首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
Oxygen and carbon isotopes of foraminifera were analyzed in core PC4, water depth 1366 m, off northern Japan, near the east side of the Tsugaru Strait (130 m depth) between the open northwestern Pacific Ocean and the Japan Sea. At present, the site is at the confluence of the Tsugaru Warm Current which flows eastwards out of the Sea of Japan through the Tsugaru Strait, the subarctic Oyashio Current and the subtropic Kuroshio Current. During the Last Glacial Maximum (LGM), the Oyashio Current penetrated further to the South and outflow from the Japan Sea was restricted by glacio-eustatic sea level lowering.The isotopic values of the planktic foraminifer Neogloboquadrina pachyderma (sinistral) and the benthic foraminifer Uvigerina akitaensis reflect rapid millennial-scale paleoceanographic changes between 34 and 6 ka. Hydrographic changes during deglaciation were related to events at high northern latitudes, but Holocene hydrographic changes were dominated by local effects, such as the development of the outflow of the Tsugaru Warm Current. High values of planktic δ18O during the LGM reflect the southward advance of the Oyashio Current. These values decreased by 0.3‰ from 19.4 to 18.9 ka, then increased by 0.5‰ at 18 ka, with highest values between 17.5 and 15 ka. The δ18O oscillations between 19.4 and 15 ka may reflect millennial-scale warm–cold oscillations during Heinrich event 1. Planktic microfossil data indicate that cold Oyashio waters flowed from the northwestern Pacific into the Japan Sea via the Tsugaru Strait between 17 and 16 ka, consistent with the occurrence of the highest planktic δ18O values in core PC4. Planktic δ18O values rapidly decreased by 0.9‰ at 15 ka, possibly reflecting the effects of both a rapid increase in fresh water flux and rising temperatures in the subarctic North Pacific. During the Younger Dryas, cold event planktic δ18O values increased by 0.5‰, followed by a gradual decrease by 1‰ from the early to middle Holocene, reflecting a gradual increase in eastward outflow via the Tsugaru Strait with sea level rise. Both planktic and benthic foraminiferal δ13C values oscillated between 34 and 10 ka, at relatively large amplitudes (about 0.5‰), then remained relatively stable during the last 10 kyr. Several negative planktic and benthic ( − 0.7‰) δ13C excursions were present in sediment dated between the precipitation of secondary carbonates during episodic methane release possibly associated with methane release from continental margin sediments.  相似文献   

2.
Methane seeps on an Early Jurassic dysoxic seafloor   总被引:1,自引:1,他引:0  
The rhythmically bedded limestone–marl–shale succession of the Blue Lias Formation (Lias Group, Early Jurassic age) of Kilve in Somerset (SW England) preserves a suite of large conical concretions that formed around methane seeps. These are 1–2 m high, and elliptical in plan (axes 2–4 m), with an outer limestone shell forming the flanks of the cone. The cone flank is composed of micritic carbonate (20–30 cm thick), which locally includes sheets and pods of intraclasts and bioclasts. The cycle-forming limestone beds of the host strata are composed of dark grey micrite with carbon-isotope values (δ13C = 0.6 to 0.8‰) consistent with carbon sourced from a mixture of seawater and by sulphate reduction, and oxygen-isotope values (δ18O = − 6‰) suggesting some degree of later diagenesis. The pale grey micrite that forms the sides of the mounds includes three-dimensional ammonites and intraclasts, and thus cemented close to the sediment–water interface prior to compaction. The mound-forming carbonate is markedly isotopically light with respect to carbon, but not with respect to oxygen (δ13C = − 24.3 to − 26.4; δ18O = − 2 to − 3.5‰). The isotope signature indicates that cements were probably derived from a mixture of sources that included biogenic methane. The intraclasts within the limestone suggest that syn-depositional physical brecciation and mixing of cements had occurred, and thus mixing of methane rich-fluids with the overlying surface waters is likely also to have occurred. The relatively heavy oxygen-isotope values may be indicative of anaerobic oxidation of methane. The mound-bearing interval of the Blue Lias Formation is benthos-poor and comprises predominantly laminated black shales, characteristic of poor bottom water oxygenation. The largest of the mounds is however, capped with fossiliferous breccias. Thus the mounds either formed benthic islands that elevated the biota into an oxic zone or, alternatively, they may have supported a chemotrophic community. Although cold seep deposits have been documented previously they are still comparatively rare. This example is one of the oldest in Europe, and is unusual amongst described ancient seeps in preserving relief that extended above the ancient seafloor.  相似文献   

3.
The trophic ecology of marine vertebrates has been increasingly studied via stable isotope analysis of body tissues. However, the theoretical basis for using stable isotopes to elucidate consumer–prey relationships remains poorly validated for most taxa despite numerous studies using this technique in natural systems. In this study, we measured stable carbon and stable nitrogen diet-tissue discrimination (Δdt) in whole blood, red blood cells, blood plasma solutes, and skin of leatherback sea turtles (Dermochelys coriacea; N = 7) maintained in captivity for up to 424 days and fed an isotopically consistent control diet with a mean C:N ratio of 2.94:1.00 and an energetic content of 20.16 ± 0.39 kJ g− 1 Dry Mass. We used a random-effect repeated measure model to evaluate isotopic consistency among tissue samples collected on days 276, 348, and 424. Both δ13C and δ15N remained consistent among sampling events in all tissues (all 95% posterior intervals for the slopes of a linear model included zero), indicating that all tissues had fully integrated diet-derived stable isotope compositions. Mean tissue-specific δ13C ranged from − 18.30 ± 0.16‰ (plasma solutes) to − 15.54 ± 0.14‰ (skin), whereas mean δ15N was from 10.06 ± 0.22‰ (whole blood) to 11.46 ± 0.10‰ (plasma solutes). The computed Δdt factors for carbon ranged from − 0.58‰ (plasma solutes) to + 2.25‰ (skin), whereas Δdt for nitrogen was from + 1.49 (red blood cells) to + 2.85 (plasma solutes). As the only discrimination factors available for leatherback turtles, our data will be useful for future interpretations of field-derived stable isotope data for this species. The inherent variability in Δdt values among individuals was low, which supports the value of these data for dietary reconstructions. However, it is important to note that tissue-specific discrimination factors for leatherbacks contrast with the widely accepted values for endothermic species (0–1‰ for C, 3–5‰ for N), and are also different from values established for hard-shelled turtles. This underscores the need for species- and tissue-specific discrimination factors before interpreting trophic studies of wild animals, including marine turtles.  相似文献   

4.
The seasonal variability of specific growth rate and the carbon stable isotope ratio (δ13C) of leaf blades (δ13Cleaf) of a temperate seagrass, Zostera marina (within 10 days old) were measured simultaneously, together with the δ13C of dissolved inorganic carbon (δ13CDIC) at three sites in the semi-closed Akkeshi estuary system, northeastern Japan, in June, September, and November 2004. The δ13Cleaf ranged from −16.2 to −6.3‰ and decreased from summer to winter. The simultaneous measurement of the δ13Cleaf, growth rate, and morphological parameters (mean leaf length and width, mean number of leaves per shoot, and sheath length) of the seagrass and δ13CDIC in the surrounding water allowed us to compare directly the δ13Cleaf and specific growth rate of seagrass. The difference in the δ13C of seagrass leaves relative to the source DIC (Δδ13Cleaf − DIC) was the least negative (−11 to −7‰) in June at all three sites and became more negative (−17 to −8‰) as the specific growth rate decreased. This positive correlation between Δδ13Cleaf − DIC and specific growth rate can be used to diagnose the growth of seagrasses. Δδ13Cleaf − DIC changed by −1.7 ± 0.2‰ when the leaf specific growth rate decreased by 1% d−1.  相似文献   

5.
Marine invasions are a worldwide problem that involves changes in communities and the acclimation of organisms to them. The invasive Chlorophyte Caulerpa racemosa var. cylindracea is widespread in the Mediterranean and colonises large areas from 0 to 70 m in depth. The omnivorous fish Spondyliosoma cantharus presents a high frequency of occurrence of C. racemosa in the stomach contents at invaded areas (76.3%) while no presence of C. racemosa was detected in control areas. The isotopic composition of muscle differed significantly between invaded and non-invaded sites for δ13C (− 16.67‰ ± 0.09 and − 17.67‰ ± 0.08, respectively), δ15N (10.22‰ ± 0.22 and 9.32‰ ± 0.18, respectively) and the C:N ratio (2.01 ± 0.0002 and 1.96 ± 0.009, respectively). Despite the high frequency of occurrence of C. racemosa in the stomach contents of S. cantharus and its important contribution to the δ13C source (20.7% ± 16.2), the contribution of C. racemosa to the δ15N in S. cantharus food sources was very low (6.6% ± 5.8). Other invertebrate prey such as decapods and polychaetes were more important contributors to the δ15N source at both invaded and non-invaded sites. Activation of enzymatic pathways (catalase, superoxide dismutase, glutathione-s-tranferase, 7-ethoxy resorufin O-de-ethylase) but not a significant increase in lipid peroxidation MDA (0.49 ± 0.01 nmol/mg prot at non-invaded and 0.53 ± 0.01 nmol/mg prot at invaded sites) was observed in S. cantharus individuals living in C. racemosa-invaded sites compared with control specimens. The low δ15N contribution values of C. racemosa by S. cantharus together with the toxicity demonstrated by the activation of the antioxidant defences and the important contribution of invertebrate prey to the δ15N could mean that the ingestion of C. racemosa by S. cantharus might be unintentional during the predation of invertebrate preys living underneath the entanglement of the C. racemosa fronds and stolons mats.  相似文献   

6.
Historically, the Florida Everglades was characterized by a corrugated landscape of shorter hydroperiod, elevated sawgrass (Cladium jamaicense) ridges and longer hydroperiod, deep water slough communities. Drainage and compartmentalization of the Everglades have fundamentally altered this pattern, and sawgrass ridge communities have expanded at the expense of deep water slough communities throughout much of the landscape. In this study we provide a simple isotopic and nutrient characterization of major components of the slough ecosystem to elucidate physiological and nutrient differences among species and to suggest pathways for organic matter decomposition that contribute to peat development in deep water sloughs. We examined carbon (C) and nitrogen (N) isotopes and C, N and phosphorus (P) concentrations of the floating-leaved macrophytes Nymphaea odorata and Nymphoides aquatica, the emergent macrophyte Eleocharis elongata, and the submerged species Utricularia foliosa and Utricularia purpurea, as well as soil and flocculent material from the southern Water Conservation Area 3-A. Flocculent material and soils had the highest N content (4.5 ± 0.2%) and U. foliosa and N. odorata had the highest P content (0.13 ± 0.01% to 0.12 ± 0.01%). The range for δ15N average ± SE values was 5.81 ± 0.29‰ (U. foliosa) to −1.84 ± 0.63‰ (N. odorata), while the range for δ13C values was −23.83 ± 0.12‰ (N. odorata) to −29.28 ± 0.34‰ (U. purpurea). Differences of up to 10‰ in C isotopic values of U. foliosa and N. odorata suggest fundamental physiological differences between these species. Along a degradation continuum, enrichment of 13C and 15N and extent of decomposition was negatively related to phosphorus concentrations. A two end-member 13C mixing model suggested that Utricularia species were the primary organic source for flocculent materials, whereas organic matter derived from root decomposition of N. odorata contributed to the progressively enriched δ13C values found with depth in soils. These results illustrate the fundamentally important roles of Nymphaea and Utricularia species in ecosystem dynamics of deep water sloughs.  相似文献   

7.
Middle Miocene (14.8–11.9 Ma) deep-sea sediments from ODP Hole 747A (Kerguelen Plateau, southern Indian Ocean) contain abundant, well-preserved and diverse planktonic foraminiferal assemblages. A detailed study of the climatic and hydrographic changes that occurred in this region during the Middle Miocene Climatic Transition led to the identification of an intense cooling phase (the Middle Miocene Shift). Abundance fluctuations of planktonic foraminiferal species with different paleoclimatic affinities, and oxygen and carbon stable isotopes have been integrated in a multi-proxy approach. Reconstruction of changes in foraminiferal faunal composition and diversity through time were the basis for identification of three foraminiferal biofacies. The most prominent faunal change took place at 13.8 Ma, when a fauna with warm-water affinity (marked by high abundance of Globorotalia miozea group and Globoturborotalita woodi plexus) was replaced by an oligotypic, opportunistic fauna with typical polar characters and dominated by neogloboquadrinids. This faunal change is interpreted as the result of foraminiferal migration from adjacent bioprovinces, caused by modifications in climate and hydrography. A positive 2.0‰ shift in δ18O (interpreted as the Mi3 event) and a related positive 1.0‰ shift in δ13C (corresponding to the CM6 event) accompanied this faunal turnover. These are interpreted to reflect substantial reorganization of Southern Ocean waters, the northward migration of the Polar Front and a strong increase in primary productivity. The second faunal change took place at 12.9 Ma and was characterized by the gradual decrease in abundance of the neogloboquadrinids and the recovery of Globorotalia praescitula/scitula group and Globigerinita glutinata. A positive 1.5‰ shift in δ18O (interpreted as the Mi4 event) and a concurrent gradual negative shift in δ13C accompanied this faunal change, witnessing further modifications of the climate/ocean system. Variations in sea surface temperature, considered as the main factor causing changes of surface hydrography at the Kerguelen Plateau, seem to have been driven by obliquity and long-term eccentricity, thus suggesting a key role played by the astronomical forcing on the evolution of Southern Ocean dynamics during the Middle Miocene. Also an evident 1.2 Myr modulation of the δ13C record suggests a main control of the long-term obliquity cycles on the carbon cycle dynamics. Particularly, the Mi3/CM6 events exactly fit with a node of the 1.2 Myr modulation cycles. This confirms the key role played by orbital parameters on high-latitude temperatures and Antarctic ice volume, and indirectly on global carbon burial and/or productivity. This climatic transition was marked also by changes in surface hydrography. From 14.8 to 13.8 Ma an intermediate-strength thermocline controlled by seasonality developed just below the photic zone. Weaker seasonality characterized the interval from 13.8 to 12.9 Ma, when the thermocline became shallower and sharper and favored intermediate-water foraminifers. From 12.9 Ma, seasonality increased again and an intermediate-strength thermocline re-developed.  相似文献   

8.
Mangroves are halophytic plants living at the land–sea interface and are therefore natural trackers of sea-level. Multiple proxies of a continuous (8 m) mangrove peat core (BT-79) from Spanish Lookout Cay, Belize illustrate mangrove ecosystem changes during the Holocene. Radiocarbon measurements show this site was colonized by mangroves ~ 8000 cal. yrs BP, with a significant decrease in the peat accumulation rate from ~ 6000 to 1000 cal. yrs BP. Stratigraphic characteristics of this peat core such as bulk density, magnetic susceptibility, and loss on ignition show relative uniformity, inferring an uninterrupted mangrove ecosystem during a majority of the Holocene. This is supported by pollen data from BT-79 that show that the site has been consistently dominated by Rhizophora mangle (red mangrove), with Avicennia germinans (black mangrove) and Laguncularia racemosa (white mangrove) present as well. Subfossil R. mangle leaves are used for stable nitrogen, carbon, and oxygen isotope (δ15N, δ13C, and δ18O) analyses. δ15N and δ13C values provide a proxy of this plant's past physiology and stand structure showing that dwarf (δ15N < − 3‰) and tall (δ13C < − 27‰) R. mangle stands were previously present at the site, which are a result of nutrient limitations that we equate with seawater inundation. δ18O values show differences in source water of R. mangle, with higher values attributed to the source water being composed of a greater proportion of seawater relative to precipitation. A decrease in inundation at the site is shown by lower δ18O values (< 19‰) from ~ 7000 to ~ 1000 cal. yrs BP that covary with the decreased sedimentation rate. Existing Caribbean sea-level data do not show evidence of a decrease in the rate of relative sea-level rise or fluctuations that we take to be the major causes of environmental changes at site BT-79.  相似文献   

9.
Carbon isotope ratios (13C/12C) were measured for the leaves of the seagrass Thalassia testudinum Banks ex König and carbonates of shells collected at the seagrass beds from seven sites along the coast of southern Florida, U.S.A. The δ13C values of seagrass leaves ranged from −7.3 to −16.3‰ among different study sites, with a significantly lower mean value for seagrass leaves from those sites near mangrove forests (−12.8 ± 1.1‰) than those far from mangrove forests (−8.3 ± 0.9‰; P < 0.05). Furthermore, seagrass leaves from a shallow water area had significantly lower δ13C values than those found in a deep water area (P < 0.01). There was no significant variation in δ13C values between young and mature leaves (P = 0.59) or between the tip and base of a leaf blade (P = 0.46). Carbonates of shells also showed a significantly lower mean δ13C value in the mangrove areas (−2.3 ± 0.6‰) than in the non-mangrove areas (0.6 ± 0.3‰; P <0.025). In addition, the δ13C values of seagrass leaves were significantly correlated with those of shell carbonates (δ13C seagrass leaf = −9.1 + 1.3δ13C shell carbonate (R2 = 0.83, P < 0.01)). These results indicated that the input of carbon dioxide from the mineralization of mangrove detritus caused the variation in carbon isotope ratios of seagrass leaves among different sites in this study.  相似文献   

10.
We studied the process of conversion of microcrystalline-cellulose into fermentable glucose in the formic acid reaction system using cross polarization/magic angle spinning 13C-nuclear magnetic resonance, X-ray diffraction and Fourier transform infrared spectroscopy. The results indicated that formic acid as an active agent was able to effectively penetrate into the interior space of the cellulose molecules, thus collapsing the rigid crystalline structure and allowing hydrolysis to occur easily in the amorphous zone as well as in the crystalline zone. The microcrystalline-cellulose was hydrolyzed using formic acid and 4% hydrochloric acid under mild conditions. The effects of hydrochloric acid concentration, the ratio of solid to liquid, temperature (55–75 °C) and retention time (0–9 h), and the concentration of glucose were analyzed. The hydrolysis velocities of microcrystalline-cellulose were 6.14 × 10− 3 h− 1 at 55 °C, 2.94 × 10− 2 h− 1 at 65 °C, and 6.84 × 10− 2 h− 1 at 75 °C. The degradation velocities of glucose were 0.01 h− 1 at 55 °C, 0.14 h− 1 at 65 °C, 0.34 h− 1 at 75 °C. The activation energy of microcrystalline-cellulose hydrolysis was 105.61 kJ/mol, and the activation energy of glucose degradation was 131.37 kJ/mol.  相似文献   

11.
Climate models provide estimates of climatic change over periods of time in the ancient past. Macrophysical climate models (MCM) differ from the more widely used general circulation models (GCM), in that MCMs provide temporally high-resolution (~ 100 years) and site-specific estimations of monthly values of climate variables such as temperature and precipitation. In this paper, seasonal changes in climate variables are modeled for six 14C-dated fossil localities in North America. Five of these localities represent the time of maximum extent of ice during the most recent glacial episode, the Full Glacial (25 + –15 ka), including one at the peak of the Last Glacial Maximum (17–15 ka). The other locality represents the time as the ice began to recede, the Late Glacial (15–11 ka). Seasonal variations in temperature and precipitation modeled by MCM are herein compared with interpretations of seasonal variation based upon oxygen isotopes from serially sampled hypsodont teeth (mostly Equus and Bison) collected from each of these localities. Additionally, the MCM-modeled seasonal variations are used to predict the expected abundances of different plant functional groups (PFG) during those times, especially C3 and C4 functional groups, using modern relationships. These predictions are compared with carbon isotopic values from the same teeth. The importance of atmospheric pCO2 for the relative abundance of plants utilizing the C4 metabolic pathway is discussed, given that glacial episodes are known to have been times of lower atmospheric pCO2. Interpretations of seasonal variability and the relative abundance of C3 versus C4 vegetation based upon isotopes from tooth enamel are in broad agreement with predictions using the MCM and the modern distribution of PFGs with climate variables. The influence of pCO2 on the distribution of C4 vegetation during glacial times appears to be negligible.  相似文献   

12.
Results of hydrochemical and stable isotope measurements during the ice-breaking period on Lake Baikal indicate an apparent lack of relationship between measured δ13C of dissolved inorganic carbon (DIC) and phytoplankton below the trophogenic layer. While planktonic values of −31.7 to −33.5‰ are within a typical lacustrine range, the δ13C values of DIC turned out to be very negative, from −28.9 to −35.6‰. These isotopic values of DIC appear to be associated with oxidation of methane that accumulated during winter ice cover period. At the time of sampling, however, the observed depletion did not affect the phytoplankton/DIC fractionation relationship, because the difference between phytoplankton and DIC (−20 to −22‰ in surface waters) lies within the expected range of the fractionation coefficient. By analogy with small lakes, we explain this lack of relationship by the time lag between peak productivity and peak methane oxidation. Our interpretation of the Baikal DIC isotopic signature is consistent with methanogenesis in bottom sediments and with the known presence of widespread unstable gas hydrates and active methane seeps on the lake floor. Our findings suggest that methane is an important component of the Baikal carbon cycle, that late winter concentrations of methane in Baikal under ice may be 3–4 orders of magnitude higher than previously reported values for summer, and that the lake may be emitting a significant amount of methane to the atmosphere.  相似文献   

13.
This study experimentally determined the turnover rates of δ13C and δ15N as a function of growth and metabolism and isotopic fractionation for different tissues in captive populations of red rock lobster (Jasus edwardsii) and blue cod (Parapercis colias). Isotopic turnover was estimated using the model of Hesslein et al. [Hesslein, R., Hallard, K., Ramlal, P., 1993. Replacement of sulfur, carbon, and nitrogen in tissue of growing broad whitefish (Coregonus nasus) in response to a change in diet traced by δ34S, δ13C, and δ15N. Can. J. Fish. Aquat. Sci. 50, 2071–2076.]. Isotopic fractionations relative to diet differed among tissues and isotopes. Lobster muscle was more enriched than hemolymph and blue cod fin tissue was more enriched than blood for δ13C and δ15N. The metabolic component of turnover accounted for > 90% of the total isotopic turnover in lobster tissues and 30%–60% in blue cod tissues. Lobster muscle (half-life 147 d) and hemolymph (half-life 117 d) turnover rates were not significantly different but were faster than turnover rates of blue cod tissues. Whole blood, blood plasma fraction, and the blood cellular fraction had similar turnover rates; the whole blood half-life was 240 d for blue cod. Measuring turnover in larger, slower growing animals allowed for a more precise estimate of the metabolic component of isotopic turnover than in fast growing animals in which change is predominantly the result of dilution through growth. The differences in fractionation values among tissues observed here demonstrate that using generic trophic fractionation values would introduce error into diet reconstruction or migration studies. We demonstrate that a modified version of Hesslein et al.'s [Hesslein, R., Hallard, K., Ramlal, P., 1993. Replacement of sulfur, carbon, and nitrogen in tissue of growing broad whitefish (Coregonus nasus) in response to a change in diet traced by δ34S, δ13C, and δ15N. Can. J. Fish. Aquat. Sci. 50, 2071–2076.] turnover model could be used to estimate the temporal component of migration.  相似文献   

14.
Inter-ring variations in stable-carbon isotope composition of cellulose in Daniella oliveri, Isoberlinia doka, and Tamarindus indica stumps were analyzed for nine trees in the Soudan-Sahel zone of West Africa. This pioneer isotopic study is a contribution to on-going efforts to evaluate the feasibility of extracting proxy climatic records from tree-rings in this area. Our aim is to investigate trends in individual floating δ13C time series to assess if patterns in variability within and between rings are consistent with those in other climatically sensitive tree-ring δ13C series. Samples were collected primarily from tree stumps but kill dates were unknown. Tree age was estimated from stump condition and shoot regrowth. This approach, combined with low sample replication, hindered the establishment of absolute dates. Nevertheless, δ13C and discrimination (Δ13C), absolute values and variability in the time series are similar to those often seen in tree-rings. Average δ13C values for individual series range from −25.90‰ to −23.72‰ and average Δ13C values from 16.56‰ to 18.99‰. It is well known that seasonal rainfall is inversely related to the δ13C in growth-season-dry environments and positively covaries with Δ. We investigate the possibility of using this relationship to temporally anchor the time series and to identify missing and false rings in wood segments with indistinct growth. The variability in these time series is consistent with expected patterns and shows promise for facilitating the development of stable carbon isotope tree-ring chronologies for West Africa.  相似文献   

15.
The carbon and oxygen isotopic compositions of 149 samples of benthic foraminifera from deep-sea core tops indicate that none of the nine species studied secrete calcium carbonate in isotopic equilibrium with ambient bottom water. Uvigerina, Pyrgo murrhina, and Oridorsalis tener are the closest to 18O equilibrium (with average deviations about −0.4‰), while Planulina wuellerstorfi and P. murrhina are the closest to 13C equilibrium (with average deviations about −1‰). P. wuellerstorfi shows the most systematic relationship between δ 13C and bottom water apparent oxygen utilization. The intraspecific variabilities in δ 18O and δ 13C suggest that estimates of bottom water paleotemperatures can be made to a precision of ± 0.7°C, while estimates of past apparent oxygen utilization (AOU) can be made to ± 35 μmol/kg. Based on intraspecific comparisons of the Recent samples with fossils, no temporal changes in the degree of either 18O or 13C disequilibrium have been detected for Planulina wuellerstorfi, Uvigerina, Oridorsalis tener and Globocassidulina subglobosa.  相似文献   

16.
A lectin recognizing D-galactose was purified from the pacific annelid Perinereis nuntia ver. vallata (Polychaeta) by affinity chromatography. Hemagglutinating activity, with a very low titer suggesting the presence of lectin appeared in the supernatant from the homogenization of body with Tris-buffered saline. However, dialyzed supernatant from the precipitate homogenized by galactose in the buffer revealed strong hemagglutinating activity against human erythrocytes. The crude supernatant was applied onto lactosyl–agarose column, and only the supernatant eluted from precipitate with galactose was obtained a galactose-binding lectin with 32 kDa polypeptide was obtained from the supernatant of the precipitate, extracted in presence of galactose. It suggests that the lectin tightly binds with glycoconjugate as endogenous ligand(s) in the tissue. Hemagglutinating activity against trypsinized and glutaraldehyde-fixed human erythrocytes was specifically inhibited by D-galactose, N-acetyl-D-galactosamine, lactose, melibiose, and asialofetuin. Glycan-binding profile of the lectin analyzed by frontal affinity chromatography shows that the lectin recognizes branched complex type N-linked oligosaccharides and both type 1 (Galβ1-3GlcNAc) and type 2 (Galβ1-4GlcNAc) lactosamine. The surface plasmon resonance study of the lectin against asialofetuin showed the kass and kdiss values are 5.14 × 104 M 1 s 1 and 2.9 × 10−3 s 1, respectively. The partial primary structure of the lectin reveals 182 amino acids with novel sequence.  相似文献   

17.
Exploring the trophic pathway of organic matter within the Mauguio lagoon (southern France, western Mediterranean), we found spatial differences in the isotopic composition (both δ13C and δ15N values) of organic matter sources (primary producers, particulate and sedimentary organic matter), which were mirrored in the upper trophic levels (invertebrates and fish). On average, δ13C was heavier by about 1.5–2‰ in the location under marine influence than in the sites influenced by freshwater discharge. The opposite trend was found for δ15N, which attained maximum values in the north-central zone influenced by freshwater delivery. For both C and N stable isotope ratios, the highest spatial variability was found in organic matter sources (2–3‰), while invertebrates and fish exhibited less variability (\~1–2‰). The differences observed may be related to both anthropogenic (wastewater input) and natural (marine vs. terrestrial inputs) factors. Discharge of wastewater, which affects the innermost location, generally determines an increase in the relative abundance of 15N. In addition, terrestrially derived nutrients and organic matter, which also affect the innermost location, are known to determine a shift towards 13C-depleted values. Our results substantiate the finding that the analysis of carbon and nitrogen stable isotopes can help in elucidating origin and fate of organic matter in coastal lagoons, which are characterised by a great spatial variability and complexity.  相似文献   

18.
Impressive, several meters high tubular concretions in shallow marine calcareous sands and sandstones represent part of the well-exposed, subsurface plumbing network of an Early Eocene methane seep system in the Balkanides foreland (Pobiti Kamani area, Varna, NE Bulgaria). An integrated approach, including petrography, inorganic geochemistry and lipid biomarker analyses was used to reconstruct the evolution of pore fluids and cementation conditions during tube formation and particularly, the role of methane-related carbonate diagenesis. Host sediment lithification from marine pore waters was perturbed soon after deposition by oxidation of predominantly microbial methane causing pervasive cementation by a 13C-poor, homogeneous calcite cement (δ13C values as low as − 44.5‰ V-PDB). The importance of microbially mediated anaerobic oxidation of methane (AOM) is confirmed by extremely 13C-depleted archaeal biomarkers (δ13C values as low as − 123‰ V-PDB). A suite of macrocyclic dialkyl glycerol diethers (MDGD-0 to -2) and sn-3-hydroxyarchaeol comprises a characteristic trait of the Eocene tubular concretions and might represent molecular fossils of so far unknown methane-oxidizing archaea (ANME). Subsurface calcite cementation surrounding the ascending methane plume, resulted from the changing pore water chemistry in response to AOM and could have, on a local scale, been encouraged by the concurrent alteration of detrital feldspar. Fluctuating δ13C (up to − 8‰ V-PDB) and δ18O (− 0.5 to − 9‰ V-PDB) signatures within a single tubular sandstone concretion are at least partly the consequence of isotopic resetting during late meteoric water circulation.  相似文献   

19.
This study evaluated the influence of diets supplemented with 500, 800, 1200 mg kg− 1 of vitamin C (ascorbic acid or AA) and vitamin E (α-tocopherol or α-T) on the physiological responses of pirarucu fed for 2 months. Weight and mortality were not affected by dietary vitamin type or their concentrations. Significant increase (p < 0.05) on the red blood cells count was obtained on treatments with 800 and 1200 mg AA kg− 1 and on the hemoglobin concentration on treatment with 500 mg α-T kg− 1 relatively to control. Mean corpuscular volume presented a significant decrease (p < 0.05) on treatment with 800 and 1200 mg AA kg−1 when compared to control. Mean corpuscular hemoglobin concentration was significantly high (p < 0.05) on treatment with 500 mg α-T kg− 1. Only in vitamin C treatments, we noticed a significant increase (p < 0.05) in the number of leucocytes relative to control. All fish in the vitamin-supplemented treatments, except 500 mg AA kg− 1, had high total protein values compared to control. Fish treated with 800 or 1200 mg α-T kg− 1 also showed increases in plasma glucose concentrations. Our results suggest that 800 and 1200 mg AA kg− 1 are probably the most suitable concentrations for pirarucu diets, although high vitamin E diets are not necessary for quantitative leucocyte increases for this species.  相似文献   

20.
Few studies have been published on the feeding ecology of Japanese soil fauna based on stable isotope analysis. Therefore, the present work aims to use this technique for studying the trophic structure of Japanese soil fauna at two coniferous forests. Significant differences were observed between investigated sites (Arahama and Gamo) in genus richness and abundance, while for Shannon diversity indexes the difference was non-significant. The isotopic signatures (δ13C and δ15N) of the invertebrates collected at Arahama ranged from 0.3 to 6.3‰ for δ15N and from −27.3 to −23.3‰ for δ13C. At Gamo, invertebrates δ13C values ranged from −26.1 to −23.5‰ and δ15N values ranged from 1.6 to 6.8‰. At both sites, invertebrates formed two distinct groups on the basis of combined C and N stable isotope ratios. The locations of these groups related to δ13C values. The less enriched group (δ13C < −25‰) and the more enriched one (δ13C > −25‰). The range of δ15N for the present animals exceeded two trophic levels. While, the gradual 15N enrichment within the invertebrates species may indicate the dominance of omnivory in soil food webs. The differences between sites in δ15N confirm the importance of studying the trophic structure of soil fauna locally.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号