacel chromatography gave one [35S]GTP gamma S binding peak with the low-molecular-mass (21-27 kDa) proteins and a second showing two major protein bands of 36 and 40 kDa on SDS-PAGE.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

11.
Merozoites were isolated from Plasmodium falciparum cultures labeled with [3H]mannose and [35S]methionine and treated with a cleavable homobifunctional crosslinker, dithiobis(succinimidyl) propionate. The crosslinked complexes were immunoprecipitated with Mab.5B1 directed against the major merozoite surface glycoprotein. Pf200 (MW 190-205), and reduced with dithiothreitol. Crosslinked immunocomplexes did not contain the second major merozoite surface glycoprotein, Pf50 (MW 45-55 kDa), or other major [35S]methionine-labeled proteins, except for a weakly labeled protein of 150 kDa. Crosslinked complexes immunoprecipitated with Mab.5B1 and then reduced with DTT were immunoblotted with antibody directed against three soluble P. falciparum antigens, a serine-rich antigen known as Pf126 or SERA, the S-antigen, and GBP-130. The 150-kDa S-antigen was readily detected in crosslinked immunocomplexes with Pf200. The SERA antigen, although crosslinked under these conditions, was not detected in association with Pf200 nor was GBP-130.  相似文献   

12.
Somatostatin receptors of plasma membranes from beta cells of hamster insulinoma were covalently labelled with 125I-[Leu8,D-Trp22,Tyr25]somatostatin-28 (125I-somatostatin-28) and solubilized with the non-denaturing detergent Triton X-100. Analysis by SDS/PAGE and autoradiography revealed three specific 125I-somatostatin-28 receptor complexes with similar molecular masses (228 kDa, 128 kDa and 45 kDa) to those previously identified [Cotroneo, P., Marie, J.-C. & Rosselin, G. (1988) Eur. J. Biochem. 174, 219-224]. The major labelled complex (128 kDa) was adsorbed to a wheat-germ-agglutinin agarose column and eluted by N-acetylglucosamine. Also, the binding of 125I-somatostatin-28 to plasma membranes was specifically inhibited by the GTP analog, guanosine-5'-O-(3-thiotriphosphate) (GTP[S]) in a dose-dependent manner. Furthermore, when somatostatin-28 receptors were solubilized by Triton X-100 as a reversible complex with 125I-somatostatin-28, GTP[S] specifically dissociated the bound ligand to a larger extent from the soluble receptors than from the plasma-membrane-embedded receptors, the radioactivity remaining bound after 15 min at 37 degrees C being 30% and 83% respectively. After pertussis-toxin-induced [32P]ADP-ribosylation of pancreatic membranes, a 41-kDa [32P]ADP-ribose-labelled inhibitory guanine nucleotide binding protein coeluted with the 128-kDa and 45-kDa receptor complexes. The labelling of both receptor proteins was sensitive to GTP[S]. The labelling of the 228-kDa band was inconsistent. These results support the conclusion that beta cell somatostatin receptors can be solubilized as proteins of 128 kDa and 45 kDa. The major labeled species corresponds to the 128-kDa band and is a glycoprotein. The pancreatic membrane contains a 41-kDa GTP-binding protein that can complex with somatostatin receptors.  相似文献   

13.
Abstract: Synaptosomes from five regions of adult rat brain were isolated, analyzed for methyl acceptor proteins, and probed for methyltransferases by photoaffinity labeling. Methylated proteins of 17 and 35 kDa were observed in all regions, but cerebellar synaptosomes were enriched in a 21–26-kDa family of methyl acceptor proteins and contained a unique major methylated protein of 52 kDa and a protein of 50 kDa, which was methylated only in the presence of EGTA. When cerebellar and liver subcellular fractions were compared, the cytosolic fractions of each tissue contained methylated proteins of 17 and 35 kDa; liver membrane fractions contained few methylated proteins, whereas cerebellar microsomes had robust methylation of the 21–26-kDa group. Differential centrifugation of lysed cerebellar synaptosomes localized the 17- and 35-kDa methyl acceptor proteins to the synaptoplasm, the 21–26-kDa family to the synaptic membranes, and the 52-kDa to synaptic vesicles. The 21–26-kDa family was identified as GTP-binding proteins by [α-32P]GTP overlay assay; these proteins contained a putative methylated carboxyl cysteine, based on the presence of volatile methyl esters and the inhibition of methylation by acetylfarnesylcysteine. The 52-kDa methylated protein also contained volatile methyl esters, but did not bind [α-32P]GTP. When synaptosomes were screened for putative methyltransferases by S -adenosyl-L-[ methyl -3H]methionine photoaffinity labeling, a protein of 24 kDa was detected only in cerebellum, and this labeled protein was localized to synaptic membranes.  相似文献   

14.
Vibrio harveyi extracts contain three polypeptides (32, 42, and 57 kDa) which are involved in long-chain aldehyde biosynthesis and can be labeled with [3H] tetradecanoic acid (+ATP) and/or [3H]tetradecanoyl-CoA. These proteins have been separated from other labeled bands by ammonium sulfate fractionation, and the 32-kDa polypeptide has been further purified to homogeneity by ion-exchange, gel filtration, and hydroxylapatite chromatography. In aqueous buffers at pH 7, the 32-kDa protein catalyzes the hydrolysis of tetradecanoyl-CoA at a low rate (0.01 mumol/min/mg) to form free fatty acids. The thioesterase rate is slightly increased by phosphate, which also protects the enzyme against inhibition by the sulfhydryl reagent N-ethylmaleimide. Acyl-CoA cleavage is dramatically stimulated (up to 100-fold) by certain organic solvents, in particular glycerol and ethylene glycol, with the fatty acyl group being transferred to the alcohol acceptors. These enzymatic properties may be related to the role of the 32-kDa esterase in generating fatty acids for subsequent use in the V. harveyi bioluminescent system.  相似文献   

15.
ADP-ribosylation of transducin by pertussis toxin   总被引:8,自引:0,他引:8  
Transducin, the guanyl nucleotide-binding regulatory protein of retinal rod outer segments that couples the photon receptor, rhodopsin, with the light-activated cGMP phosphodiesterase, can be resolved into two functional components, T alpha and T beta gamma. T alpha (39 kDa), which is [32P]ADP-ribosylated by pertussis toxin and [32P]NAD in rod outer segments and in purified transducin, was also labeled by the toxin after separation from T beta gamma (36 kDa and approximately 10 kDa); neither component of T beta gamma was a pertussis toxin substrate. Labeling of T alpha was enhanced by T beta gamma and was maximal at approximately 1:1 molar ratio of T alpha : T beta gamma. Limited proteolysis by trypsin of T alpha in the presence of guanyl-5'-yl imidodiphosphate (Gpp(NH)p) resulted in the sequential appearance of proteins of 38 and 32 kDa. The amino terminus of both 38- and 32-kDa proteins was leucine, whereas that of T alpha could not be identified and was assumed to be blocked. The 32-kDa peptide was not a pertussis toxin substrate. Labeling of the 38-kDa protein was poor and was not enhanced by T beta gamma. Trypsin treatment of [32P]ADP-ribosyl-T alpha produced a labeled 37-38-kDa doublet followed by appearance of radioactivity at the dye front. It appears, therefore, that, although the 38-kDa protein was poor toxin substrate, it contained the ADP-ribosylation site. Without rhodopsin, labeling of T alpha (in the presence of T beta gamma) was unaffected by Gpp(NH)p, guanosine 5'-O-(thiotriphosphate) (GTP gamma S), GTP, GDP, and guanosine 5'-O-(thiodiphosphate) (GDP beta S) but was increased by ATP. When photolyzed rhodopsin and T beta gamma were present, Gpp(NH)p and GTP gamma S decreased [32P]ADP-ribosylation by pertussis toxin. Thus, pertussis toxin-catalyzed [32P]ADP-ribosylation of T alpha was affected by nucleotides, rhodopsin and light in addition to T beta gamma. The amino terminus of T alpha, while it does not contain the pertussis toxin ADP-ribosylation site, appeared critical to its reactivity.  相似文献   

16.
The presence of low molecular weight GTP-binding proteins was investigated in subcellular fractions from skeletal muscle. Skeletal muscle homogenate, transverse tubules, triads, sarcoplasmic reticulum membranes, and cytosol fractions were separated in sodium dodecyl sulfate-gel electrophoresis and blotted onto nitrocellulose. The presence of GTP-binding proteins was explored by incubation of these blots with [alpha-32P] GTP. GTP labeled two polypeptides of Mr = 23,000 and 29,000 in all the fractions examined. Binding of [alpha-32P]GTP was specific and dependent on Mg2+. The 23-kDa polypeptide was labeled to a higher extent with [alpha-32P]GTP than the 29-kDa polypeptide, although both were enriched in transverse tubule fractions. A GTP-binding polypeptide of 40 kDa was also enriched in transverse tubule preparations and identified as Gi alpha by immunostaining with anti-Gi alpha. Using a blot overlay approach and [alpha-32P]GTP-labeled cytosolic components, several polypeptides were identified that interact with the 23- and 29-kDa GTP-binding proteins. Among these components were polypeptides of Mr = 60,000, 47,000, 44,000, 42,000, and 38,000, which were mainly of cytosolic origin but also associated with triads and transverse tubule membranes. The 47-, 44-, 42-, and 38-kDa polypeptides were found to be structurally related to the glycolytic enzymes enolase, 3-phosphoglyceric phosphokinase, aldolase, and glycoeraldehyde-3-phosphate dehydrogenase, respectively. The purified glycolytic enzymes specifically bound the 23- and 29-kDa GTP-binding proteins under both denaturing and nondenaturing conditions. The association of the GTP-binding proteins with these polypeptides was resistant to detergents such as 3-[(3-cholamidopropyl)dimethylammonio]-1-propanesulfonic acid (CHAPS), Triton X-100, and Tween. A 23-kDa GTP-binding protein purified from chromaffin cells bound to a 157-kDa polypeptide in triads and chromaffin cell membranes. The 157-kDa polypeptide was a minor component in these membranes and not related to the subunits of the dihydropyridine receptor. In view of the proposed function of low molecular weight GTP-binding proteins in processes such as membrane communication and secretion coupling, the association of these proteins with transverse tubules and triads in skeletal muscle is discussed in terms of a role in signal transmission.  相似文献   

17.
The glucocorticoid hormone receptor (92 kDa), purified 9000-fold from rat liver cytosol by steroid affinity chromatography and DEAE-Sephacel chromatography, was assayed for the presence of protein kinase activity by incubations with [gamma-32P]ATP and the photoaffinity label 8-azido-[gamma-32P]ATP. Control preparations isolated by affinity chromatography in the presence of excess steroid to prevent the receptor from binding to the affinity matrix were assayed for kinase activity in parallel. The receptor was not labeled by the photoaffinity label under photoactivation conditions in the presence of Ca2+ or Mg2+. A Mg2+-dependent protein kinase (48 kDa) that could be photoaffinity labeled with 8-azido-ATP copurified with the receptor. This kinase was also present in control preparations. The kinase could phosphorylate several minor contaminants present in the receptor preparation, including a protein (or proteins) of similar molecular weight to the receptor. The phosphorylation of 90-92-kDa proteins was independent of the state of transformation or steroid-binding activity of the receptor. These experiments provide direct evidence that neither the glucocorticoid receptor nor the 90-92-kDa non-steroid-binding protein associated with the molybdate-stabilized glucocorticoid receptor possesses intrinsic Ca2+- or Mg2+-dependent protein kinase activity.  相似文献   

18.
PC12 pheochromocytoma cells and cultures of early postnatal rat cerebellum were labeled with [3H]glucosamine, [3H]fucose, [3H]leucine, [3H]ethanolamine, or sodium [35S]sulfate and treated with a phosphatidylinositol-specific phospholipase C. Enzyme treatment of [3H]glucosamine- or [3H]fucose-labeled PC12 cells led to a 15-fold increase in released glycoproteins. On sodium dodecyl sulfate-polyacrylamide gel electrophoresis, most of the released material migrated as a broad band with an apparent molecular size of 32,000 daltons (Da), which was specifically immunoprecipitated by a monoclonal antibody to the Thy-1 glycoprotein. A second glycoprotein, with an apparent molecular size of 158,000 Da, was also released. After treatment with endo-beta-galactosidase, 40-45% of the [3H]glucosamine or [3H]fucose radioactivity in the phospholipase-released glycoproteins was converted to products of disaccharide size, and the molecular size of the 158-kDa glycoprotein decreased to 145 kDa, demonstrating that it contains fucosylated poly-(N-acetyllactosaminyl) oligosaccharides. The phospholipase also released labeled Thy-1 and the 158-kDa glycoprotein from PC12 cells cultured in the presence of [3H]ethanolamine, which specifically labels this component of the phosphatidylinositol membrane-anchoring sequence, while in the lipid-free protein residue of cells not treated with phospholipase, Thy-1 and a doublet at 46/48 kDa were the only labeled proteins. At least eight early postnatal rat brain glycoproteins also appear to be anchored to the membrane by phosphatidylinositol. Sulfated glycoproteins of 155, 132/134, 61, and 21 kDa are the predominant species released by phospholipase, which does not affect a major 44-kDa protein seen in [3H]ethanolamine-labeled brain cultures. The 44-48- and 155/158-kDa proteins may be common to both PC12 cells and brain.  相似文献   

19.
Calcium-dependent phospholipid binding and phospholipase A2 inhibitory proteins were isolated from human mononuclear cells. Lipocortins I and II were present whereas lipocortin IV (endonexin I) was not. The other proteins were purified to homogeneity and shown to have molecular masses of 35, 36, 32 and 73 kDa. The 36-kDa and 73-kDa proteins are related, the smaller appears to be part of the larger. The 73-kDa protein is related to the 67-kDa calelectrin and to lipocortin VI; the 32-kDa protein is different from endonexin I but related to chromobindin 7 and to lipocortin V. The 35-kDa protein has been identified by tryptic peptide sequencing as lipocortin III. All these proteins inhibit phospholipase A2 activity in vitro and the three smaller ones inhibit the [3H]arachidonic acid release from prelabelled monocytes induced by the calcium ionophore A23187 in a dose-dependent manner.  相似文献   

20.
Iodination of intact Pasteurella haemolytica serotype A2 cells labelled a sub-set of total cellular proteins. Comparison of the autoradiographic patterns obtained from iodinated cells grown on complete medium and on iron-depleted medium showed that expression of three proteins, of 100, 70 and 35 kDa, respectively, was increased by growth under iron-depleted conditions. Of these proteins, that of 35 kDa had not been reported previously. Like the 100 and 70 kDa proteins, the 35 kDa protein was expressed in natural infections, since it was recognized by antiserum from sheep that had recovered from an experimental infection with P. haemolytica A2. The 35 kDa protein was partially purified by reverse-phase HPLC and was found to be antigenic in both sheep and mice. A monoclonal antibody that was specific for the 35 kDa protein was used to identify the cellular location of the protein by immunoblotting of cell fractions enriched for particular cellular components. This demonstrated that the 35 kDa protein was located mainly in the periplasm.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号