首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
1. Interspecific competition is a major structuring principle in ecological communities. Despite their prevalence, the outcome of competitive interactions is hard to predict, highly context-dependent, and multiple factors can modulate such interactions. 2. We tested predictions concerning how competitive interactions are modified by anthropogenic habitat disturbance in ground-foraging ant assemblages inhabiting fragmented Inter-Andean tropical dry forests in southwestern Colombia, and investigated ant assemblages recruiting to baits in 10 forest fragments exposed to varying level of human disturbance. 3. Specifically, we evaluated how different components of competitive interactions (patterns of species co-occurrence, resource partitioning, numerical dominance, and interspecific trade-offs between discovery and dominance competition) varied with level of habitat disturbance in a human-dominated ecosystem. 4. Multiple lines of evidence suggest that the role of competitive interactions in structuring ground-foraging ant communities at baits varied with respect to habitat disturbance. As disturbance increased, community structure was more likely to exhibit random co-occurrence patterns, higher levels of monopolization of food resources by dominant ants, and disproportionate dominance of a single species, the little fire ant (Wasmannia auropunctata). At a regional scale, we found evidence for a trade-off between dominance and discovery abilities of the 15 most common species at baits. 5. Together, these results suggest that human disturbance modifies the outcome of competitive interactions in ground-foraging ant assemblages and may promote dominant species that reduce diversity and coexistence in tropical ecosystems.  相似文献   

2.
JM Kneitel 《PloS one》2012,7(7):e41809
Trade-offs among species' ecological interactions is a pervasive explanation for species coexistence. The traits associated with trade-offs are typically measured to mechanistically explain species coexistence at a single spatial scale. However, species potentially interact at multiple scales and this may be reflected in the traits among coexisting species. I quantified species' ecological traits associated with the trade-offs expected at both local (competitive ability and predator tolerance) and regional (competitive ability and colonization rate) community scales. The most common species (four protozoa and a rotifer) from the middle trophic level of a pitcher plant (Sarracenia purpurea) inquiline community were used to link species traits to previously observed patterns of species diversity and abundance. Traits associated with trade-offs (competitive ability, predator tolerance, and colonization rate) and other ecological traits (size, growth rate, and carrying capacity) were measured for each of the focal species. Traits were correlated with one another with a negative relationship indicative of a trade-off. Protozoan and rotifer species exhibited a negative relationship between competitive ability and predator tolerance, indicative of coexistence at the local community scale. There was no relationship between competitive ability and colonization rate. Size, growth rate, and carrying capacity were correlated with each other and the trade-off traits: Size was related to both competitive ability and predator tolerance, but growth rate and carrying capacity were correlated with predator tolerance. When partial correlations were conducted controlling for size, growth rate and carrying capacity, the trade-offs largely disappeared. These results imply that body size is the trait that provides the basis for ecological interactions and trade-offs. Altogether, this study showed that the examination of species' traits in the context of coexistence at different scales can contribute to our understanding of the mechanisms underlying community structure.  相似文献   

3.
Disturbance is an important factor influencing diversity patterns. Ecological theory predicts that diversity peaks at intermediate levels of disturbance, but this pattern is not present in a majority of empirical tests and can be influenced by the level of ecosystem productivity. We experimentally tested the effects of disturbance on diversity and show that species' autecological traits and community relations predicted species loss. We found that – alone or in concert – increasing disturbance intensity or frequency, or decreasing productivity, reduced diversity. Our species did not exhibit a clear competition-colonization trade-off, and intrinsic growth rate was a more important predictor of response to disturbance and productivity than measures of competitive ability. Furthermore, competitive ability was more important in predicting responses when, in addition to killing individuals, disturbance returned nutrients to the ecosystem. Our results demonstrate that species' traits can help resolve conflicting patterns in the response of diversity to disturbance and productivity.  相似文献   

4.
The debate on the role of species differences in shaping biodiversity patterns, with its two extremes of pure niche theory and neutral theory, is still ongoing. It has been demonstrated that a slight difference in competitive ability of species severely affects the predictions of the neutral model. At the same time, neutral patterns seem to be ubiquitous. Here, we model both negative density dependence (NDD) and competitive asymmetry (CA) simultaneously. Our simulation results show that an appropriate intensity of NDD can offset the negative effect of CA (modeled as fecundity difference) on species coexistence and produce a neutral-like species abundance distribution. Therefore, our model provides a plausible mechanistic explanation of neutral-like patterns, but contrary to the neutral model, a species' relative abundance is positively related to its competitive ability in our model.  相似文献   

5.
We develop a new model of life history evolution to investigate the evolution of age at first reproduction. Density dependence is taken into account. For a given "species", age of maturity, offspring survival, immature survival, adult survival, fecundity, immature age-classes entering in competition with adults and immature competitive ability are traits adjustable by natural selection, and constitute a particular strategy. On the contrary, the type of intraspecific competition (scramble or contest), strength of competition and inherent net reproductive rate Ro(inh) are fixed (specific) characteristics. As a consequence of fixing Ro(inh), the evolution of any trait will affect trade-offs between others. Evolutionarily stable strategies are determined numerically by using the mathematical concept of Lyapunov exponents. Altogether, we consider 960 different hypothetical "species" (i.e. different combinations of fixed traits). Corresponding ESSs are analyzed with respect to their age at first reproduction, adult survival and immature competitive ability components. They appear to be gathered in three groups. One is intuitive and characterized by a reduction of immature competitive ability and a correlation of age of maturity with adult survival; populations reach mainly equilibria. The two other groups respectively include "species" with low age of maturity but high adult survival, and "species" close to semelparity with delayed maturity; immature competitive ability may not be minimized, and populations possibly exhibit complex dynamics. In conclusion, the hypothesis that the evolution of a demographic parameter modifies trade-offs between others turns out to have important consequences. We argue that life history theory cannot ignore the source and mode-of-operation of density dependence and must regard potential short-term instability as essential.  相似文献   

6.
Game-theoretic models predict that plants with root systems that avoid belowground competition will be displaced by plants that overproduce roots in substrate shared with competitors. Despite this, both types of root response to neighbours have been documented. We used two co-occurring clonal species (Glechoma hederacea and Fragaria vesca) with contrasting root responses to neighbours (avoidance of competition and contesting of resources, respectively) to examine whether functional variation in other traits affected the success of each rooting strategy, leading to a different outcome from that predicted on the basis of root behaviour alone. Vegetative propagation rates, morphology and biomass allocation patterns were examined when each species was challenged with competition from physically separate ramets with either the same rooting strategy (intraclonal competition) or the contrasting rooting strategy (interspecific competition). Contrary to the predictions of game-theoretic models, the species that exhibits avoidance of root competition (Glechoma) was not competitively inferior to the species that does not (Fragaria). Glechoma achieved greater total mass in the interspecific treatment than in the intraclonal treatment. However, Fragaria did not experience more intense competition from Glechoma than it did in the intraclonal treatment. Strong interference between the two species appeared to be avoided because Glechoma invested preferentially in rapid exploitation of unoccupied space, whereas Fragaria invested in increasing the competitive ability and local persistence of established ramets. Our results suggest that interspecific trade-offs between traits related to competitive ability and resource exploitation can allow coexistence of species with contrasting rooting behaviours. Full assessment of the adaptive value of different root responses to neighbours therefore requires concurrent consideration of the combined effects of a wide array of functional traits.  相似文献   

7.
Eyal Ben‐Hur  Ronen Kadmon 《Oikos》2015,124(10):1346-1353
Competition–colonization tradeoff models explain the coexistence of competing species in terms of a tradeoff between competitive ability and colonization ability. One class of such models is based on the idea that seed size determines competitive ability, seed number determines colonization ability, and the two traits are negatively correlated such that higher competitive ability of large‐seeded species compensates for their smaller seed number. According to such models, species inhabiting the same community should show a distinct ranking of competitive ability and this ranking should be correlated with seed size. We tested these predictions using a greenhouse competition experiment focusing on 25 annual species that coexist in sandy habitats of the Mediterranean region in Israel. Rankings of species based on their competitive effects on two independent phytometers were positively correlated. Corresponding rankings based on competitive responses were also correlated. Rankings based on competitive effects were correlated with those based on competitive responses. Yet, in spite of the clear hierarchy in all measures of competitive ability, none of the measures was correlated with seed size. While lack of correlation between seed size and competitive ability has been documented in some systems, our study is the first time that absence of such correlation is documented in a system where the existence of competition is well established and the component species show a clear hierarchy of competitive ability.  相似文献   

8.
Disturbance is thought to be a major factor influencing patterns of biodiversity. In addition, disturbance can modify community composition if there are species specific trade-offs between fitness and disturbance tolerance. Here, we examine the role of disturbance on the evolution of coexisting biofilm-forming morphotypes of Pseudomonas fluorescens maintained in spatially structured laboratory microcosms. We identified four heritably stable ecotypes that varied significantly in their competitiveness under different disturbance treatments. Furthermore, we identified significant trade-offs in competitiveness across disturbance treatments for three of four of these ecotypes. These trade-offs modified dominance relationships between strains and thus altered community composition, with a peak of ecotype diversity occurring at intermediate disturbance frequencies.  相似文献   

9.
I present a model of stochastic community dynamics in which death occurs randomly in the community, propagules disperse randomly from a regional pool, and recruitment of new individuals of a species is proportional to the species local abundance multiplied by its local competitive ability. The competitive ability of a species is assumed to be determined by a function of one trait of the species, and I call this function the environmental filtering function. I show that information on local species abundances in a network of plots, together with trait data for each species, enables the inference of both the immigration rate and the environmental filtering function in each plot. I further study how the diversity patterns produced by this model deviate from the neutral predictions, and how this deviation depends on the characteristics of the environmental filtering function. I show that this inference framework is more powerful at detecting trait-based environmental filtering than existing statistical approaches based on trait distributions, and discuss how the predictions of this model could be used to assess environmental heterogeneity in a plot, to detect functionally meaningful trade-offs among species traits, and to test the assumption that there exists a simple relationship between species traits and local competitive ability.  相似文献   

10.
Natural disturbances have been traditionally defined in terms of major catastrophic events originating in the physical environment and, hence, have been regarded as exogenous agents of vegetation change. Problems with this view are: (1) there is a gradient from minor to major events rather than a uniquely definable set of major catastrophes for each kind of disturbance, and (2) some disturbances are initiated or promoted by the biotic component of the system. Floras are rich in disturbance-adapted species. Disturbances have probably exerted selective pressure in the evolution of species strategies. Heathland cyclic successions and gap-phase dynamics in forests have been viewed as endogenous patterns in vegetation. When death in older individividuals imposes a rhythm on community reproduction, dynamics may indeed be the result of endogenous factors. However, documented cases of senescence in perennial plants are few and many cyclic successions and cases of gap-phase dynamics are initiated by physical factors. Forest dynamics range from those that are the result of individual tree senescence and fall, through those that are the result of blowdown of small groups of healthy trees, to those that are the result of large windstorms which level hectares of forest. The effect of wind ranges from simple pruning of dead plant parts to widespread damage of living trees. Wind speed is probably inversely proportional to occurrence frequency. Disturbances vary continuously. There is a gradient from those community dynamics that are initiated by endogenous factors to those initiated by exogenous factors. Evolution has mediated between species and environment; disturbances are often caused by physical factors but the occurrence and outplay of disturbances may be a function of the state of the community as well. Natural disturbances in North American vegetation are: fire, windstorm, ice storm, ice push on shores, cryogenic soil movement, temperature fluctuation, precipitation variability, alluvial processes, coastal processes, dune movement, saltwater inundation, landslides, lava flows, karst processes, and biotic disturbances. Disturbances vary regionally and within one landscape as a function of topography and other site variables and are characterized by their frequency, predictability, and magnitude. The landscape level is important in assessing disturbance regime. Disturbances and cyclic successions belong to the same class of events—that of recurrent dynamics in vegetation structure—irrespective of cause. Dynamics may result from periodic, abrupt, and catastrophic environmental factors or they may result from an interaction of the changing susceptability of the community and some regular environmental factor. In any case, the dynamics result in heterogeneous landscapes; the species adapted to this heterogeneity are numerous, suggesting their long time importance. The importance of disturbance regime as part of the environmental context of vegetation means that allogenic and autogenic models of vegetation are difficult to apply. Species composition can be seen to be a function of disturbance regime, as well as other environmental variables. Competitive replacement in succession occurs, then, only as disturbances cease to operate and can be viewed as allogenic adjustment to a new disturbance-free environment. Competitive divergence, separation of role, and competition avoidance may, in fact, underlie successional patterns traditionally viewed as the competitive replacement of inferior species by superiorly adapted climax species. The importance of ongoing dynamics is also difficult to reconcile with the concept of climax, founded as it is on the idea of autogenesis within a stable physical environment. Climax composition is relative to disturbance regime. Climax is only arbitrarily distinguished from succession. Climax as an organizing paradigm in plant ecology has obscured the full temporal-spatial dimensions important in understanding the vegetated landscape and the evolution of species which contribute to the landscape patterns. Whittaker’s coenocline concept is accepted with modifications: (1) natural disturbance gradients and Whittaker’s complex gradient are intimately related, (2) temporal variation in the community should be viewed as an added axis of community pattern, and (3) ongoing dynamics have important effects on specificity of species to site relations and the predictability of vegetation patterns. Recent work has suggested an r-K continuum in species strategy. In general, colonizing ability is seen as a trade-off against specialization. Frequent disruption of the community and the creation of open sites seems to result in mixes of species that are fleeting in time and do not repeat in space. Species in such mixes are often tolerant of wide environmental extremes but are compressed into early successional time if disturbance ceases. The composition of such communities is not predictable from site characteristics. Even communities with low disturbance frequency lack complete environmental determinism, and historical events are important in understanding present composition. Communities vary in level of environmental determinism and species differ in niche breadth and degree of site specificity. Management implications of vegetation dynamics are discussed.  相似文献   

11.
Immune defenses have been shown to be heavily involved in the evolution of physiological trade-offs. In this study, we compared the internal defense systems in two subspecies of the land snail Cornu aspersum that exhibit contrasting life-history strategies. The "fast-living" Cornu aspersum subsp. aspersa is widespread throughout the world, especially in ecosystems disturbed by man, whereas natural populations of the giant Cornu aspersum subsp. maxima, characterized by a longer life span, are present only in north Africa. Snails were experimentally challenged with Escherichia coli; the measurements used to assess their internal defense for cell- and humoral-mediated immune responses were bacterial clearance, hemocyte density, reactive oxygen species (ROS) production, and plasma antibacterial activity. Both subspecies showed a similar ability to clear bacteria from their hemolymph; however, they varied in the robustness of different individual immune components. Cornu aspersum aspersa had higher ROS activity than did C. a. maxima and lower plasma bactericidal activity. These results suggest that ecological factors can sculpt the immune response. One interpretation is that shorter life span selects for immune defenses such as ROS that, although effective, can cause long-term damage. Such different immune patterns obviously entail various costs involved in the strong intraspecific variation of life-history trade-offs we previously observed. We also have to consider that such variation might be related to intraspecific differences in the relative strength of resistance and tolerance mechanisms.  相似文献   

12.
Turnbull LA  Rees M  Purves DW 《Ecology letters》2008,11(10):1037-1046
Equalising trade-offs, such as seed mass vs. number, have been invoked to reconcile neutral theory with observed differences between species. This is an appealing explanation for the dramatic seed size variation seen within guilds of otherwise similar plants: under size-symmetric competition, where resource capture is proportional to mass, the outcome of competition should be insensitive to whether species produce many small seeds or few large ones. However, under this assumption, stochastic variation in seed rain leads to exclusion of all but the smallest-seeded species. Thus stochasticity in seed arrivals, a process that was previously thought to generate drift, instead results in deterministic competitive exclusion. A neutral outcome is possible under one special case of a more general equalising framework, where seed mass affects survival but not competition. Further exploration of the feasibility of neutral trade-offs is needed to understand the respective roles of neutrality and niche structure in community dynamics.  相似文献   

13.
Unifying the relationships of species richness to productivity and disturbance   总被引:11,自引:0,他引:11  
Although species richness has been hypothesized to be highest at 'intermediate' levels of disturbance, empirical studies have demonstrated that the disturbance-diversity relationship can be either negative or positive depending on productivity On the other hand, hypothesized productivity diversity relationships can be positive, negative or unimodal, as confirmed by empirical studies. However, it has remained unclear under what conditions each pattern is realized, and there is little agreement about the mechanisms that generate these diverse patterns. In this study, I present a model that synthesizes these separately developed hypotheses and shows that the interactive effects of disturbance and productivity on the competitive outcome of multispecies dynamics can result in these diverse relationships of species richness to disturbance and productivity The predicted productivity diversity relationship is unimodal but the productivity level that maximizes species richness increases with increasing disturbance. Similarly, the predicted disturbance diversity relationship is unimodal but the peak moves to higher disturbance levels with increasing productivity Further, these patterns are well explained by the opposite effects of productivity and disturbance on competitive outcome that are suggested by the change in community composition along these two environmental gradients: higher productivity favours superior competitors while higher disturbance levels favour inferior competitors.  相似文献   

14.
Diao  Yixin  Zhao  Qing  Weng  Yue  Gu  Bojian  Wang  Fang 《Biodiversity and Conservation》2021,30(8-9):2529-2544

Conservation decision-making often relies on species’ distribution changes in response to anthropogenic disturbances but overlook their temporal responses. Filling the knowledge gap on the temporal shifts as elusive responses of wild animals to human activity is important because this may provide information for more proactive conservation planning. In this study, we used camera traps in a field survey technique to investigate the trade-offs between spatial and temporal responses of a mammal community to major human activities in Qinling Mountains, China. We focused on five most abundant mammalian species including giant panda (Ailuropoda melanoleuca), takin (Budorcas taxicolor), wild boar (Sus scrofa), tufted deer (Elaphodus cephalophus), and Chinese goral (Naemorhedus griseus), and examined the drivers of, and the trade-offs between the change of their spatial distributions and daily activity patterns in response to anthropogenic disturbances. We found that in response to human interferences, giant panda and takin mainly changed their distributions, while wild boar, tufted deer and Chinese goral altered their daily activity patterns, indicating the elusive responses of the latter species under anthropogenic stressors. In addition, anthropogenic stressors such as farming and tourism have more profound impacts on mammal communities than previously revealed by species distribution modeling only. For nature reserves that aim to conserve multiple species simultaneously, a more flexible, adaptive management framework is thus needed to capture the trade-offs between multiple species’ spatial and temporal responses to anthropogenic disturbance.

  相似文献   

15.
Aims Much recent theory has focused on the role of neutral processes in assembling communities, but the basic assumption that all species are demographically identical has found little empirical support. Here, we show that the framework of the current neutral theory can easily be generalized to incorporate species differences so long as fitness equivalence among individuals is maintained through trade-offs between birth and death.Methods Our theory development is based on a careful reformulation of the Moran model of metacommunity dynamics in terms of a non-linear one-step stochastic process, which is described by a master equation.Important findings We demonstrate how fitness equalization through demographic trade-offs can generate significant macroecological diversity patterns, leading to a very different interpretation of the relation between Fisher's α and Hubbell's fundamental biodiversity number. Our model shows that equal fitness (not equal demographics) significantly promotes species diversity through strong selective sieving of community membership against high-mortality species, resulting in a positive association between species abundance and per capita death rate. An important implication of demographic trade-off is that it can partly explain the excessively high speciation rates predicted by the neutral theory of the stronger symmetry. Fitness equalization through demographic trade-offs generalizes neutral theory by considering heterospecific demographic difference, thus representing a significant step toward integrating the neutral and niche paradigms of biodiversity.  相似文献   

16.
Reconciling niche and neutrality through the Emergent Group approach   总被引:2,自引:0,他引:2  
Both niche and neutral theories have been suggested as potential frameworks for modelling biodiversity. Niche models assume that biological traits represent evolutionary adaptations and define individuals in terms of functional trade-offs. Neutral models assume that all individuals at a single trophic level are functionally equivalent on a per capita basis with respect to their birth, death, dispersal and speciation. The opinion of many researchers is that neutral and niche processes operate simultaneously to generate diversity without knowing how the unification of both models can be achieved. Recently, several theoretical papers have reported evidence on the evolutionary emergence of niche structures shaping the emergence of groups of similar species. In this way, an Emergent Group is defined as a set of species that have a similar functional niche owing to a convergent ecological strategy. Central to the Emergent Group concept are the assumptions of functional equivalence within and of functional divergence between Emergent Groups. Within an Emergent Group, species richness is subject to a zero-sum rule set by the balance between the rate of individual loss and of immigration. Between Emergent Groups, tradeoffs such as seed size/seedling competitivity, investment in reproductive system/investment in vegetative systems or competitive ability/predator invulnerability are cornerstones of the evolutionary divergence. Delineating Emergent Groups amounts to reaching a compromise between maximizing niche differentiation (i.e. maximizing differences in functional tradeoffs) between Emergent Groups and maximizing neutrality within Emergent Groups. Up to now, the Emergent Group concept has been mostly proposed by theoretical scientists but it should be tested by empirical ecologists. The way in which niche and neutral models could be combined provides a profitable opportunity for theoretical and empirical scientists to collaborate fruitfully.  相似文献   

17.
Disturbance has many effects on ecological communities, and it is often suggested that disturbance can affect species diversity by altering competitive outcomes. However, disturbance regimes have many distinct aspects that may act, and interact, to influence species diversity. While there are many theoretical models of disturbance-prone communities, few have specifically documented how interactions between different aspects of a disturbance regime change competitive outcomes. Here, we present a model of two plant species subject to disturbance which we then use to examine species coexistence over varying levels of two aspects of disturbance: frequency, and spatial extent (i.e., area disturbed). We show that the competitive outcome is affected differently by changes in each aspect and that the effect of disturbance frequency on species coexistence depends strongly on the spatial extent of the disturbance, and vice versa. We classify the nature of these interactions between disturbance frequency and extent on the basis of the shape of the resulting coexistence regions in a frequency?Cextent parameter plane. Our results illustrate that different types of interaction can result from differences in life-history traits that control species-specific sensitivity to frequency and extent of disturbance. Thus, our analysis shows that the various aspects of disturbance must be carefully considered in concert with the life-history traits of the community members in order to assess the consequences of disturbance.  相似文献   

18.
Trade-offs in performance of different ecological functions within a species are commonly offered as an explanation for co-existence in natural communities. Single trade-offs between competitive ability and other life history traits have been shown to support a large number of species, as a result of strong competitive asymmetry. We consider a single competition-fecundity trade-off in a homogeneous environment, and examine the effect of the form of asymmetry on the likelihood of species co-existing. We find conditions that allow co-existence of two species for a general competition function, and show that (1)?two species can only co-exist if the competition function is sufficiently steep when the species are similar; (2)?when competition is determined by a linear function, no more than two species can co-exist; (3)?when the competition between two individuals is determined by a discontinuous step function, this single trade-off can support an arbitrarily large number of species. Further, we show analytically that as the degree of asymmetry in competition increases, the probability of a given number of species co-existing also increases, but note that even in the most favourable conditions, large numbers of species co-existing along a single trade-off is highly unlikely. On this basis, we suggest it is unlikely that single trade-offs are able to support high levels of bio-diversity without interacting other processes.  相似文献   

19.
Longevity is a life-history trait that is shaped by natural selection. An unexplored consequence is how selection on this trait affects diversity and diversification in species assemblages. Motivated by the diverse rockfish (Sebastes) assemblage in the North Pacific, the effects of trade-offs in longevity against competitive ability are explored. A competition model is developed and used to explore the potential for species diversification and coexistence. Invasion analyses highlight that life-history trait trade-offs in longevity can mitigate the effects of competitive ability and favour the coexistence of a finite number of species. Our results have implications for niche differentiation, limiting similarity and assembly dynamics in multispecies interactions.  相似文献   

20.
Indicator taxa are commonly used to identify priority areas for conservation or to measure biological responses to environmental change. Despite their widespread use, there is no general consensus about the ability of indicator taxa to predict wider trends in biodiversity. Many studies have focused on large-scale patterns of species co-occurrence to identify areas of high biodiversity, threat or endemism, but there is much less information about patterns of species co-occurrence at local scales. In this study, we assess fine-scale co-occurrence patterns of three indicator taxa (epiphytic ferns, leaf litter frogs and dung beetles) across a remotely sensed gradient of human disturbance in the Ecuadorian Amazon. We measure the relative contribution of rare and common species to patterns of total richness in each taxon and determine the ability of common and rare species to act as surrogate measures of human disturbance and each other. We find that the species richness of indicator taxa changed across the human disturbance gradient but that the response differed among taxa, and between rare and common species. Although we find several patterns of co-occurrence, these patterns differed between common and rare species. Despite showing complex patterns of species co-occurrence, our results suggest that species or taxa can act as reliable indicators of each other but that this relationship must be established and not assumed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号