首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The diversity of ammonia-oxidizing bacteria in aquatic sediments was studied by retrieving ammonia monooxygenase and methane monooxygenase gene sequences. Methanotrophs dominated freshwater sediments, while beta-proteobacterial ammonia oxidizers dominated marine sediments. These results suggest that gamma-proteobacteria such as Nitrosococcus oceani are minor members of marine sediment ammonia-oxidizing communities.  相似文献   

2.
We analyzed the phylogenetic compositions of ammonia-oxidizing bacteria of the beta subclass of Proteobacteria from 42 Southern Ocean samples. We found a Nitrosospira-like 16S rRNA gene sequence in all 20 samples that yielded PCR products (8 of 30 samples from the Ross Sea and 12 of 12 samples from the Palmer Peninsula). We also found this sequence in Arctic Ocean samples, indicating a transpolar, if not global, distribution; however, slight differences between Arctic and Antarctic sequences may be evidence of polar endemism.  相似文献   

3.
We analyzed microbial eukaryote diversity in perennially cold arctic marine waters by using 18S rRNA gene clone libraries. Samples were collected during concurrent oceanographic missions to opposite sides of the Arctic Ocean Basin and encompassed five distinct water masses. Two deep water Arctic Ocean sites and the convergence of the Greenland, Norwegian, and Barents Seas were sampled from 28 August to 2 September 2002. An additional sample was obtained from the Beaufort Sea (Canada) in early October 2002. The ribotypes were diverse, with different communities among sites and between the upper mixed layer and just below the halocline. Eukaryotes from the remote Canada Basin contained new phylotypes belonging to the radiolarian orders Acantharea, Polycystinea, and Taxopodida. A novel group within the photosynthetic stramenopiles was also identified. One sample closest to the interior of the Canada Basin yielded only four major taxa, and all but two of the sequences recovered belonged to the polar diatom Fragilariopsis and a radiolarian. Overall, 42% of the sequences were <98% similar to any sequences in GenBank. Moreover, 15% of these were <95% similar to previously recovered sequences, which is indicative of endemic or undersampled taxa in the North Polar environment. The cold, stable Arctic Ocean is a threatened environment, and climate change could result in significant loss of global microbial biodiversity.  相似文献   

4.
北极表层海水中氯代十六烷降解菌的多样性   总被引:1,自引:0,他引:1  
[目的]为了研究北极地区表层海水中氯代十六烷(C16H33Cl)降解菌的多样性,并获得新的卤代烃降解菌资源.[方法]以C16H33Cl为唯一碳源和能源在4℃和250℃下对表层海水样品进行富集,通过平板分离鉴定可培养菌株,并验证其降解能力;同时利用变性梯度凝胶电泳(DGGE)分析降解菌群结构.[结果]从12个北极表层海水样品中富集分离得到112株可培养菌株.经过降解实验验证,发现19株菌株能够降解氯代十六烷,其中食烷菌(Alcanivorax)、红球菌(Rhodococcus)表现出很好的乳化和降解现象,海杆菌(Marinobacter)也有较好的降解效果.DGGE分析显示,富集驯化的降解菌群中主要优势菌为Alcanivorax,Parvibaculum和Thioclava属的菌株.[结论]北极海水中卤代烃降解菌主要是α-proteobacteria,γ-proteobacteria,Actinobacteria和Bacteroidetes.文章首次报道了北极海水卤代烷烃降解菌多样性,研究结果对于认识北极环境中的降解菌资源与生物多样性有参考价值.  相似文献   

5.
Knowledge of marine phages is highly biased toward double-stranded DNA (dsDNA) phages; however, recent metagenomic surveys have also identified single-stranded DNA (ssDNA) phages in the oceans. Here, we describe two complete ssDNA phage genomes that were reconstructed from a viral metagenome from 80 m depth at the Bermuda Atlantic Time-series Study (BATS) site in the northwestern Sargasso Sea and examine their spatial and temporal distributions. Both genomes (SARssφ1 and SARssφ2) exhibited similarity to known phages of the Microviridae family in terms of size, GC content, genome organization and protein sequence. PCR amplification of the replication initiation protein (Rep) gene revealed narrow and distinct depth distributions for the newly described ssDNA phages within the upper 200 m of the water column at the BATS site. Comparison of Rep gene sequences obtained from the BATS site over time revealed changes in the diversity of ssDNA phages over monthly time scales, although some nearly identical sequences were recovered from samples collected 4 years apart. Examination of ssDNA phage diversity along transects through the North Atlantic Ocean revealed a positive correlation between genetic distance and geographic distance between sampling sites. Together, the data suggest fundamental differences between the distribution of these ssDNA phages and the distribution of known marine dsDNA phages, possibly because of differences in host range, host distribution, virion stability, or viral evolution mechanisms and rates. Future work needs to elucidate the host ranges for oceanic ssDNA phages and determine their ecological roles in the marine ecosystem.  相似文献   

6.
Autotrophic ammonia-oxidizing bacteria use the essential enzyme ammonia monooxygenase (AMO) to transform ammonia to hydroxylamine. The amo operon consists of at least three genes, amoC, amoA, and amoB; amoA encodes the subunit containing the putative enzyme active site. The use of the amo genes as functional markers for ammonia-oxidizing bacteria in environmental applications requires knowledge of the diversity of the amo operon on several levels: (1) the copy number of the operon in the genome, (2) the arrangement of the three genes in an individual operon, and (3) the primary sequence of the individual genes. We present a database of amo gene sequences for pure cultures of ammonia-oxidizing bacteria representing both the beta- and the gamma-subdivision of Proteobacteria in the following genera: Nitrosospira (6 strains), Nitrosomonas (5 strains) and Nitrosococcus (2 strains). The amo operon was found in multiple (2-3) nearly identical copies in the beta-subdivision representatives but in single copies in the gamma-subdivision ammonia oxidizers. The analysis of the deduced amino acid sequence revealed strong conservation for all three Amo peptides in both primary and secondary structures. For the amoA gene within the beta-subdivision, nucleotide identity values are approximately 85% within the Nitrosomonas or the Nitrosospira groups, but approximately 75% when comparing between these groups. Conserved regions in amoA and amoC were identified and used as primer sites for PCR amplification of amo genes from pure cultures, enrichments and the soil environment. The intergenic region between amoC and amoA is variable in length and may be used to profile the community of ammonia-oxidizing bacteria in environmental samples. Electronic supplementary material to this paper can be obtained by using the Springer LINK server located at http://dx.doi.org/10.1007/s00203-001-0369-z.  相似文献   

7.
Ammonia oxidation by microorganisms is a critical process in the nitrogen cycle. Recent research results show that ammonia-oxidizing archaea (AOA) are both abundant and diverse in a range of ecosystems. In this study, we examined the abundance and diversity of AOA and ammonia-oxidizing beta-proteobacteria (AOB) in estuarine sediments in Hong Kong for two seasons using the ammonia monooxygenase A subunit gene (amoA) as molecular biomarker. Relationships between diversity and abundance of AOA and AOB and physicochemical parameters were also explored. AOB were more diverse but less abundant than AOA. A few phylogenetically distinct amoA gene clusters were evident for both AOA and AOB from the mangrove sediment. Pearson moment correlation analysis and canonical correspondence analysis (CCA) were used to explore physicochemical parameters potentially important to AOA and AOB. Metal concentrations were proposed to contribute potentially to the distributions of AOA while total phosphorus (TP) was correlated to the distributions of AOB. Quantitative PCR estimates indicated that AOA were more abundant than AOB in all samples, but the ratio of AOA/AOB (from 1.8 to 6.3) was smaller than most other studies by one to two orders. The abundance of AOA or AOB was correlated with pH and temperature while the AOA/AOB ratio was with the concentrations of ammonium. Several physicochemical factors, rather than any single one, affect the distribution patterns suggesting that a combination of factors is involved in shaping the dynamics of AOA and AOB in the mangrove ecosystem.  相似文献   

8.
Recent molecular characterizations of microbial communities from deep-sea hydrothermal sites indicate the predominance of bacteria belonging to the epsilon subdivision of Proteobacteria (epsilon Proteobacteria). Here, we report the first enrichments and characterizations of four epsilon Proteobacteria that are directly associated with Alvinella pompejana, a deep sea hydrothermal vent polychete, or with hydrothermal vent chimney samples. These novel bacteria were moderately thermophilic sulfur-reducing heterotrophs growing on formate as the energy and carbon source. In addition, two of them (Am-H and Ex-18.2) could grow on sulfur lithoautrotrophically using hydrogen as the electron donor. Optimal growth temperatures of the bacteria ranged from 41 to 45 degrees C. Phylogenetic analysis of the small-subunit ribosomal gene of the two heterotrophic bacteria demonstrated 95% similarity to Sulfurospirillum arcachonense, an epsilon Proteobacteria isolated from an oxidized marine surface sediment. The autotrophic bacteria grouped within a deeply branching clade of the epsilon Proteobacteria, to date composed only of uncultured bacteria detected in a sample from a hydrothermal vent along the mid-Atlantic ridge. A molecular survey of various hydrothermal vent environments demonstrated the presence of two of these bacteria (Am-N and Am-H) in more than one geographic location and habitat. These results suggest that certain epsilon Proteobacteria likely fill important niches in the environmental habitats of deep-sea hydrothermal vents, where they contribute to overall carbon and sulfur cycling at moderate thermophilic temperatures.  相似文献   

9.
10.
16S ribosomal RNA gene sequences from seven strains of Aquaspirillum peregrinum, Aqu. itersonii, Aqu. polymorphum, and Oceanospirillum pusillum were compared with homologous sequences from other members of helical-shaped bacteria. The bootstrapped neighbor-joining tree, inferred from 887 aligned sites, placed the spirillum taxa assigned to Aquaspirillum, Oceanospirillum, Azospirillum, Magnetospirillum, Rhodospirillum, and Rhodocista of the Proteobacteria in seven clusters of alpha Proteobacteria separately from other shapes of bacteria. Aqu. peregrinum and Aqu. itersonii grouped together in 88% bootstrap support. They were more related to Rhodospirillum rubrum and Rsp. photometricum than Aqu. polymorphum. Aqu. polymorphum was close to Magnetospirillum gryphiswaldense, Mag. magnetotacticum, Rsp. fulvum, and Rsp. molischianum, and more close to Mag. gryphiswaldense. Oce. pusillum was not related to other spirillum taxa and was placed in a separate branch. Rhodocista was very closely related to Azospirillum. Photosynthesis and magnetotaxis, as phenotypic characters, were not important in the classification of helical bacteria.  相似文献   

11.
The genetic diversity and distribution of ammonia-oxidizing Archaea (AOA) in nine seasonally frozen soils sampled around the city of Harbin, China, is analyzed based on archaeal amoA gene. Soil samples are divided into four groups by its properties: fertilized/unfertilized mesic (well-balanced supply of moisture) soils and fertilized/unfertilized hydric (abundant of moisture) soils. Clone libraries based on AOA amoA gene polymerase chain reaction products are constructed, and the phylogenetic analysis at 5 % cutoff level shows that AOA members mainly belong to the soil/sediment lineage which includes four clusters, and very few archaeal amoA gene sequences fall into the marine lineage. The four groups of soils have different archaeal amoA gene assemblage, and the available nitrogen and organic carbon are significantly correlated with diversity indexes. The result shows that long-term artificial amendment such as fertilization and agriculture cultivation has an important impact on AOA community shift in terrestrial environment. Moisture may drive the shape of different AOA communities by changing the aerobic environment into anaerobic. Soil composition is another noticeable factor effect AOA community, which can help the shape of a special AOA community with only two species.  相似文献   

12.
We analyzed microbial eukaryote diversity in perennially cold arctic marine waters by using 18S rRNA gene clone libraries. Samples were collected during concurrent oceanographic missions to opposite sides of the Arctic Ocean Basin and encompassed five distinct water masses. Two deep water Arctic Ocean sites and the convergence of the Greenland, Norwegian, and Barents Seas were sampled from 28 August to 2 September 2002. An additional sample was obtained from the Beaufort Sea (Canada) in early October 2002. The ribotypes were diverse, with different communities among sites and between the upper mixed layer and just below the halocline. Eukaryotes from the remote Canada Basin contained new phylotypes belonging to the radiolarian orders Acantharea, Polycystinea, and Taxopodida. A novel group within the photosynthetic stramenopiles was also identified. One sample closest to the interior of the Canada Basin yielded only four major taxa, and all but two of the sequences recovered belonged to the polar diatom Fragilariopsis and a radiolarian. Overall, 42% of the sequences were <98% similar to any sequences in GenBank. Moreover, 15% of these were <95% similar to previously recovered sequences, which is indicative of endemic or undersampled taxa in the North Polar environment. The cold, stable Arctic Ocean is a threatened environment, and climate change could result in significant loss of global microbial biodiversity.  相似文献   

13.
On the basis of ribosomal 16S sequence comparison, Brucella abortus has been found to be a member of the alpha-2 subdivision of the class Proteobacteria (formerly named purple photosynthetic bacteria and their nonphototrophic relatives). Within the alpha-2 subgroup, brucellae are specifically related to rickettsiae, agrobacteria, and rhizobiae, organisms that also have the faculty or the obligation of living in close association to eucaryotic cells. The composition of Brucella lipid A suggests a close phylogenetical relationship with members of the alpha-2 group. The chemical analysis of the lipid A fraction revealed that Brucella species contain both glucosamine and diaminoglucose, thus suggesting the presence of a so-called mixed lipid A type. The serological analysis with polyclonal and monoclonal antibodies is in agreement with the existence of mixed lipid A type in B. abortus. The amide-linked fatty acid present as acyl-oxyacyl residues were 3-O-C(16:0)12:0, 3-O-C(16:0)13:0, 3-O-C(16:0)14:0, and 3-O-C(18:0)14:0. The only amide-linked unsubstituted fatty acid detected was 3-OH-C16:0. The ester-linked fatty acids are 3-OH-C16:0, 3-OH-C18:0, C16:0, C17:0, and C18:0. Significant amounts of the large-chain 27-OH-C28:0 were detected together with traces of 25-OH-C26:0 and 29-OH-C30:0. Comparison of the Brucella lipid composition with that of the other Proteobacteria also suggests a close phylogenetical relationship with members of the alpha-2 subdivision. The genealogical grouping of Brucella species with pericellular and intracellular plant and animal pathogens as well as with intracellular plant symbionts suggests a possible evolution of Brucella species from plant-arthropod-associated bacteria.  相似文献   

14.
15.
The diversity and spatio-temporal distribution of ammonia-oxidizing Archaea (AOA) and Bacteria (AOB) were investigated along a salinity gradient in sediments of the Westerschelde estuary. Sediment samples were collected from three sites with different salinities, and at six time points over the year. Denaturing gradient gel electrophoresis of PCR-amplified 16S rRNA and amoA gene fragments was used to identify the AOA and AOB present. Members of the AOA were mainly belonging to the Crenarchaeota Group 1, which were found at all sites, while members of the genus Nitrosomonas, which were abundant at the brackish sites, and of the genus Nitrosospira, which were present in early spring at the marine sites, were found to be the dominant AOB. Statistical analysis indicated that salinity and temperature were the main factors controlling the diversity and distribution of both AOA and AOB. Variability in net primary production rates was also correlated with species composition of both groups, but changes in the nitrite concentration only to the distribution of the AOA.  相似文献   

16.
内蒙古呼伦贝尔草原土壤氨氧化细菌多样性及群落结构   总被引:3,自引:0,他引:3  
Wendu RL  Li G  Yang DL  Zhang JN  Yi J 《应用生态学报》2011,22(4):929-935
采用聚合酶链式反应-变性梯度凝胶电泳技术及扩增产物序列分析方法,研究了呼伦贝尔5种草地类型(线叶菊草原、贝加尔针茅草原、羊草草原、大针茅草原、克氏针茅草原)土壤氨氧化细菌多样性及群落结构特征.研究表明:不同草地类型间土壤氨氧化细菌群落结构组成差异显著,相似性均低于50%.线叶菊草原土壤氨氧化细菌群落多样性最高,其次是贝加尔针茅草原、羊草草原和克氏针茅草原,大针茅草原最低.5种草地类型土壤氨氧化细菌均以Nitrosospira cluster 3为优势种群,此外还发现有Nitrosospira cluster 1、2、4和Nitrosomonas.线叶菊草原土壤氨氧化细菌群落组成较其他草地类型复杂,而羊草草原和大针茅草原群落组成较简单.经相关性分析,土壤含水量、土壤全氮、有机碳、土壤C/N与土壤氨氧化细菌群落多样性显著正相关(P<0.05).  相似文献   

17.
To expand investigations and insights into the phylogenetic diversity of bacteria inhibiting seafloor biosphere, six Arctic Ocean sediments neighboring the Bering Strait were sampled and their bacterial diversities were investigated by pyrosequencing of 16S rRNA genes. A total of 157,454 trimed sequences were obtained, resulting in 9413 OTUs at the 97% sequence identity (OTU3%). This pyrosequencing allowed detection of higher than 85% of richness estimator Chao1 and Ace at the OTU3% level. Higher coverage (≥0.97) and much less of rare types (singletons, only accounting for 24.5% of all OTU3%) indicated that this pyrosequencing recovered most of bacteria inhabiting these biospheres. At the phylum level, the high relative sequence abundance (42.0% to 63.3%) showed that Proteobacteria was the dominant member at all these sampling sites. At the class level, Deltaproteobacteria, Gammaproteobacteria, and Flavobacteriia composed the majority of bacterial communities, and the relative abundance of Cyanobacteria and Bacilli varied significantly among the six samples. At the genus level, abundant OTUs related with sulfate reduction, including Desulfobulbus and Desulforhopalus, were identified. Shared and unique OTUs analysis revealed that, at the OTU3% level, 508 OTUs were shared by all the six samples, and the number of unique OTUs ranged from 98 (R02) to 195 (NB04). Principal coordinates analysis PCoA analysis revealed that samples C04 and NB04 had the similar communities and were distinct from the others. Canonical correspondence analysis (CCA) revealed that temperature was the most significant factors that correlated with the bacterial community composition. The differences in bacterial compositions and diversities indicate that the similar sediment habitats contain a large variation in microbial biodiversity.  相似文献   

18.
We investigated the diversity, spatial distribution, and abundances of ammonia-oxidizing archaea (AOA) and ammonia-oxidizing bacteria (AOB) in sediment samples of different depths collected from a transect with different distances to mangrove forest in the territories of Hong Kong. Both the archaeal and bacterial amoA genes (encoding ammonia monooxygenase subunit A) from all samples supported distinct phylogenetic groups, indicating the presences of niche-specific AOA and AOB in mangrove sediments. The higher AOB abundances than AOA in mangrove sediments, especially in the vicinity of the mangrove trees, might indicate the more important role of AOB on nitrification. The spatial distribution showed that AOA had higher diversity and abundance in the surface layer sediments near the mangrove trees (0 and 10 m) but lower away from the mangrove trees (1,000 m), and communities of AOA could be clustered into surface and bottom sediment layer groups. In contrast, AOB showed a reverse distributed pattern, and its communities were grouped by the distances between sites and mangrove trees, indicating mangrove trees might have different influences on AOA and AOB community structures. Furthermore, the strong correlations among archaeal and bacterial amoA gene abundances and their ratio with NH4+, salinity, and pH of sediments indicated that these environmental factors have strong influences on AOA and AOB distributions in mangrove sediments. In addition, AOA diversity and abundances were significantly correlated with hzo gene abundances, which encodes the key enzyme for transformation of hydrazine into N2 in anaerobic ammonium-oxidizing (anammox) bacteria, indicating AOA and anammox bacteria may interact with each other or they are influenced by the same controlling factors, such as NH4+. The results provide a better understanding on using mangrove wetlands as biological treatment systems for removal of nutrients.  相似文献   

19.
The ammonia-oxidizing microbial community colonizing clay tiles in flow channels changed in favor of ammonia-oxidizing bacteria during a 12-week incubation period even at originally high ratios of ammonia-oxidizing archaea to ammonia-oxidizing bacteria (AOB). AOB predominance was established more rapidly in flow channels incubated at 350 μM NH(4)(+) than in those incubated at 50 or 20 μM NH(4)(+). Biofilm-associated potential nitrification activity was first detected after 28 days and was positively correlated with bacterial but not archaeal amoA gene copy numbers.  相似文献   

20.
PCR amplification, restriction fragment length polymorphism, and phylogenetic analysis of oxygenase genes were used for the characterization of in situ methane- and ammonia-oxidizing bacteria from free-living and attached communities in the Eastern Snake River Plain aquifer. The following three methane monooxygenase (MMO) PCR primer sets were used: A189-A682, which amplifies an internal region of both the pmoA gene of the MMO particulate form and the amoA gene of ammonia monooxygenase; A189-mb661, which specifically targets the pmoA gene; and mmoXA-mmoXB, which amplifies the mmoX gene of the MMO soluble form (sMMO). Whole-genome amplification (WGA) was used to amplify metagenomic DNA from each community to assess its applicability for generating unbiased metagenomic template DNA. The majority of sequences in each archive were related to oxygenases of type II-like methanotrophs of the genus Methylocystis. A small subset of type I sequences found only in free-living communities possessed oxygenase genes that grouped nearest to Methylobacter and Methylomonas spp. Sequences similar to that of the amoA gene associated with ammonia-oxidizing bacteria (AOB) most closely matched a sequence from the uncultured bacterium BS870 but showed no substantial alignment to known cultured AOB. Based on these functional gene analyses, bacteria related to the type II methanotroph Methylocystis sp. were found to dominate both free-living and attached communities. Metagenomic DNA amplified by WGA showed characteristics similar to those of unamplified samples. Overall, numerous sMMO-like gene sequences that have been previously associated with high rates of trichloroethylene cometabolism were observed in both free-living and attached communities in this basaltic aquifer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号