首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Capillary zone electrophoresis (CZE) was used to separate eight commercial disaccharide standards of the structure delta UA2X(1----4)-D-GlcNY6X (where delta UA is 4-deoxy-alpha-L-threo-hex-4-enopyranosyluronic acid, GlcN is 2-deoxy-2-aminoglucopyranose, S is sulfate, Ac is acetate, X may be S, and Y is S or Ac). These eight disaccharides had been prepared from heparin, heparan sulfate, and derivatized heparins. A similar CZE method was recently reported for the analysis of eight chondroitin and dermatan sulfate disaccharides (A. Al-Hakim and R.J. Linhardt, Anal. Biochem. 195, 68-73, 1991). Two of the standard heparin/heparan sulfate disaccharides, having an identical charge of -2, delta UA2S(1----4)-D-GlcNAc and delta UA(1----4)-D-GlcNS, were not fully resolved using standard sodium borate/boric acid buffer. This buffer had proven effective in separating chondroitin/dermatan sulfate disaccharides of identical charge. Resolution of these two heparin/heparan sulfate disaccharides could be improved by extending the capillary length, preparing the buffer in 2H2O, or eliminating boric acid. Baseline resolution was achieved in sodium dodecyl sulfate in the absence of buffer. The structure and purity of each of the eight new commercial heparin/heparan sulfate disaccharide standards were confirmed using fast-atom-bombardment mass spectrometry and high-field 1H-NMR spectroscopy. Heparin and heparan sulfate were then depolymerized using heparinase (EC 4.2.2.7), heparin lyase II (EC 4.2.2.-), heparinitase (EC 4.2.2.8), and a combination of all three enzymes. CZE analysis of the products formed provided a disaccharide composition of each glycosaminoglycan. As little as 50 fmol of disaccharide could be detected by ultraviolet absorbance.  相似文献   

2.
Abstract: We have characterized the structural properties of heparan sulfates from brain and other tissues after de-polymerization with a mixture of three heparin and heparan sulfate lyases from Flavobacterium heparinum. The resulting disaccharides were separated by HPLC and identified by comparison with authentic standards. In rat, rabbit, and bovine brain, 46–69% of the heparan sulfate disaccharides are N-acetylated and unsulfated, and 17–21% contain a single sulfate residue in the form of a sulfoamino group. In rabbit, bovine, and 1-day postnatal rat brain, disaccharides containing both a sulfated uronic acid and N-sulfate account for an additional 10–14%, together with smaller and approximately equall proportions (5–9%) of mono-, di-, and trisulfated disaccharides having sulfate at the 6-position of the glucosamine residue. Kidney and lung heparan sulfates are distinguished by high concentrations of disaccharides containing 6-sulfated N-acetylglucosamine residues. In chromaffin granules, the catecholamine-and peptide-storing organelles of adrenal medulla, where heparan sulfate accounts for a minor portion (5–10%) of the glycosaminoglycans, we have determined that bovine chromaffin granule membranes contain heparan sulfate in which almost all of the disaccharides are either unsulfated (71 %) or monosulfated (18%). In sympathetic nerves, norepinephrine is stored in large densecored vesicles that in biochemical composition and properties closely resemble adrenal chromaffin granules. However, in contrast to chromaffin granules, heparan sulfate accounts for ~ 75% of the total glycosaminoglycans in large dense-cored vesicles and more closely resembles heparin, insofar as it contains only 21 % unsulfated disaccharides, 10% mono-and disulfated disaccharides, and 69% trisulfated disaccharides. Our results therefore reveal significant differences among heparan sulfates from different sources, supporting other evidence that structural variations in heparan sulfate may be related to specific biological functions, such as the switching in the neural response from fibroblast growth factor-2 to fibro-blast growth factor-1 resulting from developmental changes in the glycosaminoglycan chains of a heparan sulfate proteoglycan.  相似文献   

3.
A rapid and simple analytical method for unsaturated disaccharide isomers formed by enzymatic digestion from hyaluronic acid, chondroitin sulfate, dermatan sulfate, heparan sulfate, and heparin by high-performance liquid chromatography using an amine-bound silica column with a linear gradient of sodium dihydrogen phosphate was developed. The analyses were performed on isomers of two groups belonging to the chondroitin sulfate family and the heparin sulfate family. In both families, disaccharide isomers eluted in the order non-, mono-, di-, and trisulfated disaccharides by elevating salt concentrations. The method was applied to the analysis of constituent disaccharides of representative sulfated glycosaminoglycans, which proved that most constituents could be quantified separately. This method is advantageous in that enzymatic digests can be applied directly on a column without any pretreatment and good resolution of several disaccharides can be obtained by one chromatography.  相似文献   

4.
The 1H-NMR spectra of eight unsaturated disaccharides obtained by bacterial eliminase digestion of chondroitin sulfate and of heparan sulfate/heparin were recorded in order to construct an NMR data base of sulfated oligosaccharides and to investigate the effects of sulfation on the proton chemical shifts. These shifts were assigned by two-dimensional HOHAHA (homonuclear Hartmann-Hahn) and COSY (correlation spectroscopy) methods. The results indicated the following. (1) Two sets of proton signals were observed, corresponding to the alpha and beta anomers of these disaccharides, except those containing N-sulfated GlcN (2-deoxy-2-amino-D-glucose), in which only one set of signals appeared, corresponding to the alpha anomer. (2) Signals of protons bound to an O-sulfated carbon atom and those bound to the immediately neighboring carbon atoms were shifted downfield by 0.4-0.7 and 0.07-0.3 ppm, respectively. (3) For the disaccharides containing the N-sulfated GlcN, the signals of the protons bound to C-2 and C-3 were shifted upfield by 0.6 and 0.15 ppm, respectively, but that of C-1 was shifted downfield by 0.25 ppm when compared with those of the corresponding N-acetylated disaccharides. (4) For the chondroitin sulfate disaccharides sulfated on the C-4 position of GalNAc (2-deoxy-2-N-acetylamino-D-galactose) or the C-2 position of delta GlcA (D-gluco-4-ene-pyranosyluronic acid), the signal of the H-3 proton of delta GlcA or the H-4 proton of GalNAc was shifted upfield by 0.1-0.15 ppm, indicating the steric interaction of the two sugar components. (5) These effects of sulfation on chemical shifts are additive.  相似文献   

5.
A sensitive method was developed for the separation and quantitation of four unsaturated disaccharides (delta Di-0S, delta Di-4S, delta Di-6S, and delta Di-diS) by high performance liquid chromatography. The unsaturated disaccharides were coupled with a fluorescent compound, 2-aminopyridine. Complete separation of the resulting pyridylamino derivatives was achieved on a column of muBondapak-C18 with 8 mM KH2PO4-Na2HPO4 (pH 6.0)/methanol (30/l, by volume) as a mobile phase. There was a linear relationship between the fluorescence emission (peak height), and the amount of each authentic disaccharide used for the coupling reaction. This method was applied to analyze commercially available chondroitin sulfates A and C, dermatan sulfate, and urinary glycosaminoglycans obtained from patients with mucopolysaccharidosis after digestion with chondroitinases. The data indicated that the present method is useful for the separation and quantitation of nmol-pmol levels of the unsaturated disaccharides produced from chondroitin sulfate isomers by chondroitinases and can be used for their structural characterization.  相似文献   

6.
Heparan sulfate endosulfatases Sulf1 and Sulf2 hydrolyze 6-O-sulfate in heparan sulfate, thereby regulating cellular signaling. Previous studies have revealed that Sulfs act predominantly on UA2S-GlcNS6S disaccharides and weakly on UA-GlcNS6S disaccharides. However, the specificity of Sulfs and their role in sulfation patterning of heparan sulfate in vivo remained unknown. Here, we performed disaccharide analysis of heparan sulfate in Sulf1 and Sulf2 knock-out mice. Significant increases in ΔUA2S-GlcNS6S were observed in the brain, small intestine, lung, spleen, testis, and skeletal muscle of adult Sulf1(-/-) mice and in the brain, liver, kidney, spleen, and testis of adult Sulf2(-/-) mice. In addition, increases in ΔUA-GlcNS6S were seen in the Sulf1(-/-) lung and small intestine. In contrast, the disaccharide compositions of chondroitin sulfate were not primarily altered, indicating specificity of Sulfs for heparan sulfate. For Sulf1, but not for Sulf2, mRNA expression levels in eight organs of wild-type mice were highly correlated with increases in ΔUA2S-GlcNS6S in the corresponding organs of knock-out mice. Moreover, overall changes in heparan sulfate compositions were greater in Sulf1(-/-) mice than in Sulf2(-/-) mice despite lower levels of Sulf1 mRNA expression, suggesting predominant roles of Sulf1 in heparan sulfate desulfation and distinct regulation of Sulf activities in vivo. Sulf1 and Sulf2 mRNAs were differentially expressed in restricted types of cells in organs, and consequently, the sulfation patterns of heparan sulfate were locally and distinctly altered in Sulf1 and Sulf2 knock-out mice. These findings indicate that Sulf1 and Sulf2 differentially contribute to the generation of organ-specific sulfation patterns of heparan sulfate.  相似文献   

7.
Murine erythroleukemia cells (Friend erythroleukemia cells of a C-10-6 line) synthesized sulfated glycosaminoglycans consisting mainly of heparan sulfate (more than 95%) with a small amount of chondroitin 4-sulfate. The heparan sulfate occurred as proteoglycans, of which the cell-associated component was separated into urea-insoluble (UI) and urea-soluble (US) fractions. The UI proteoglycan consisted of a single homogeneous molecular species with an estimated Mr of 360,000 (C(UI)PG), whereas the US component was composed of two subfractions: a homogeneous species with an Mr of 280,000 (C(US)PGI) and a mixture of compounds with Mr values of less than 80,000 (C(US)PGII), which were isolated in yields of about 110, 340, and 80 micrograms of hexuronate (HexUA), respectively, from 1.37 g of an acetone powder prepared from 5.7 x 10(9) cells in the logarithmic phase of growth. The proteoglycan released into the medium (12 liters) was a single homogeneous species with an Mr of 320,000 (MPG) which was purified in a yield of 500 micrograms of hexuronate. The major, cell-associated proteoglycan, C(US)PGI, had very high contents of serine and glycine, accounting for approximately 80% of the total amino acids. This proteoglycan as well as the other two large proteoglycans, C(UI)PG and MPG, were highly resistant to degradation by various proteinases. These three proteoglycans, C(UI)PG, C(US)PGI, and MPG, had heparan sulfates with estimated Mr values of 32,000, 27,000, and 30,000. On the other hand, the Mr of the smaller proteoglycan, C(UI)PGII, was not significantly different before and after beta-elimination, indicating that it contains only a small peptide, if any. The heparan sulfate of this proteoglycan consisted of smaller and heterogeneous molecular species with Mr values of 26,000, 20,000, and 4,000. Digestion of these heparan sulfates with heparitinase I plus II resulted in almost complete depolymerization and gave six unsaturated disaccharides, delta HexUA-GlcNAc, delta HexUA-Glc-NAc(6-SO4), delta HexUA-GlcNSO3, delta HexUA-GlcNSO3 (6-SO4), delta HexUA(2-SO4)-GlcNSO3, and delta HexUA(2-SO4)-GlcNSO3(6-SO4). The relative amounts of these disaccharides generated from the individual heparan sulfates showed that an average ratio of sulfate residues to repeating disaccharide units of the C(US)PGII-derived heparan sulfate (0.97) was significantly higher than those of the other three large proteoglycan-derived glycosaminoglycans (0.54-0.70).  相似文献   

8.
The antler is the most rapidly growing tissue in the animal kingdom. According to previous reports, antler glycosaminoglycans (GAGs) consist of all kinds GAGs except for heparan sulfate (HS). Chondroitin sulfate is the major antler GAG component comprising 88% of the total uronic acid content. In the current study, we have isolated HS from antler for the first time and characterized it based on both NMR spectroscopy and disaccharide composition analysis. Antler GAGs were isolated by protease treatment and followed by cetylpyridinium chloride precipitation. The sensitivity of antler GAGs to heparin lyase III showed that this sample contained heparan sulfate. After incubation of antler GAGs with chondroitin lyase ABC, the HS-containing fraction was recovered by ethanol precipitation. The composition of HS disaccharides in this fraction was determined by its complete depolymerization with a mixture of heparin lyase I, II, and III and analysis of the resulting disaccharides by the reversed-phase (RP) ion pairing-HPLC, monitored by the fluorescence detection using 2-cyanoacetamide as a post-column labeling reagent. Eight unsaturated disaccharides (DeltaUA-GlcNAc, DeltaUA-GlcNS, DeltaUA-GlcNAc6S, DeltaUA2S-GlcNAc, DeltaUA-GlcNS6S, DeltaUA2S-GlcNS, DeltaUA2S-GlcNAc6S, DeltaUA2S-GlcNS6S) were produced from antler HS by digestion with the mixture of heparin lyases. The total content of 2-O-sulfo disaccharide units in antler HS was higher than that of heparan sulfate from most other animal sources.  相似文献   

9.
A specific chondroitin sulfate-lyase, chondro-2-sulfatase, was first used for identification of the unsaturated disaccharide constituents (delta Di-S) generated from variously sulfated chondroitin sulfate and dermatan sulfate isomers by a high-performance liquid chromatographic (HPLC) method. delta Di-S generated from oversulfated chondroitin sulfate and dermatan sulfate isomers following digestion with chondroitinases were further digested by the chondro-2-sulfatase, which led to the release of one sulfate from a specific 2-position of the uronic acid residue, as judged with the new HPLC system using a resin made from a sulfonized styrene-divinylbenzene copolymer. It was also found that the chondro-2-sulfatase digests not only delta Di-S with the structure of D-uronic acid 2 sulfate 1-3-N-acetyl-D-galactosamine but also other sulfated delta Di-S with partially the same constituents, i.e., unsaturated di-sulfated disaccharide B, unsaturated di-sulfated disaccharide D or G, and unsaturated tri-sulfated disaccharide.  相似文献   

10.
We have devised a sensitive method for the isolation and structural analysis of glycosaminoglycans from two genetically tractable model organisms, the fruit fly, Drosophila melanogaster, and the nematode, Caenorhabditis elegans. We detected chondroitin/chondroitin sulfate- and heparan sulfate-derived disaccharides in both organisms. Chondroitinase digestion of glycosaminoglycans from adult Drosophila produced both nonsulfated and 4-O-sulfated unsaturated disaccharides, whereas only unsulfated forms were detected in C. elegans. Heparin lyases released disaccharides bearing N-, 2-O-, and 6-O-sulfated species, including mono-, di-, and trisulfated forms. We observed tissue- and stage-specific differences in both chondroitin sulfate and heparan sulfate composition in Drosophila. We have also applied these methods toward the analysis of tout-velu, an EXT-related gene in Drosophila that controls the tissue distribution of the growth factor Hedgehog. The proteins encoded by the vertebrate tumor suppressor genes EXT1 and 2, show heparan sulfate co-polymerase activity, and it has been proposed that tout-velu affects Hedgehog activity via its role in heparan sulfate biosynthesis. Analysis of total glycosaminoglycans from tout-velu mutant larvae show marked reductions in heparan sulfate but not chondroitin sulfate, consistent with its proposed function as a heparan sulfate co-polymerase.  相似文献   

11.
Hyaluronan (HA) has been identified as the principal glycosaminoglycan (CAG) in the highly hydrated, extracellular body matrix of the larval stage (leptocephalus) of seven species of true eels (Teleostei: Elopomorpha: Anguilliformes) and the ladyfish Elops saurus (Elopiformes), and was found as a minor GAG component in the bonefish Albula sp. (Albuliformes). Identification was based on: (1) HPLC separation of unsaturated disaccharides derived from chondroitinase ABC digests of whole-body GAG extracts; (2) 1H NMR analyses of native GAG polymers; and (3) degradation of GAG extracts by Streptomyces hyaluronan lyase. The unsaturated disaccharide 2-acetamido-2-deoxy-3-O-(beta-D-gluco-4-enepyranosyluronic acid)-D-glucose (DeltaDi-HA) accounted for 92.4-99.8% of the total disaccharides in chondroitinase digests. Trace amounts of unsaturated disaccharides of chondroitin sulfate were also present. Two-dimensional gCOSY spectra of the native HA polymer were similar for all species. Proton assignments for the HA disaccharide repeat (GlcAbeta1-3GlcNAcbeta1-4) in D(2)O, based on gCOSY, DQF-COSY and TOCSY analyses for the eel Ahlia egmontis, were concordant with published chemical shifts for HA oligosaccharides. In addition to its presumed role in maintaining the structural integrity and hydration of the gelatinous body of the leptocephalus, HA is postulated to function as a storage polysaccharide in those species in which it is the predominant GAG.  相似文献   

12.
The isolation, purification and structural characterization of human liver heparan sulfate are described. 1H-NMR spectroscopy demonstrates the purity of this glycosaminoglycan (GAG) and two-dimensional 1H-NMR confirmed that it was heparan sulfate. Enzymatic depolymerization of the isolated heparan sulfate, followed by gradient polyacrylamide gel, confirmed its heparin lyase sensitivity. The concentration of resulting unsaturated disaccharides was determined using reverse phase ion-pairing (RPIP) HPLC with post column derivatization and fluorescence detection. The results of this analysis clearly demonstrate that the isolated GAG was heparan sulfate, not heparin. Human liver heparan sulfate was similar to heparin in that it has a reduced content of unsulfated disaccharide and an elevated average sulfation level. The antithrombin-mediated anti-factor Xa activity of human liver heparan sulfate, however, was much lower than porcine intestinal (pharmaceutical) heparin but was comparable to standard porcine intestinal heparan sulfate. Moreover, human liver heparan sulfate shows higher degree of sulfation than heparan sulfate isolated from porcine liver or from the human hepatoma Hep 2G cell line.  相似文献   

13.
Skin fibroblasts lines established from patients with Alzheimer's disease and old normal individuals were cultured with 35S-sodium sulfate and 3H-glucosamine. Proteoglycans were isolated and characterized. Sulfate incorporation into proteoglycans increased in Alzheimer's disease fibroblasts relative to normal controls. These increases changed the ratio of chondroitin sulfate to heparan sulfate proteoglycan from 1.4 to 1.7 (p = 0.0012) and decreased the ratio of cell to medium proteoglycans from 0.32 to 0.26 in normal and Alzheimer fibroblasts (p = 0.006), respectively. HPLC analysis of the disaccharides produced by chondroitinase ABC revealed no differences in composition between proteoglycans of Alzheimer and normal fibroblasts in either the cell or medium fraction. However, analysis of disaccharides produced by heparinase plus heparitinase showed differences in composition in the medium but not the cell fraction. delta UA-GlcNS was increased by 30% while delta UA-GlcNS-6S was reduced by 40% in Alzheimer's disease.  相似文献   

14.
The constituents of heparan sulfate isomers in human arteries were analysed at the disaccharide unit by high-performance liquid chromatography. Heparitinases I and II facilitated differentiation of six unsaturated disaccharides from heparan sulfate isomers. The variously sulfated disaccharide components of these heparan sulfate isomers were detected after digestion with heparitinases I and II. The heparan sulfate isomers in the aorta and pulmonary arteries were found to consist of various disaccharide units. These heparan sulfate isomers in the arteries are apparently formed during the process of aging and may influence arterial matrix components.  相似文献   

15.
The separation of sulfated glycosaminoglycans in mixtures by agarose-gel electrophoresis and the recovery of single polysaccharide bands has been applied to the characterization of polysaccharides extracted from tissues without previous purification of single species. Sulfated glycosaminoglycans, heparin with its two components, slow-moving and fast-moving, heparan sulfate, dermatan sulfate, and chondroitin sulfate, were separated to microgram level by conventional agarose-gel electrophoresis. After their separation, they were fixed in the agarose-gel matrix by precipitation in a cetyltrimethylammonium bromide solution, making them visible on a dark background. After recovery of gel containing the fixed bands, high temperatures (90 degrees C for 15 min) were necessary to dissolve the gel matrix, and a solution of NaCl (3 M) was used to release sulfated polysaccharides from the complex with cetyltrimethylammonium. After precipitation of glycosaminoglycans in the presence of ethanol, the recovery of slow-moving heparin, fast-moving heparin, heparan sulfate, dermatan sulfate, and chondroitin sulfate was from 1 to 10 microg, with a percentage greater than 45% and a purity above 90%. Sulfated glycosaminoglycans in mixtures recovered from gel matrix as single species were evaluated for purity and characterized for unsaturated disaccharides after treatment with bacterial lyases (heparinases for heparin and heparan sulfate samples, and chondroitinases for dermatan sulfate and chondroitin sulfate) and molecular mass. Bovine lung and heart Glycosaminoglycans were extracted and separated into single species by agarose-gel electrophoresis and recovered from gel matrix after treatment in cetyltrimethylammonium solution. Unsaturated disaccharides pattern, the sulfate to carboxyl ratio, and the molecular mass of each single polysaccharide species were determined.  相似文献   

16.
Rats infected with the helminth Nippostrongylus brasiliensis were injected i.p. with 2 mCi of [35S] sulfate on days 13, 15, 17, and 19 after infection. The intestines were removed from animals on day 20 or 21 after infection, the intestinal cells were obtained by collagenase treatment and mechanical dispersion of the tissue, and the 35S-labeled mucosal mast cells (MMC) were enriched to 60 to 65% purity by Percoll centrifugation. The cell-associated 35S-labeled proteoglycans were extracted from the MMC-enriched cell preparation by the addition of detergent and 4 M guanidine HCl and were partially purified by density gradient centrifugation. The isolated proteoglycans were of approximately 150,000 m.w., were resistant to pronase degradation, and contained highly sulfated chondroitin sulfate side chains. Analysis by high-performance liquid chromatography of chondroitinase ABC-treated 35S-labeled proteoglycans from these rat MMC revealed that the chondroitin sulfate chains consisted predominantly of disaccharides with the disulfated di-B structure (IdUA-2SO4----GalNAc-4SO4) and disaccharides with the monosulfated A structure (G1cUA----GalNAc-4SO4). The ratio of disaccharides of the di-B to A structure ranged from 0.4 to 1.6 in three experiments. Small amounts of chondroitin sulfate E disaccharides (GlcUA----GalNAc-4,6-diSO4) were also detected in the chondroitinase ABC digests of the purified rat MMC proteoglycans, but no nitrous acid-susceptible heparin/heparan sulfate glycosaminoglycans were detected. The presence in normal mammalian cells of chondroitin sulfate proteoglycans that contain such a high percentage of the unusual disulfated di-B disaccharide has not been previously reported. The rat intestinal MMC proteoglycans are the first chondroitin sulfate proteoglycans that have been isolated from an enriched population of normal mast cells. They are homologous to the chondroitin sulfate-rich proteoglycans of the transformed rat basophilic leukemia-1 cell and the cultured interleukin 3-dependent mouse bone marrow-derived mast cell, in that these chondroitin sulfate proteoglycans as well as rat serosal mast cell heparin proteoglycans are all highly sulfated, protease-resistant proteoglycans.  相似文献   

17.
Capillary liquid chromatography-mass spectrometry using graphitised carbon stationary phase and ion trap mass spectrometry was shown to be a powerful technique for analysing glycosaminoglycans digested with endoglycosidases. Commonly found disaccharides from heparin/heparan sulphate digests at sub nanomole levels were found to be separated by mass and/or retention time and detected by negative ion electrospray mass spectrometry predominantly as [M-H]- ions using a standard electrospray interface and flow rate between 6-10 microL/min. Graphitised carbon liquid chromatography-fragmentation mass spectrometry provided sequence data of disaccharides and oligosaccharides. Sequence information was obtained from either collision of the [M-H]- ions (low sulphated disaccharides) or of the [M+Na-2H]- ions (highly sulphated disaccharides). This separation and identification method of endoglycosidase digestion and sample preparation using a combination of cation exchange and graphitised carbon, was used to successfully analyse digests of keratan sulphate (keratanase) and heparin (heparinase) standards, and hyaluronic acid (hyaluronidase) from synovial fluid samples.  相似文献   

18.
Fragmentation of the heparan sulfate chains from bovine glomerular basement membrane (GBM) by hydrazine/nitrous acid treatment followed by NaB3H4-reduction yielded a mixture of six sulfated disaccharides containing D-glucuronic (GlcUA) or L-iduronic acid (IdUA) and terminating in 2,5-anhydro[3H]mannitol (AnManH2), in addition to the nonsulfated component GlcUA beta 1----4AnManH2. Among these products two novel disaccharide units were identified as IdUA alpha 1----4AnManH2(3-SO4) and IdUA(2-SO4)alpha 1----4AnManH2(3-SO4); these accounted for 22% of the total sulfated species indicating that there are 2-3 residues of 3-O-sulfated glucosamine/heparan sulfate chain. The disulfated disaccharide was shown through its release by direct nitrous acid treatment to be situated in a GlcNSO3-IdUA(2-SO4)-GlcNSO3(3-SO4) sequence which is distinct from that in which 3-O-sulfated glucosamine is located in the antithrombin-binding region of heparins. Analyses of heparan sulfate from lens capsule, a nonvascular basement membrane, indicated the absence of sequences containing 3-O-sulfated glucosamine, although otherwise the sulfated disaccharides produced by hydrazine/nitrous acid/Na-B3H4 treatment (GlcUA beta 1----4AnManH2(6-SO4), IdUA alpha 1----4AnManH2(6-SO4), IdUA(2-SO4)alpha 1----4AnManH2 and IdUA(2-SO4)alpha 1----4AnManH2(6-SO4] were the same as from GBM. Examination of the GBM heparan sulfate domains after nitrous acid treatment indicated that the O- as well as N-sulfate groups are clustered in an iduronic acid-rich 10-disaccharide peripheral segment, while the internal region (approximately 20 disaccharides) is composed primarily of repeating GlcUA beta 1----4GlcNAc units. The localization of chain diversity to the outer region may facilitate interactions of the heparan sulfate with other macromolecular components.  相似文献   

19.
Cloned bovine aortic endothelial cells were cultured with [35S]Na2SO4 and proteolyzed extensively with papain. Radiolabeled heparan sulfate was isolated by DEAE-Sephacel chromatography. The mucopolysaccharide was then affinity fractionated into two separate populations utilizing immobilized antithrombin. The heparan sulfate, which bound tightly to the protease inhibitor, represented 0.84% of the mucopolysaccharide mass, accounted for greater than 99% of the initial anticoagulant activity, and exhibited a specific activity of 1.16 USP units/10(6) 35S-cpm. However, the heparan sulfate that interacted minimally with the protease inhibitor constituted greater than 99% of the mucopolysaccharide mass, represented less than 1% of the starting biologic activity, and possessed a specific anticoagulant potency of less than 0.0002 USP unit/10(6) 35S-cpm. An examination of the disaccharide composition of the two populations revealed that the high-affinity heparan sulfate contained a 4-fold or greater amount of GlcA----GlcN-SO3-3-O-SO3 (where GlcA is glucuronic acid), which is a marker for the antithrombin-binding domain of commercial heparin, as compared with the depleted material. Cloned bovine aortic endothelial cells were incubated with [35S]Na2SO4 as well as tritiated amino acids and completely solubilized with 4 M guanidine hydrochloride and detergents. The double-labeled proteoglycans were isolated by DEAE-Sephacel, Sepharose CL-4B, and octyl-Sepharose chromatography. These hydrophobic macromolecules were then affinity fractionated into two separate populations utilizing immobilized antithrombin. The heparan sulfate proteoglycans which bound tightly to the protease inhibitor represented less than 1% of the starting material and exhibited a specific anticoagulant activity as high as 21 USP units/10(6) 35S-cpm, whereas the heparan sulfate proteoglycan that interacted weakly with the protease inhibitor constituted greater than 99% of the starting material and possessed a specific anticoagulant potency as high as 0.02 USP unit/10(6) 35S-cpm. The high-affinity heparan sulfate proteoglycan is responsible for more than 85% of the anticoagulant activity of the cloned bovine aortic endothelial cells. Binding studies conducted with 125I-labeled antithrombin demonstrated that these biologically active proteoglycans are located on the surface of cloned bovine aortic endothelial cells.  相似文献   

20.
A heparan sulfate proteoglycan from bovine lung gas-exchange tissue was isolated by extraction of the tissue with 4.0 M guanidine HCl in the presence of multiple protein inhibitors. The proteoglycan was purified by precipitation with cetylpyridinium chloride in 0.5 M KCl followed by CsCl isopycnic centrifugation (po = 1.45) in 4.0 M guanidine/HCl. Further purification was achieved by gel filtration on Sepharose CL-2B and by chromatography in DEAE-Sepharose CL-6B column. The proteoglycan had 14.9% protein and 22.4% uronate. Heparan sulfate chains from the proteoglycan were isolated after beta-elimination. Fractionation of heparan sulfate chains was achieved on Dowex-1 Cl- column, eluting with a stepwise increase in the concentration of NaCl, 1.0 to 2.0 M with 0.2 M increments. Of the total heparan sulfate recovered from the column, about 10% eluted by 1.2 M NaCl, 68% by 1.4 M NaCl, 18% by 1.6 M NaCl and 4% by 1.8 M NaCl. The fractions varied in their total and N-sulfate ester contents and iduronic acid to glucuronic acid ratios. The fraction that eluted from the Dowex-1 Cl- column at 1.6 M NaCl had the highest molecular weight, 37000, and the fraction that eluted at 1.8 M NaCl had the lowest molecular weight, 12000, as determined by gel filtration method, and the greatest sulfate content. The core protein, obtained by digestion of proteoglycan by heparan sulfate lyase, showed mostly a single band in SDS-polyacrylamide gel electrophoresis. The observations indicate a heterogeneity of the composition of heparan sulfate chains in the proteoglycan. This heterogeneity likely contributes to variations in biologic properties of different heparan sulfate proteoglycan preparations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号