首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 578 毫秒
1.
2.
Obesity is a worldwide disease that is accompanied by several metabolic abnormalities such as hypertension, hyperglycemia and dyslipidemia. The accelerated adipose tissue growth and fat cell hypertrophy during the onset of obesity precedes adipocyte dysfunction. One of the features of adipocyte dysfunction is dysregulated adipokine secretion, which leads to an imbalance of pro-inflammatory, pro-atherogenic versus anti-inflammatory, insulin-sensitizing adipokines. The production of renin–angiotensin system (RAS) components by adipocytes is exacerbated during obesity, contributing to the systemic RAS and its consequences. Increased adipose tissue RAS has been described in various models of diet-induced obesity (DIO) including fructose and high-fat feeding. Up-regulation of the adipose RAS by DIO promotes inflammation, lipogenesis and reactive oxygen species generation and impairs insulin signaling, all of which worsen the adipose environment. Consequently, the increase of circulating RAS, for which adipose tissue is partially responsible, represents a link between hypertension, insulin resistance in diabetes and inflammation during obesity. However, other nutrients and food components such as soy protein attenuate adipose RAS, decrease adiposity, and improve adipocyte functionality. Here, we review the molecular mechanisms by which adipose RAS modulates systemic RAS and how it is enhanced in obesity, which will explain the simultaneous development of metabolic syndrome alterations. Finally, dietary interventions that prevent obesity and adipocyte dysfunction will maintain normal RAS concentrations and effects, thus preventing metabolic diseases that are associated with RAS enhancement.  相似文献   

3.
Objective: Human immunodeficiency virus (HIV) patients on antiretroviral regimens frequently develop a syndrome of abnormal fat distribution, insulin resistance, and dyslipidemia. This lipodystrophic syndrome has been most closely linked to the use of HIV protease inhibitors (PIs). Several mechanisms have been postulated to explain these adverse effects of PIs, based largely on studies of rodent adipocytes. Intriguingly, atazanavir, a newer PI equally effective against HIV, is associated with fewer signs of lipodystrophy. We hypothesized that the less deleterious clinical effects of atazanavir would be reflected in physiological differences observed in PI‐treated adipocytes. Research Methods and Procedures: We compared the effects of atazanavir and an older PI associated with lipodystrophy, ritonavir, on differentiation, gene expression, adipocytokine secretion, and insulin signaling in a human adipocyte cell line. Results: Ritonavir inhibited human adipocyte differentiation and induced apoptosis to a greater extent than atazanavir. Treatment of mature adipocytes with ritonavir, but not atazanavir, also selectively decreased insulin signaling. Moreover, ritonavir also selectively decreased expression of adiponectin, an insulin‐sensitizing adipocytokine, while inducing interleukin‐6, a proinflammatory cytokine implicated in insulin resistance. Discussion: These data suggest that the distinct metabolic side effect profiles of these PIs could be a consequence of their differential effects on adipocyte physiology.  相似文献   

4.
Obesity, insulin resistance and the metabolic syndrome, are characterized by expansion and inflammation of adipose tissue, including the depots surrounding the heart and the blood vessels. Epicardial adipose tissue (EAT) is a visceral thoracic fat depot located along the large coronary arteries and on the surface of the ventricles and the apex of the heart, whereas perivascular adipose tissue (PVAT) surrounds the arteries. Both fat depots are not separated by a fascia from the underlying tissue. Therefore, factors secreted from epicardial and PVAT, like free fatty acids and adipokines, can directly affect the function of the heart and blood vessels. In this review, we describe the alterations found in EAT and PVAT in pathological states like obesity, type 2 diabetes, the metabolic syndrome and coronary artery disease. Furthermore, we discuss how changes in adipokine expression and secretion associated with these pathological states could contribute to the pathogenesis of cardiac contractile and vascular dysfunction.  相似文献   

5.
代谢综合症是一系列代谢和心血管功能失调的临床特征,包括中心性肥胖、高血压、血脂异常、高血糖及胰岛素抵抗等,其发病机制及如何预防及控制代谢综合症正日益成为目前的学术热点。目前已经公认,脂肪不仅是能量存储器官,也是一个重要的内分泌器官。脂肪组织分泌的生物活性分子被称为脂肪因子。近年来的研究表明,脂肪因子广泛参与肥胖、2型糖尿病、高血压病及心血管疾病等一系列代谢相关性疾病的病理生理过程。脂肪因子能通过介导一系列的信号转导通路,并广泛参与机体复杂的代谢平衡网络的调节。脂肪因子的失衡能导致机体发生对胰岛素敏感性改变等一系列的生物学反应,从而在肥胖和代谢综合症的病理过程中发挥重要的作用。本文综述了脂肪因子与代谢综合征的关系的研究进展。  相似文献   

6.
A subset of HIV-1-infected patients undergoing antiretroviral treatment develops a lipodystrophy syndrome. It is characterized by loss of peripheral subcutaneous adipose tissue (face, limbs, buttocks), visceral fat accumulation, and, in some cases, lipomatosis, especially in the dorsocervical area. In addition, these patients show metabolic alterations reminiscent of the metabolic syndrome, particularly dyslipidemia and insulin resistance. These alterations lead to enhanced cardiovascular risk in patients and favor the development of diabetes. Although a complex combination of HIV-1 infection and drug treatment-related events triggers the syndrome, lipotoxicity appears to contribute to the development of the syndrome. Active lipolysis in subcutaneous fat, combined with impaired fat storage capacity in the subcutaneous depot, drive ectopic deposition of lipids, either in the visceral depot or in nonadipose sites. Both hepatic steatosis and increased lipid content in skeletal muscle take place and surely contribute to systemic metabolic alterations, especially insulin resistance. Pancreatic function may also be affected by the exposure to high levels of fatty acids; together with direct effects of antiretroviral drugs, this may contribute to impaired insulin release and a prodiabetic state in the patients. Addressing lipotoxicity as a pathogenic actor in the lipodystrophy syndrome should be considered in strategies for treating and/or preventing the morphological alterations and systemic metabolic disturbances associated with lipodystrophy.  相似文献   

7.
Stephan Herzig 《The EMBO journal》2017,36(14):1999-2017
Adipose tissue represents a critical component in healthy energy homeostasis. It fulfills important roles in whole‐body lipid handling, serves as the body's major energy storage compartment and insulation barrier, and secretes numerous endocrine mediators such as adipokines or lipokines. As a consequence, dysfunction of these processes in adipose tissue compartments is tightly linked to severe metabolic disorders, including obesity, metabolic syndrome, lipodystrophy, and cachexia. While numerous studies have addressed causes and consequences of obesity‐related adipose tissue hypertrophy and hyperplasia for health, critical pathways and mechanisms in (involuntary) adipose tissue loss as well as its systemic metabolic consequences are far less understood. In this review, we discuss the current understanding of conditions of adipose tissue wasting and review microenvironmental determinants of adipocyte (dys)function in related pathophysiologies.  相似文献   

8.
The lipodystrophy syndrome (adipose tissue redistribution and metabolic abnormalities) observed with highly active antiretroviral therapy (HAART) during human immunodeficiency virus (HIV) infection may be related to increased proinflammatory cytokine activity. We measured acute cytokine (TNF-alpha, IL-6, leptin), glycerol, and lactate secretion from abdominal subcutaneous adipose tissue (SAT), and systemic cytokine levels, in HIV-infected subjects with and without lipodystrophy (HIVL+ and HIVL-, respectively) and healthy non-HIV controls. Lipodystrophy was confirmed and characterized as adipose tissue redistribution in HIVL+ compared with HIVL- and controls, by dual-energy X-ray absorptiometry and by whole body MRI. TNF-alpha secretion from abdominal SAT and circulating levels of IL-6, soluble TNF receptors I and II, and insulin were elevated in HIVL+ relative to HIVL- and/or controls, particularly in HIVL+ undergoing HAART. In the HIV-infected group as a whole, IL-6 secretion from abdominal SAT and serum IL-6 were positively associated with visceral fat and were negatively associated with the relative amount of lower limb adipose tissue (P < 0.01). Decreased leptin and increased lactate secretion from abdominal SAT were specifically associated with HAART. In conclusion, increased cytokine secretion from adipose tissue and increased systemic proinflammatory cytokine activity may play a significant role in the adipose tissue remodeling and/or the metabolic abnormalities associated with the HIV-lipodystrophy syndrome in patients undergoing HAART.  相似文献   

9.
Metabolic syndrome consists of metabolic abnormality with central obesity, hypertriglyceridemia, insulin resistance and hypertension. Adipose tissue has been known as a primary site of insulin resistance and its adipocyte size may be correlated with the degree of insulin resistance. A designed angiopoietin-1, COMP-Angiopoietin-1 (COMP-Ang1), mitigated high-fat diet-induced insulin resistance in skeletal muscle. In this study, we examined effects of COMP-Ang1 on adipocyte droplet size, vascular endothelial cell density in adipose tissue and metabolic parameters in db/db mice by administering COMP-Ang1 or LacZ (as a control) adenovirus. Administration of COMP-Ang1 decreased fat droplet diameter in epididymal and abdominal visceral adipocyte and visceral fat content in db/db mice. The density of vascular endothelial cell in adipose tissue was increased in db/db mice after treatment with COMP-Ang1. Serum resistin and tumor necrosis factor-α level was lower after treatment with COMP-Ang1 in db/db mice. COMP-Ang1 caused a restoration of fasting glycemic control in db/db mice and decreased serum insulin level and insulin resistance measured by HOMA index. These findings indicate that COMP-Ang1 regulates adipocyte fat droplet diameter, vascular endothelial cell density and metabolic parameters in db/db mice.  相似文献   

10.
《Endocrine practice》2010,16(2):310-323
ObjectiveTo review the initial clinical manifestations of congenital and acquired lipodystrophy syndromes, discuss novel classifications associated with genetic mutations, and assess currently available therapeutic options for patients with lipodystrophy.MethodsThis review is the result of the authors’ collective clinical experience and a comprehensive MEDLINE literature search on the English-language literature published between January 1966 and October 2009 on “lipodystrophy.” This review focuses primarily on severe lipodystrophy not related to human immunodeficiency virus (HIV) infection, in light of the additional scope required to cover HIV-related lipodystrophy.ResultsCongenital lipodystrophy syndromes are characterized by a paucity of adipose tissue and classified on the basis of the extent of fat loss and heritability. Paradoxically, they are associated with metabolic abnormalities often found in obese patients, including insulin resistance, diabetes, and severe hypertriglyceridemia. Patients with severe forms of lipodystrophy are also deficient in adipokines such as leptin, which may contribute to metabolic abnormalities. The search for molecular defects has revealed a role for genes that affect adipocyte differentiation (for example, peroxisome proliferator-activated receptorg), lipid droplet morphology (seipin, caveolin-1), or lipid metabolism (AGPAT2). Others (lamin A/C) are known to be associated with completely different diseases. There are also acquired forms of lipodystrophy that are thought to occur primarily attributable to autoimmune mechanisms. Recently, recombinant leptin has emerged as a useful therapy.ConclusionLipodystrophy syndromes have advanced our understanding of the physiologic role of adipose tissue and allowed identification of key molecular mechanisms involved in adipocyte differentiation. Novel therapeutic strategies are being developed on the basis of the pathophysiologic aspects of these syndromes. (Endocr Pract. 2010;16:310-323)  相似文献   

11.
Obesity is characterized by dysfunctional white adipose tissue (WAT) that ultimately may lead to metabolic diseases. Calorie restriction (CR) reduces the risk for age and obesity-associated complications. The impact of CR on obesity has been examined with human intervention studies, which showed alterations in circulating adipokines. However, a direct effect of CR on the human adipocyte secretome remains elusive. Therefore, the effect of a 96 h low glucose CR on the secretion profile of in vitro cultured mature human SGBS adipocytes was investigated by using proteomics technology. Low-glucose CR decreased the adipocyte triglyceride contents and resulted in an altered secretion profile. Changes in the secretome indicated an improved inflammatory phenotype. In addition, several adipocyte-secreted proteins related to insulin resistance showed a reversed expression after low-glucose CR. Furthermore, 6 novel CR-regulated adipocyte-secreted proteins were identified. Since resveratrol (RSV) mimics CR we compared results from this study with data from our previous RSV study on the SGBS adipocyte secretome. The CR and RSV adipocyte secretomes partly differed from each other, although both treatment strategies lead to secretome changes indicating a less inflammatory phenotype. Furthermore, both treatments induced SIRT1 expression and resulted in a reversed expression of detrimental adipokines associated with metabolic complications.  相似文献   

12.
Women have more body fat than men, but in contrast to the deleterious metabolic consequences of the central obesity typical of men, the pear-shaped body fat distribution of many women is associated with lower cardiometabolic risk. To understand the mechanisms regulating adiposity and adipose tissue distribution in men and women, significant research attention has focused on comparing adipocyte morphological and metabolic properties, as well as the capacity of preadipocytes derived from different depots for proliferation and differentiation. Available evidence points to possible intrinsic, cell autonomous differences in preadipocytes and adipocytes, as well as modulatory roles for sex steroids, the microenvironment within each adipose tissue, and developmental factors. Gluteal-femoral adipose tissues of women may simply provide a safe lipid reservoir for excess energy, or they may directly regulate systemic metabolism via release of metabolic products or adipokines. We provide a brief overview of the relationship of fat distribution to metabolic health in men and women, and then focus on mechanisms underlying sex differences in adipose tissue biology.  相似文献   

13.
The role of sexual dimorphic adipose tissue fat accumulation in the development of insulin resistance is well known. However, whether vitamin A status and/or its metabolic pathway display any sex- or depot (visceral/subcutaneous)-specific pattern and have a role in sexual dimorphic adipose tissue development and insulin resistance are not completely understood. Therefore, to assess this, 5 weeks old Wistar male and female rats of eight from each sex were provided either control or diabetogenic (high fat, high sucrose) diet for 26 weeks. At the end, consumption of diabetogenic diet increased the visceral fat depots (p < 0.001) in the males and subcutaneous depot (p < 0.05) in the female rats, compared to their sex-matched controls. On the other hand, it caused adipocyte hypertrophy (p < 0.05) of visceral depot (retroperitoneal) in the females and subcutaneous depot of the male rats. Although vitamin A levels displayed sex- and depot-specific increase due to the consumption of diabetogenic diet, the expression of most of its metabolic pathway genes in adipose depots remained unaltered. However, the mRNA levels of some of lipid droplet proteins (perilipins) and adipose tissue secretory proteins (interleukins, lipocalin-2) did display sexual dimorphism. Nonetheless, the long-term feeding of diabetogenic diet impaired the insulin sensitivity, thus affected glucose clearance rate and muscle glucose-uptake in both the sexes of rats. In conclusion, the chronic consumption of diabetogenic diet caused insulin resistance in the male and female rats, but did not corroborate with sexual dimorphic adipose tissue fat accumulation or its vitamin A status.  相似文献   

14.
Effects of HIV protease inhibitor therapy on lipid metabolism   总被引:1,自引:0,他引:1  
Highly active antiretroviral therapy, which includes a combination of protease inhibitors, is highly successful in controlling human immunodeficiency virus (HIV) infection and reducing the morbidity and mortality of autoimmune deficiency syndrome (AIDS). However, the benefits of HIV protease inhibitors are compromised by numerous undesirable side effects. These include peripheral fat wasting and excessive central fat deposition (lipodystrophy), overt hyperlipidemia, and insulin resistance. The mechanism associated with protease inhibitor-induced metabolic abnormalities is multifactorial. One major effect of the protease inhibitor is its suppression of the breakdown of the nuclear form of sterol regulatory element binding proteins (nSREBP) in the liver and adipose tissues. Hepatic accumulation of nSREBP results in increased fatty acid and cholesterol biosynthesis, whereas nSREBP accumulation in adipose tissue causes lipodystrophy, reduces leptin expression, and promotes insulin resistance. The HIV protease inhibitors also suppress proteasome-mediated breakdown of nascent apolipoprotein (apo) B, thus resulting in the overproduction and secretion of triglyceride-rich lipoproteins. Finally, protease inhibitor also suppresses the inhibition of the glucose transporter GLUT-4 activity in adipose and muscle. This latter effect also contributes directly to insulin resistance and diabetes. These adverse effects need to be alleviated for long-term use of protease inhibitor therapy in treatment of HIV infection.  相似文献   

15.
New insights into inhibitors of adipogenesis   总被引:4,自引:0,他引:4  
  相似文献   

16.

Background

The adipose tissue is important for development of insulin resistance and type 2 diabetes and adipose tissue dysfunction has been proposed as an underlying cause. In the present study we investigated presence of adipocyte hypertrophy, and gene expression pattern of adipose tissue dysfunction in the subcutaneous adipose tissue of healthy, non-obese subjects predisposed to type 2 diabetes compared to matched control subjects with no known genetic predisposition for type 2 diabetes.

Method

Seventeen healthy and non-obese subjects with known genetic predisposition for type 2 diabetes (first-degree relatives, FDRs) and 17 control subjects were recruited. The groups were matched for gender and BMI and had similar age. Glucose tolerance was determined by an oral glucose tolerance test and insulin sensitivity was calculated using HOMA-index. Blood samples were collected and subcutaneous abdominal adipose tissue biopsies obtained for gene expression analysis and adipocyte cell size measurement.

Results

Our findings show that, in spite of similar age, BMI and percent body fat, FDRs displayed adipocyte hypertrophy, as well as higher waist/hip ratio, fasting insulin levels, HOMA-IR and serum triglycerides. Adipocyte hypertrophy in the FDR group, but not among controls, was associated with measures of impaired insulin sensitivity. The adipocyte hypertrophy was accompanied by increased inflammation and Wnt-signal activation. In addition, signs of tissue remodeling and fibrosis were observed indicating presence of early alterations associated with adipose tissue dysfunction in the FDRs.

Conclusion

Genetic predisposition for type 2 diabetes is associated with impaired insulin sensitivity, adipocyte hypertrophy and other markers of adipose tissue dysfunction. A dysregulated subcutaneous adipose tissue may be a major susceptibility factor for later development of type 2 diabetes.  相似文献   

17.
A high-fat diet (HFD) is associated with adipose inflammation, which contributes to key components of metabolic syndrome, including obesity and insulin resistance. The increased visceral adipose tissue mass associated with obesity is the result of hyperplasia and hypertrophy of adipocytes. To investigate the effects of exercise on HFD-induced metabolic disorders, male C57BL/6 mice were divided into four groups: SED (sedentary)-ND (normal diet), EX (exercise)-ND, SED-HFD, and EX-HFD. Exercise was performed on a motorized treadmill at 15 m/min, 40 min/day, and 5 day/wk for 8 wk. Exercise resulted in a decrease in abdominal fat contents and inflammation, improvements in glucose tolerance and insulin resistance, and enhancement of vascular constriction and relaxation responses. Exercise with or without HFD increased putative brown adipocyte progenitor cells in brown adipose tissue compared with groups with the same diet, with an increase in brown adipocyte-specific gene expression in brown and white adipose tissue. Exercise training enhanced in vitro differentiation of the preadipocytes from brown adipose depots into brown adipocytes and enhanced the expression of uncoupling protein 1. These findings suggest that exercise ameliorates high-fat diet-induced metabolic disorders and vascular dysfunction, and increases adipose progenitor cell population in brown adipose tissue, which might thereby contribute to enhanced functional brown adipose.  相似文献   

18.
ABSTRACT: Women have more body fat than men, but in contrast to the deleterious metabolic consequences of the central obesity typical of men, the pear-shaped body fat distribution of many women is associated with lower cardiometabolic risk. To understand the mechanisms regulating adiposity and adipose tissue distribution in men and women, significant research attention has focused on comparing adipocyte morphological and metabolic properties, as well as the capacity of preadipocytes derived from different depots for proliferation and differentiation. Available evidence points to possible intrinsic, cell autonomous differences in preadipocytes and adipocytes, as well as modulatory roles for sex steroids, the microenvironment within each adipose tissue, and developmental factors. Gluteal-femoral adipose tissues of women may simply provide a safe lipid reservoir for excess energy, or they may directly regulate systemic metabolism via release of metabolic products or adipokines. We provide a brief overview of the relationship of fat distribution to metabolic health in men and women, and then focus on mechanisms underlying sex differences in adipose tissue biology.  相似文献   

19.
Adipose tissue secretes adipokines that mediate insulin resistance, a characteristic feature of obesity and type 2 diabetes. By differential proteome analysis of cellular models of insulin resistance, we identified progranulin (PGRN) as an adipokine induced by TNF-α and dexamethasone. PGRN in blood and adipose tissues was markedly increased in obese mouse models and was normalized with treatment of pioglitazone, an insulin-sensitizing agent. Ablation of PGRN (Grn(-/-)) prevented mice from high fat diet (HFD)-induced insulin resistance, adipocyte hypertrophy, and obesity. Grn deficiency blocked elevation of IL-6, an inflammatory cytokine, induced by HFD in blood and adipose tissues. Insulin resistance induced by chronic administration of PGRN was suppressed by neutralizing IL-6 in vivo. Thus, PGRN is a key adipokine that mediates HFD-induced insulin resistance and obesity through production of IL-6 in adipose tissue, and may be a promising therapeutic target for obesity.  相似文献   

20.
The roles of adipokines, proinflammatory cytokines, and adipose tissue macrophages in obesity-associated insulin resistance have been explored in both animal and human studies. However, our current understanding of obesity-associated insulin resistance relies on studies of artificial metabolic extremes. The purpose of this study was to explore the roles of adipokines, proinflammatory cytokines, and adipose tissue macrophages in human patients with modest obesity and early metabolic dysfunction. We obtained omental adipose tissue and fasting blood samples from 51 females undergoing gynecologic surgery. We investigated serum concentrations of proinflammatory cytokines and adipokines as well as the mRNA expression of proinflammatory and macrophage phenotype markers in visceral adipose tissue using ELISA and quantitative RT-PCR. We measured adipose tissue inflammation and macrophage infiltration using immunohistochemical analysis. Serum levels of adiponectin and leptin were significantly correlated with HOMA-IR and body mass index. The levels of expression of MCP-1 and TNF-α in visceral adipose tissue were also higher in the obese group (body mass index ≥ 25). The expression of mRNA MCP-1 in visceral adipose tissue was positively correlated with body mass index (r = 0.428, p = 0.037) but not with HOMA-IR, whereas TNF-α in visceral adipose tissue was correlated with HOMA-IR (r = 0.462, p = 0.035) but not with body mass index. There was no obvious change in macrophage phenotype or macrophage infiltration in patients with modest obesity or early metabolic dysfunction. Expression of mRNA CD163/CD68 was significantly related to mitochondrial-associated genes and serum inflammatory cytokine levels of resistin and leptin. These results suggest that changes in the production of inflammatory biomolecules precede increased immune cell infiltration and induction of a macrophage phenotype switch in visceral adipose tissue. Furthermore, serum resistin and leptin have specific roles in the regulation of adipose tissue macrophages in patients with modest obesity or early metabolic dysfunction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号