首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 320 毫秒
1.
The binding of mRNAs to ribosomes is mediated by the protein complex eIF4F in conjunction with eIF4B (eukaryotic initiation factor 4F and 4B). EIF4F is a three subunit complex consisting of eIF4A (RNA helicase), eIF4E (mRNA cap binding protein), and eIF4G (bridging protein). The crucial role is played by eIF4E, which directly binds the 5'-cap structure of the mRNA and facilitates the recruitment to the mRNA of other translation factors and the 40S ribosomal subunit. EIF4E binding to mRNA and to other initiation factors is regulated on several levels, including its phosphorylation on Ser-209, and association with its regulatory protein 4E-binding protein (4E-BP1). In this study we document that both the translation initiation factor eIF4E and its regulator 4E-BP1 become dephosphorylated in the early stage porcine zygotes already 8 hr post-activation. Similarly, the activities of ERK1/2 MAP and Mnk1 kinases, which are both involved in eIF4E phosphorylation, gradually decrease during this period with the timing similar to that of eIF4E dephosphorylation. The formation of an active eIF4F complex is also diminished after 9-15 hr post-activation, although substantial amounts of this complex have been detected also 24 hr post-activation (2-cell stage). The overall protein synthesis in the parthenotes decreases gradually from 12 hr post-activation reaching a minimum after 48 hr (4-cell stage). Although the translation is gradually decreasing during early preimplantation development, the eIF4F complex, which is temporarily formed, might be a premise for the translation of a small subset of mRNAs at this period of development.  相似文献   

2.
Germline mutations of the adenomatous polyposis coli ( APC) gene cause familial adenomatous polyposis (FAP), an autosomal, dominantly inherited disease that predisposes patients to colorectal cancer. The APC gene is composed of 15 coding exons and encodes an open reading frame of 8.5 kb. The 3' 6.5 kb of the APCopen reading frame is encoded by a single exon, exon 15. Most identified APC mutations are at the 5' half of the APC open reading frame and are nucleotide substitutions and small deletions or insertions that result in truncation of the APC protein. Very few well-characterized gross alterations of APC have been reported. Patients with FAP typically develop hundreds to thousands of colorectal tumors beginning in their adolescence. A subgroup of patients with FAP who develop fewer tumors at an older age have what is called attenuated FAP (AFAP). Accumulating evidence indicates that patients carrying germline APC mutations in the first four coding exons, in the alternatively spliced region of exon 9, or in the 3' half of the coding region usually develop AFAP. We characterized two germline APC alterations that deleted the entire APC exon 15 as the result of 56-kb and 73-kb deletions at the APC locus. A surprising finding was that one proband had the typical FAP phenotype, whereas the other had a phenotype consistent with that of AFAP.  相似文献   

3.
4.
5.
Mammalian hibernation involves cessation of energetically costly processes typical of homeostatic regulation including protein synthesis. To further elucidate the mechanisms employed in depressing translation, we surveyed key eukaryotic initiation factors [eIF2, eIF4B, eIF4E, eIF4GI and -II, and 4E-binding protein-1 (4E-BP1), -2, and -3] for their availability and phosphorylation status in the livers of golden-mantled ground squirrels (Spermophilus lateralis) across the hibernation cycle. Western blot analyses indicated only one significant locus for regulation of translational initiation in ground squirrel liver: control of eIF4E. We found seasonal variation in a potent regulator of eIF4E activity, 4E-BP1. Summer squirrels lack 4E-BP1 and apparently control eIF4E activity through direct phosphorylation. In winter, eIF4E is regulated through binding with 4E-BP1. During the euthermic periods that separate bouts of torpor (interbout arousal), 4E-BP1 is hyperphosphorylated to promote initiation. However, during torpor, 4E-BP1 is hypophosphorylated and cap-dependent initiation of translation is restricted. The regulation of cap-dependent initiation of translation may allow for the differential expression of proteins directed toward enhancing survivorship.  相似文献   

6.
7.
8.
The mechanisms by which insulin-like growth factor I (IGF-I) and insulin regulate eukaryotic initiation factor (eIF)4F formation were examined in the ovine fetus. Insulin infusion increased phosphorylation of eIF4E-binding protein (4E-BP1) in muscle and liver. IGF-I infusion did not alter 4E-BP1 phosphorylation in liver. In muscle, IGF-I increased 4E-BP1 phosphorylation by 27%; the percentage in the gamma-form in the IGF-I group was significantly lower than that in the insulin group. In liver, only IGF-I increased eIF4G. Both IGF-I and insulin increased eIF4E. eIF4G binding in muscle, but only insulin decreased the amount of 4E-BP1 associated with eIF4E. In liver, only IGF-I increased eIF4E. eIF4G binding. Insulin increased the phosphorylation of p70 S6 kinase (p70(S6k)) in both muscle and liver and protein kinase B (PKB/Akt) in muscle, two indicative signal proteins in the phosphatidylinositol (PI) 3-kinase pathway. IGF-I increased PKB/Akt phosphorylation in muscle but had no effect on p70(S6k) phosphorylation in muscle or liver. We conclude that insulin and IGF-I modulate eIF4F formation; however, the two hormones have different regulatory mechanisms. Insulin increases phosphorylation of 4E-BP1 and eIF4E. eIF4G binding in muscle, whereas IGF-I regulates eIF4F formation by increasing total eIF4G. Insulin, but not IGF-I, decreased 4E-BP1 content associated with eIF4E. Insulin regulates translation initiation via the PI 3-kinase-p70(S6k) pathway, whereas IGF-I does so mainly via mechanisms independent of the PI 3-kinase-p70(S6k) pathway.  相似文献   

9.
The mRNA's cap-binding protein eukaryotic translation initiation factor (eIF)4E is a major target for the regulation of translation initiation. eIF4E activity is controlled by a family of translation inhibitors, the eIF4E-binding proteins (4E-BPs). We have previously shown that a rapid dissociation of 4E-BP from eIF4E is related with the dramatic rise in protein synthesis that occurs following sea urchin fertilization. Here, we demonstrate that 4E-BP is destroyed shortly following fertilization and that 4E-BP degradation is sensitive to rapamycin, suggesting that proteolysis could be a novel means of regulating 4E-BP function. We also show that eIF4E/4E-BP dissociation following fertilization is sensitive to rapamycin. Furthermore, while rapamycin modestly affects global translation rates, the drug strongly inhibits cyclin B de novo synthesis and, consequently, precludes the completion of the first mitotic cleavage. These results demonstrate that, following sea urchin fertilization, cyclin B translation, and thus the onset of mitosis, are regulated by a rapamycin-sensitive pathway. These processes are effected at least in part through eIF4E/4E-BP complex dissociation and 4E-BP degradation.  相似文献   

10.
Eukaryotic initiation factor 4E (eIF4E) binding proteins (4E-BPs) regulate the assembly of initiation complexes required for cap-dependent mRNA translation. 4E-BP1 undergoes insulin-stimulated phosphorylation, resulting in its release from eIF4E, allowing initiation complex assembly. 4E-BP1 undergoes caspase-dependent cleavage in cells undergoing apoptosis. Here we show that cleavage occurs after Asp24, giving rise to the N-terminally truncated polypeptide Delta4E-BP1, which possesses the eIF4E-binding site and all the known phosphorylation sites. Delta4E-BP1 binds to eIF4E and fails to become sufficiently phosphorylated upon insulin stimulation to bring about its release from eIF4E. Therefore, Delta4E-BP1 acts as a potent inhibitor of cap-dependent translation. Using a mutagenesis approach, we identify a novel regulatory motif of four amino acids (RAIP) which lies within the first 24 residues of 4E-BP1 and which is necessary for efficient phosphorylation of 4E-BP1. This motif is conserved among sequences of 4E-BP1 and 4E-BP2 but is absent from 4E-BP3. Insulin increased the phosphorylation of 4E-BP3 but not sufficiently to cause its release from eIF4E. However, a chimeric protein that was generated by replacing the N terminus of 4E-BP3 with the N-terminal sequence of 4E-BP1 (containing this RAIP motif) underwent a higher degree of phosphorylation and was released from eIF4E. This suggests that the N-terminal sequence of 4E-BP1 is required for optimal regulation of 4E-BPs by insulin.  相似文献   

11.
12.
13.
Two related eukaryotic initiation factor-4E binding proteins (4E-BP1 and 4E-BP2) were recently characterized for their capacity to bind specifically to eIF4E and inhibit its function. Here, we determined the cDNA sequence, tissue distribution, genomic structure, and chromosome localization of murine and human 4E-BP1 and 4E-BP2. Mouse 4E-BP1 and 4E-BP2 consist of 117 and 120 amino acids and exhibit 91.5 and 95.0% identity, respectively, to their human homologues. 4E-BP1 mRNA is expressed in most tissues, but is most abundant in adipose tissue, pancreas, and skeletal muscle, while 4E-BP2 mRNA is ubiquitously expressed. The structures of the mouse 4E-BP1 and 4E-BP2 were determined. The 4E-BP1 gene consists of three exons and spans ∼16 kb. In addition, two 4E-BP1 pseudogenes exist in the mouse genome. The 4E-BP2 gene spans approximately 20 kb and exhibits an identical genomic organization to that of 4E-BP1, with the protein coding portion of the gene divided into three exons. There are no pseudogenes for 4E-BP2. The chromosomal locations of 4E-BP1 and 4E-BP2 were determined in both mice and humans by fluorescencein situhybridization analysis. Mouse 4E-BP1 and 4E-BP2 map to chromosomes 8 (A4-B1) and 10 (B4-B5), respectively, and human 4E-BP1 and 4E-BP2 localize to chromosomes 8p12 and 10q21–q22, respectively.  相似文献   

14.
To investigate the binding preference of eIF4E for the three eIF4E-binding isoforms (4E-BP1-3) and the function of N-terminal flexible region of eIF4E for their interactions, the binding parameters of recombinant full-length and N-terminal residues-deleted eIF4Es with 4E-BP1-3 were investigated by the surface plasmon resonance (SPR) analysis. Consequently, it was clarified that 4E-BP2 exhibits the highest binding affinity for both m7GTP-bound and -unbound full-length eIF4Es when compared with 4E-BP1 and 4E-BP3. This is primarily due to the difference among their dissociation rates, because their association rates are almost the same. Interestingly, the deletion of the 33 N-terminal residues of eIF4E increased its binding affinities for 4E-BP1 and 4E-BP2 markedly, whereas such a change was not observed by at least the N-terminal deletion up to 26 residues. In contrast, the binding parameters of 4E-BP3 were hardly influenced by N-terminal deletion up to 33 residues. From the comparison of the amino acid sequences of 4E-BP1-3, the present result indicates the importance of N-terminal flexible region of eIF4E for the suppressive binding with 4E-BP1 and 2, together with the possible contribution of N-terminal sequence of 4E-BP isoform to the regulative binding to eIF4E.  相似文献   

15.
16.
Two cDNAs (At.EIF4E1 and At.EIF4E2) encoding, respectively, the eukaryotic initiation factors eIF4E and eIF(iso)4E of Arabidopsis thaliana were isolated by complementation of a Saccharomyces cerevisiae conditional mutant. The deduced amino acid sequences of the proteins are homologous to those from monocotyledonous plants, yeast and mammals. The corresponding genes were identified in YAC clones mapping to chromosome IV (At.EIF4E1) and to chromosome V (At.EIF4E2). The yeast strain complemented by At.EIF4E2 grew poorly compared with an isogenic strain expressing At.EIF4E1. Northern and in situ hybridization analysis show that both Arabidopsis At.EIF4E1 and At.EIF4E2 mRNAs are differentially accumulated in plant tissues. The At.EIF4E1 mRNA is expressed in all tissues except in the cells of the specialization zone of the roots; the At.EIF4E2 mRNA is particularly abundant in floral organs and in young developing tissues. This work further demonstrates an association between a high level of EIF4E mRNAs and cell proliferation and suggests that the plant eIF4E isoforms may have distinct functions in cell development and metabolism.  相似文献   

17.
Localisation and regulation of the eIF4E-binding protein 4E-BP3   总被引:3,自引:0,他引:3  
The cap-binding protein eIF4E-binding protein 3 (4E-BP3) was identified some years ago, but its properties have not been investigated in detail. In this report, we investigated the regulation and localisation of 4E-BP3. We show that 4E-BP3 is present in the nucleus as well as in the cytoplasm in primary T cells, HEK293 cells and HeLa cells. 4E-BP3 was associated with eIF4E in both cell compartments. Furthermore, 4E-BP3/eIF4E association in the cytoplasm was regulated by serum or interleukin-2 starvation in the different cell types. Rapamycin did not affect the association of eIF4E with 4E-BP3 in the cytoplasm or in the nucleus.  相似文献   

18.
19.
Hyperoxia is cytotoxic and depresses many cellular metabolic functions including protein synthesis. Translational control is exerted primarily during initiation by two mechanisms: 1) through inhibition of translation initiation complex formation via sequestration of the cap-binding protein, eukaryotic initiation factor (eIF) 4E, with inhibitory 4E-binding proteins (4E-BP); and 2) by prevention of eIF2-GTP-tRNA(i)(Met) formation and eIF2B activity by phosphorylated eIF2alpha. In this report, exposure of human lung fibroblasts to 95% O2 decreased the incorporation of thymidine into DNA at 6 h and the incorporation of leucine into protein beginning at 12 h. The reductions in DNA and protein synthesis were accompanied by increased phosphorylation of eIF4E protein and reduced phosphorylation of 4E-BP1. At 24 h, hyperoxia shifted 4E-BP1 phosphorylation to lesser-phosphorylated isoforms, increased eIF4E expression, and increased the association of eIF4E with 4E-BP1. Although hyperoxia did not change eIF2alpha expression, it increased its phosphorylation at Ser51, but not until 48 h. In addition, the activation of eIF2alpha was not accompanied by the formation of stress granules. These findings suggest that hyperoxia diminishes protein synthesis by increasing eIF4E phosphorylation and enhancing the affinity of 4E-BP1 for eIF4E.  相似文献   

20.
Eukaryotic initiation factor 4E (eIF4E) binds the mRNA cap structure and forms eIF4F complexes that recruit 40S subunits to the mRNA. Formation of eIF4F is blocked by eIF4E-binding proteins such as 4E-BP1, which interacts with eIF4E via a motif in the center of its 118-residue sequence. 4E-BP1 plays key roles in cell proliferation, growth, and survival. Binding of 4E-BP1 to eIF4E is regulated by hierarchical multisite phosphorylation. Here we demonstrate that three different features in the C terminus of 4E-BP1 play distinct roles in regulating its phosphorylation and function. Firstly, we identify a new phosphorylation site in its C terminus (S101). A serine or glutamate at this position is required for efficient phosphorylation at Ser65. A second C-terminal site, S112, directly affects binding of 4E-BP1 to eIF4E without influencing phosphorylation of other sites. Thirdly, a conserved C-terminal motif influences phosphorylation of multiple residues, including rapamycin-insensitive sites. These relatively long-range effects are surprising given the reportedly unstructured nature of 4E-BP1 and may imply that phosphorylation of 4E-BP1 and/or binding to eIF4E induces a more-ordered structure. 4E-BP2 and -3 lack phosphorylatable residues corresponding to both S101 and S112. However, in 4E-BP3, replacement of the alanine at the position corresponding to S112 by serine or glutamate did not confer the ability to be released from eIF4E in response to insulin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号