首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
The dependence of the Ca2+-ATPase activity of sarcoplasmic reticulum vesicles upon the intravesicular concentration of calcium accumulated after active uptake was studied. The internal calcium concentration was modified by addition of the ionophore A23187 at the steady state of accumulation. About half of the calcium accumulated could be released at low ionophore concentration without any concomitant activation of the Ca2+-ATPase. This population of calcium might consist of calcium free in the lumen of the vesicles or bound to the bilayer at sites which do not interact with the ATPase activity. At higher concentrations of ionophore (above 1.75 nmol A23187/mg protein) the release of calcium activated this enzyme. This phenomenon was independent of the extravesicular calcium concentration and might be explained by assuming second species of calcium ions bound to the inner side of the membrane and in close functional interaction with the Ca2+-ATPase.  相似文献   

2.
The ability of a sudden increase in pH to initiate a release of calcium from isolated skeletal and cardiac muscle sarcoplasmic reticulum following calcium accumulation in the absence of a precipitating anion (calcium binding) is described. In skeletal sarcoplasmic reticulum a sudden increase in pH caused a rapid release of accumulated calcium. In cardiac sarcoplasmic reticulum a sudden increase in pH before the calcium binding process was complete caused the release of a small amount of calcium at a relatively slow rate. A sudden change in pH after the completion of calcium binding failed to trigger a release of calcium. The effect of pH on oxalate supported calcium uptake and on unidirectional calcium efflux rate by cardiac sarcoplasmic reticulum was also studied. Both the rate of calcium uptake and of unidirectional calcium efflux increased as the pH was raised from 6.4 to 7.2, reflecting an increased permeability of the sarcoplasmic reticulum membrane to calcium. These results indicate that in cardiac muscle a sudden increase in pH is unlikely to be the in vivo signal for calcium release from the sarcoplasmic reticulum. However, the effect of pH on calcium uptake and efflux by cardiac sarcoplasmic reticulum may contribute to the negative inotropic effect of an acidosis on the heart.  相似文献   

3.
Microsomes prepared from guinea-pig ileum longitudinal smooth muscle and rat uterus continuously sequester calcium for a one hour period in the presence of Mg-ATP as an energy source and oxalate anion as a trapping agent. Dithiothreitol is essential for maximal calcium uptake activity of the rat uterus microsomes. On sucrose density gradients, calcium uptake of the smooth muscle microsomes appears to be associated with intracellular membrane (sarcoplasmic reticulum). Release of sequestered calcium from the longitudinal muscle microsomes is very slow (20% in 50 minutes). A small labile fraction (20%) is released by EGTA (1 mM) in 10 minutes. Rapid release of sequestered calcium (90% in 10 minutes) occurs in presence of the calcium ionophore A23187 (2 μM) or in the presence of chlorpromazine (1 mM).  相似文献   

4.
The relationship between Ca2+ fluxes and the ion diffusion potential was analyzed on sarcoplasmic reticulum membranes using oxacarbocyanine dyes as optical probes for membrane potential. 3.3'-Diethyloxodicarbocyanine responds to ATP-induced Ca2+ uptake by isolated sarcoplasmic reticulum vesicles with a decrease in absorbance at 600 nm. The optical change is reversed during Ca2+ release from sarcoplasmic reticulum induced by KCl or by ADP and inorganic phosphate. The absorbance changes are largely attributable to the binding of accumulated Ca2+ to the membrane. There is no indication that sustained changes in membrane diffusion potential would accompany pump-mediated Ca2+ fluxes. A large change in the absorbance of 3,3'-diethyloxodicarbocyanine was observed on sarcoplasmic reticulum vesicles under the influence of membrane potential generated by valinomycin in the presence of a K+ gradient or by ionophore A23187 in the presence of a Ca2+ gradient. The maximum of the potential-dependent absorbance change is at 575--580 nm. The potentials generated by valinomycin or ionophore A23187 are short-lived due to the high permeability of sarcoplasmic reticulum membranes for cations and anions. There is no correlation between the direction and magnitude of the artifically imposed membrane potential and the rate of Ca2+ uptake or release by isolated sarcoplasmic reticulum vesicles.  相似文献   

5.
Inositol 1,4,5-trisphosphate-induced calcium release from canine aortic smooth muscle sarcoplasmic reticulum vesicles was examined using the calcium indicator antipyrylazo III. Calcium release was initiated by addition of inositol 1,4,5-trisphosphate (IP3) to aortic vesicles 7 min after initiation of ATP-supported calcium uptake. Half-maximal calcium release occurred at 1 microM IP3, with maximal calcium release amounting to 25 +/- 2% of the intravesicular calcium (n = 12, 9 preparations). Ruthenium red (10-20 microM), which has been reported to block IP3-induced calcium release from skeletal muscle sarcoplasmic reticulum, did not inhibit aortic IP3-induced calcium release. Elevation of Mg2+ concentration from 0.06 to 7.8 mM inhibited aortic IP3-induced calcium release 75%, which contrasts with the Mg2+-insensitive IP3-induced calcium release from platelet reticular membranes. The IP3-dependence of aortic calcium release suggested that Mg2+ acted as a noncompetitive inhibitor. Thus, aortic sarcoplasmic reticulum vesicles contain an IP3-sensitive calcium pathway which is inhibited by millimolar concentrations of Mg2+, but which is not inhibited by Ruthenium red and so differs from the previously described IP3-sensitive calcium pathways in skeletal muscle and platelet reticular membranes.  相似文献   

6.
ATP-dependent calcium transport in cardiac sarcolemmal membrane vesicles   总被引:1,自引:0,他引:1  
Cardiac sarcolemmal (SL) membrane vesicles accumulated Ca in the presence of ATP. The accumulated Ca was released by osmotic shock and by the Ca ionophore A23187, indicating that the Ca had been transported into the vesicle interior. Ca uptake by the SL vesicles was not inhibited by ruthenium red, 2,4-dinitrophenol, carbonyl cyanide m-chlorophenyl hydrazone, of NaN3, agents that are known to inhibit mitochondrial Ca transport activity. In contrast to the behavior of cardiac sarcoplasmic reticulum, Ca accumulation by the SL vesicles was not stimulated by oxalate and could not driven by p-nitrophenylphosphate hydrolysis. NaCl inhibited ATP-dependent Ca uptake by the SL vesicles. This effect was shown to be due to a stimulation of Ca efflux by Na, mediated by the sarcolemmal NaCa exchange system. The results provide conclusive evidence for the presence of an ATP-dependent Ca “pump” in the cardiac SL membrane.  相似文献   

7.
The endoplasmic reticulum from isolated rat adipocytes has the ability to actively accumulate calcium. The calcium uptake was characterized using the 20,000 X g supernatant (S1 fraction) of total cellular homogenate. Endoplasmic reticulum vesicles isolated from the S1 fraction as a 160,000 X g microsomal pellet prior to testing demonstrated little ability to accumulate calcium. The calcium uptake in the S1 fraction was localized to the endoplasmic reticulum vesicles by morphologic appearance, by the use of selective inhibitors of calcium uptake, and by high speed sedimentation of the accumulated calcium. The uptake was MgATP- and temperature-dependent and was sustained by the oxalate used as the intravesicular trapping agent. Uptake was linear with time for at least 30 min at all calcium concentrations tested (3 to 100 muM) and exhibited a pH optimum of approximately 7.0. The sulfhydryl inhibitor p-chloromercuribenzene sulfonate produced a dose-dependent inhibition of calcium uptake with total inhibition at 0.07 mumol/mg protein. Ruthenium red and sodium azide inhibited less than 5% of the uptake at concentrations (5 muM and 10 mM, respectively) which completely blocked calcium uptake by mitochondria isolated from the same cells. The Km for calcium uptake was 10 muM total calcium which corresponded to approximately 3.6 muM ionized calcium in the assay system. The maximum velocity of the uptake was 5.0 nmol (mg of microsomal protein)-1 (min)-1 at 24 degrees under the assay conditions used and exhibited a Q10 of 1.8. The uptake activity of the endoplasmic reticulum vesicles in the S1 fraction exhibited a marked time- and temperature-dependent lability which might account in part for the lack of uptake in the isolated microsomal fraction. This energy-dependent calcium uptake system would appear to be of physiologic importance to the regulation of intracellular calcium.  相似文献   

8.
The effects of the ionophore, X537A, and caffeine on ATP-dependent calcium transport by fragmented sarcoplasmic reticulum were studied in the absence (calcium storage) or presence (calcium uptake) of calcium-precipitating anions. The ionophore caused rapid calcium release after calcium storage, the final level of calcium storage being the same whether a given concentration of X537A was added prior to initiation of the reaction or after calcium storage had reached a steady state. Although 10 to 12 muM X537A caused approximately 90% inhibition of oxalate-supported calcium uptake when added prior to the start of the reaction, this ionophore concentration caused only a small calcium release when added after a calcium oxalate precipitate had formed within the vesicles, and only slight inhibition of calcium uptake velocity when added during the calcium uptake reaction. When low initial calcium loads limited calcium uptake to 0.4 mumol of calcium/mg of protein, subsequent calcium additions in the absence of the ionophore led to renewed calcium uptake. Uptake of the subsequent calcium additions was not significantly inhibited by 10 to 12 muM X537A. These phenomena are most readily understood in terms of constraints imposed by fixed Cai (calcium ion concentration inside the vesicles) on the pump-leak situation in sarcoplasmic reticulum vesicles containing a large amount of an insoluble calcium precipitate, where most of the calcium is within the vesicles and Cai is maintained at a relatively low level. These constraints restrict calcium loss after calcium permeability is increased because calcium release can end when the calcium pump is stimulated by the increased Cao (calcium concentration outside the vesicles) so as to compensate for the increased efflux rate. In contrast, an increased permeability in vesicles that have stored calcium in the absence of a calcium-precipitating ion causes a much larger portion of the internal calcium store to be released. Under these conditions calcium storage capacity is low so that release of stored calcium is less able to raise Cao to levels where the calcium pump can compensate for the increased efflux rate. The constraints imposed by anion-supported calcium uptake explain the finding that more calcium is released by X537A or caffeine when these agents are added at higher levels of Cao, and that more calcium leaves the vesicles in response to a given increase in calcium permeability at higher Cai. Although such calcium release is amplified by increased Cao, the amplification is attributable to the constraints described above and does not represent a "calcium-triggered calcium release."  相似文献   

9.
Palmitylcarnitine is a time-dependent inhibitor of the Ca2+-ATPase activity of cardiac sarcoplasmic reticulum isolated from adult dogs. Half-maximal inhibition was obtained at approximately 20 μM (2 μmoles/mg). The extent of inhibition depended on the ratio of palmitylcarnitine to sarcoplasmic reticulum protein. Calcium uptake by cardiac sarcoplasmic reticulum (measured in the presence of sodium oxalate) was found to be even more sensitive to inhibition by palmitylcarnitine and complete inhibition was obtained at concentrations as low as 2.5 μM (0.25 μmole/mg) following preincubation. Calcium binding (measured in the absence of oxalate) was inhibited by palmitylcarnitine and calcium release was stimulated at similar ratios. The level of palmitylcarnitine has been reported to increase several fold in myocardial ischemia and inhibition of the sarcoplasmic reticulum calcium pump could conceivably contribute either to the initial loss of contractility or the subsequent inability to restore full contractile function after prolonged ischemia.  相似文献   

10.
Sarcoplasmic reticulum isolated from rabbit skeletal muscle and incubated in a medium containing Ca2+ in the absence of ATP retains intravesicular and/or membrane-bound Ca2+. The synthesis of ATP coupled with the release of intravesicular Ca2+ is totally inhibited by the ionophore X-537A. Release of the membrane-bound Ca2+, retained after short periods of incubation (10min) or after release of the intravesicular Ca2+ by ionophore X-537A, still supports some synthesis of ATP. The ratios of Ca2+ released to ATP synthesized are 2.5-3.2, when bound and intravesicular Ca2+ are released simultaneously, and 3.1-4.0, when only bound Ca2+ is released. The results show that the synthesis of ATP by sarcoplasmic reticulum during release of passively accumulated Ca2+ by EGTA [ethanedioxybis(ethylamine)tetra-acetic acid] is accompanied by a loss of membrane-bound Ca2+.  相似文献   

11.
Isolated cortices from unfertilized sea urchin eggs sequester calcium in an ATP-dependent manner when incubated in a medium containing free calcium levels characteristic of the resting cell (approximately 0.1 microM). This ATP-dependent calcium uptake activity was measured in the presence of 5 mM Na azide to prevent mitochondrial accumulation, was increased by oxalate, and was blocked by 150 microM quercetin and 50 microM vanadate (known inhibitors of calcium uptake into the sarcoplasmic reticulum). Cortical regions preloaded with 45Ca in the presence of ATP were shown to dramatically increase their rate of calcium efflux upon the addition of (a) the calcium ionophore A23187 (10 microM), (b) trifluoperazine (200 microM), (c) concentrations of free calcium that activated cortical granule exocytosis, and (d) the calcium mobilizing agent inositol trisphosphate. This pool of calcium is most likely sequestered in the portion of the egg's endoplasmic reticulum that remains associated with the cortical region during its isolation. We have developed a method for obtaining a high yield of purified microsomal vesicles from whole eggs. This preparation also demonstrates ATP-dependent calcium sequestering activity which increases in the presence of oxalate and has similar sensitivities to calcium transport inhibitors; however, the isolated microsomal vesicles did not show any detectable release of calcium when exposed to inositol trisphosphate.  相似文献   

12.
It is established that in AMP deamination by sarcoplasmic reticulum fragments there occurs an intensified release of the previously accumulated calcium. UMP has no noticeable effect on this process. The level of accumulated 45Ca+ in the fragmented sarcoplasmic reticulum is decreased when ammonium ions load is introduced into the medium. If the sarcoplasmic reticulum fragments were loaded with 45Ca2+ and then washed off and incubated in the isotonic sucrose solution, the calcium release is more intensified when ammonium ions are introduced into the medium. The results of ultrasound and A23187 treatment of the membranes evidence for the calcium release from the inner space of vesicles.  相似文献   

13.
The ability of sarcoplasmic reticulum vesicles to retain calcium following ATP-supported calcium uptake in the presence of the calcium-precipitating anions oxalate and phosphate depends on Cao (calcium ion concentration outside the vesicles) and Cai (calcium ion concentration within the vesicles). Calcium efflux rates at any level of Cai are accelerated when Cao is increased. Higher Cao at the time that calcium uptake reactions reach steady state is associated with a spontaneous calcium release that reflects this effect of increased Cao. Increasing Cai at any level of Cao causes little or no acceleration of calcium efflux rate so that calcium permeability coefficients, estimated by dividing calcium efflux rates by Cai, the "driving force", are inversely proportional to Cai. Calcium permability coefficients thus correlate, as a first approximation, with the ratio Cai/Cao, decreasing 1000-fold as this ratio increases over a 3000-fold range (Cao = 0.1 to 3.3 muM, Cai =4 to 750 muM). Oscillations in both the calcium content of the vesicles and Cao are seen as calcium uptake reactions approach steady state, suggesting that calcium permeability undergoes time-dependent variations. Sudden reduction of Cao to levels that markedly inhibit calcium influx via the calcium pump unmasks a calcium efflux that decreases slowly over 60 to 90 s.The maximal calcium permeability observed in the present study would allow the calcium efflux rate from the sarcoplasmic reticulum at a Cai of 100 muM to be approximately 10(-10) mol/cm2/s, which is about 1 order of magnitude less than that estimated for the sarcoplasmic reticulum of activated skeletal muscle in vivo. The release of most of the stored calcium in some experiments indicates that the observed permeability changes can occur over a large portion of the surface of the sarcoplasmic reticulum.  相似文献   

14.
Inositol 1,4,5-trisphosphate-induced calcium release from canine aortic smooth muscle sarcoplasmic reticulum vesicles was examined using the calcium indicator antipyrylazo III. Calcium release was initiated by addition of inositol 1,4,5-trisphosphate (IP3) to aortic vesicles 7 min after initiation of ATP-supported calcium uptake. Half-maximal calcium release occurred at 1 μM IP3, with maximal calcium release amounting to 25±2% of the intravesicular calcium (n=12, 9 preparations). Ruthenium red (10–20 μM), which has been reported to block IP3-induced calcium release from skeletal muscle sarcoplasmic reticulum, did not inhibit aortic IP3-induced calcium release. Elevation of Mg2+ concentration from 0.06 to 7.8 mM inhibited aortic IP3-induced calcium release 75%, which contrasts with the Mg2+-insensitive IP3-induced calcium release from platelet reticular membranes. The IP3-dependence of aortic calcium release suggested that Mg2+ acted as a noncompetitive inhibitor. Thus, aortic sarcoplasmic reticulum vesicles contain an IP3-sensitive calcium pathway which is inhibited by millimolar concentrations of Mg2+, but which is not inhibited by Ruthenium red and so differs from the previously described IP3-sensitive calcium pathways in skeletal muscle and platelet reticular membranes.  相似文献   

15.
ATP-energized Ca2+ pump in isolated transverse tubules of skeletal muscle   总被引:6,自引:0,他引:6  
A modified protocol for isolation of transverse tubules incorporated an extra stage of purification. The existence of an ATP-energized Ca2+ pump in transverse tubules isolated from rabbit skeletal muscle has been demonstrated. Isolated transverse tubules had a Ca-ATPase activity of 0.78 mu mol/min . mg; this was 300% in excess of that activity attributable to sarcoplasmic reticulum contamination. The distribution of part of the CaATPase activity and ATP-energized Ca2+ uptake coincided with the distribution of transverse tubules in isopycnic sucrose gradients loaded with mechanically disrupted triad junctions. Transverse tubules accumulated over 70 nmol of Ca2+/mg of protein; this uptake was abolished by the Ca2+ ionophore A23187. Neither digitoxin nor monensin inhibited Ca2+ uptake, indicating that Ca2+ accumulation did not occur through a sodium/calcium exchange. Conditions for half-maximal Ca2+ uptake were 5 micro M free Ca2+ and 10 micro M ATP. The Ca2+ pump of isolated transverse tubules was distinguished from the Ca2+ pump of sarcoplasmic reticulum and sarcolemma in that the transverse tubule Ca2+ pump: 1) was not enhanced by oxalate; 2) was not energized by acetyl phosphate, p-nitrophenyl phosphate, or 3-O-methylfluorescein phosphate; and 3) did not hydrolyze p-nitrophenyl phosphate or 3-O-methyl-fluorescein phosphate. Using Ca2+-dependent 3-O-methylfluorescein phosphatase as a marker for sarcoplasmic reticulum, the contamination of the transverse tubule preparation was calculated to be 6%. This agreed with a contamination level of 5% estimated by freeze-fracture electron microscopy.  相似文献   

16.
In isolated sarcoplasmic reticulum vesicles, calcium-chelating but non-calcium-precipitating dicarboxylates, such as maleate and succinate, stimulated ATP-dependent Ca2+ accumulation and its ensuring spontaneous Ca2+ accumulation and its ensuring spontaneous Ca2+ release, and Ca2+-dependent ATPase activity (Chu, A., Tate, C. A., Bick, R. J., Van Winkle, W. B., and Entman, M. L. (1983) J. Biol. Chem. 258, 1656-1664). We further examined the effect of dicarboxylates on enzyme turnover. The anionic buffer maleate enhanced the rate of rapid acyl phosphoenzyme hydrolysis compared to that in the zwitterionic buffer piperazine-N,N'-bis(2-ethanesulfonic acid) but had no effect on the phosphoenzyme formation. The presence of a calcium-precipitating anion, oxalate, or a Ca2+ ionophore, A23187, eliminated the differences observed in the phosphoenzyme decay between the two buffers, but accelerated the rate of decay. Furthermore, the catalytic activity of the purified Ca2+-dependent ATPase was not affected by maleate, whether oxalate was present or not. [14C]Succinate was transported into the sarcoplasmic reticulum in a manner which was dependent on Ca2+ transport, and occurred over a similar time course as Ca2+ accumulation/release. The net succinate uptake was equivalent to the amount of succinate-stimulated Ca2+ accumulation. Rapid efflux of both [14C]succinate and 45Ca2+ was induced by A23187, whereas the efflux induced by ethylene glycol bis(beta-aminoethylether)-N,N,N',N'-tetraacetic acid was slower and less compared to A23187. Succinate accumulation exhibited saturation kinetics with positive cooperativity (Km congruent to 20 mM; Hill coefficient = 1.70). When maleate and succinate were both present, they were equipotent, and had an additive stimulatory effect on peak 45Ca2+ accumulation at low concentrations. Maleate was a competitive inhibitor of succinate accumulation (Ki approximately equal to 17 mM; Hill coefficient = 1.75). KCl in the presence or absence of valinomycin did not influence succinate accumulation or release. The data suggest that succinate accumulation is Ca2+-dependent, but occurs at a saturable, divalent, anion-specific site. While this carrier or channel requires Ca2+ transport, it may be controlled by additional factors as well.  相似文献   

17.
The rate of calcium transport by sarcoplasmic reticulum vesicles from dog heart assayed at 25 degrees C, pH 7.0, in the presence of oxalate and a low free Ca2+ concentration (approx. 0.5 microM) was increased from 0.091 to 0.162 mumol . mg-1 . min-1 with 100 nM calmodulin, when the calcium-, calmodulin-dependent phosphorylation was carried out prior to the determination of calcium uptake in the presence of a higher concentration of free Ca2+ (preincubation with magnesium, ATP and 100 microM CaCl2; approx. 75 microM free Ca2+). Half-maximal activation of calcium uptake occurs under these conditions at 10-20 nM calmodulin. The rate of calcium-activated ATP hydrolysis by the Ca2+-, Mg2+-dependent transport ATPase of sarcoplasmic reticulum was increased by 100 nM calmodulin in parallel with the increase in calcium transport; calcium-independent ATP splitting was unaffected. The calcium-, calmodulin-dependent phosphorylation of sarcoplasmic reticulum, preincubated with approx. 75 microM Ca2+ and assayed at approx. 10 microM Ca2+ approaches maximally 3 nmol/mg protein, with a half-maximal activation at about 8 nM calmodulin; it is abolished by 0.5 mM trifluperazine. More than 90% of the incorporated [32P]phosphate is confined to a 9-11 kDa protein, which is also phosphorylated by the catalytic subunit of the cAMP-dependent protein kinase and most probably represents a subunit of phospholamban. The stimulatory effect of 100 nM calmodulin on the rate of calcium uptake assayed at 0.5 microM Ca2+ was smaller following preincubation of sarcoplasmic reticulum vesicles with calmodulin in the presence of approx. 75 microM Ca2+, but in the absence of ATP, and was associated with a significant degree of calmodulin-dependent phosphorylation. However, the stimulatory effect on calcium uptake and that on calmodulin-dependent phosphorylation were both absent after preincubation with calmodulin, without calcium and ATP, suggestive of a causal relationship between these processes.  相似文献   

18.
《The Journal of cell biology》1984,98(5):1645-1655
We studied retinal photoreceptors of Rana pipiens by using techniques designed to investigate calcium localization. Particularly useful were methods in which intracellular sites of calcium uptake were detected by incubation of saponin-treated isolated retinas in calcium-containing media, with oxalate present as a trapping agent. With these procedures, cell compartments accumulate deposits, which can be shown to contain calcium by x-ray microanalysis. Calcium accumulation was prominent in the rough endoplasmic reticulum in the myoid region. In addition, deposits were observed in agranular reticulum and in certain Golgi- associated compartments of the myoid region, in mitochondria, in axonal reticulum, and in agranular reticulum of presynaptic terminals. Calcium was also detected in the endoplasmic reticulum of retinas fixed directly upon isolation, by a freeze-substitution method. The factors influencing accumulation of calcium in the endoplasmic reticulum were evaluated by a semiquantitative approach based on determining the relative frequency of calcium oxalate crystals under varying conditions. Calcium accumulation was markedly enhanced by ATP. Studies with a nonhydrolyzable ATP analogue (adenylyl- imidodiphosphate ) and with inhibitors of the sarcoplasmic reticulum Ca2+-Mg2+ ATPase (mersalyl and tetracaine) indicated that this ATP-dependent calcium uptake reflects an energy-dependent process roughly comparable to that in the sarcoplasmic reticulum.  相似文献   

19.
Treatment of mammalian muscle with the divalent cation ionophore A23187 causes the release of Ca2+ from the sarcoplasmic reticulum and allows the ultrastructural changes of the mitochondria during Ca2+-uptake to be demonstrated in situ. Electron micrographs reveal that the mitochondria swell dramatically during uptake, before contracting again when the accumulated Ca2+ is released once more into the cytoplasm. When maximally swollen, the mitochondria are apparently subdivided and internal "septa" are formed. The ultrastructural details concerning these internal membranous structures are shown in detail and their significance is discussed.  相似文献   

20.
Ionomycin, a recently discovered calcium ionophore, inhibits the ATP-dependent active Ca2+ transport of rabbit sarcoplasmic reticulum vesicles at concentrations as low as 10(-8) to 10(-6) M. The effect is due to an increase in the Ca2+ permeability of the membrane which is also observed on liposomes. The inhibition of Ca2+ uptake is accompanied by an increase in the Ca2+-sensitive ATPase activity of sarcoplasmic reticulum vesicles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号