首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Currently, it is still a significant challenge to simultaneously boost various reactions by one electrocatalyst with high activity, excellent durability, as well as low cost. Herein, hybrid trifunctional electrocatalysts are explored via a facile one‐pot strategy toward an efficient oxygen reduction reaction (ORR), oxygen evolution reaction (OER), and hydrogen evolution reaction (HER). The catalysts are rationally designed to be composed by FeCo nanoparticles encapsuled in graphitic carbon films, Co2P nanoparticles, and N,P‐codoped carbon nanofiber networks. The FeCo nanoparticles and the synergistic effect from Co2P and FeCo nanoparticles make the dominant contributions to the ORR, OER, and HER activities, respectively. Their bifunctional activity parameter (?E) for ORR and OER is low to 0.77 V, which is much smaller than those of most nonprecious metal catalysts ever reported, and comparable with state‐of‐the‐art Pt/C and RuO2 (0.78 V). Accordingly, the as‐assembled Zn–air battery exhibits a high power density of 154 mW cm?2 with a low charge–discharge voltage gap of 0.83 V (at 10 mA cm?2) and excellent stability. The as‐constructed overall water‐splitting cell achieves a current density of 10 mA cm?2 (at 1.68 V), which is comparable to the best reported trifunctional catalysts.  相似文献   

2.
The future large‐scale deployment of rechargeable zinc–air batteries requires the development of cheap, stable, and efficient bifunctional electrocatalysts for the oxygen reduction reaction (ORR) and oxygen evolution reaction (OER). In this work, a highly efficient bifunctional electrocatalyst is prepared by depositing 3–5 nm NiFe layered double hydroxide (NiFe‐LDH) nanoparticles on Co,N‐codoped carbon nanoframes (Co,N‐CNF). The NiFe‐LDH/Co,N‐CNF electrocatalyst displayed an OER overpotential of 0.312 V at 10 mA cm?2 and an ORR half‐wave potential of 0.790 V. The outstanding performance of the electrocatalyst is attributable to the high electrical conductivity and excellent ORR activity of Co,N‐CNF, together with the strong anchoring of 3–5 nm NiFe‐LDH nanoparticles, which preserves active sites. Inspired by the excellent OER and ORR performance of NiFe‐LDH/Co,N‐CNF, a prototype rechargeable zinc–air battery is developed. The battery exhibited a low discharge–charge voltage gap (1.0 V at 25 mA cm?2) and long‐term cycling durability (over 80 h), and superior overall performance to a counterpart battery constructed using a mixture of IrO2 and Pt/C as the cathode. The strategy developed here can easily be adapted to synthesize other bifunctional CNF‐based hybrid electrodes for ORR and OER, providing a practical route to more efficient rechargeable zinc–air batteries.  相似文献   

3.
Rational design and construction of a multifunctional electrocatalyst featuring with high efficiency and low cost is fundamentally important to realize new energy technologies. Herein, a trifunctional electrocatalyst composed of FePx nanoparticles and Fe–N–C moiety supported on the N‐, P‐codoped carbon (NPC) is masterly synthesized by a facile one‐pot pyrolysis of the mixture of tannic acid, ferrous chloride, and sodium hydrogen phosphate. The synergy of each component in the FePx/Fe–N–C/NPC catalyst renders high catalytic activities and excellent durability toward both oxygen reduction reaction (ORR), oxygen evolution reaction (OER), and hydrogen evolution reaction (HER). The electrocatalytic performance and practicability of the robust FePx/Fe–N–C/NPC catalyst are further investigated under the practical operation conditions. Particularly, the overall water splitting cell assembled by the FePx/Fe–N–C/NPC catalyst only requires a voltage of 1.58 V to output the benchmark current density of 10 mA cm?2, which is superior to that of IrO2–Pt/C‐based cell. Moreover, the FePx/Fe–N–C/NPC‐based zinc–air batteries deliver high round‐trip efficiency and remarkable cycling stability, much better than that of Pt/C–IrO2 pair‐based batteries. This work offers a new strategy to design and synthesize highly effective multifunctional electrocatalysts using cheaper tannic acid derived carbon as support applied in electrochemical energy devices.  相似文献   

4.
Water splitting is a promising technology for sustainable conversion of hydrogen energy. The rational design of oxygen evolution reaction (OER) and hydrogen evolution reaction (HER) bifunctional electrocatalysts with superior activity and stability in the same electrolyte is the key to promoting their large‐scale applications. Herein, an ultralow Ru (1.08 wt%) transition metal phosphide on nickel foam (Ru–MnFeP/NF) derived from Prussian blue analogue, that effectively drivies both the OER and the HER in 1 m KOH, is reported. To reach 20 mA cm?2 for OER and 10 mA cm?2 for HER, the Ru–MnFeP/NF electrode only requires overpotentials of 191 and 35 mV, respectively. Such high electrocatalytic activity exceeds most transition metal phosphides for the OER and the HER, and even reaches Pt‐like HER electrocatalytic levels. Accordingly, it significantly accelerates full water splitting at 10 mA cm?2 with 1.470 V, which outperforms that of the integrated RuO2 and Pt/C couple electrode (1.560 V). In addition, the extremely long operational stability (50 h) and the successful demonstration of a solar‐to‐hydrogen generation system through full water splitting provide more flexibility for large‐scale applications of Ru–MnFeP/NF catalysts.  相似文献   

5.
Efficient and cost‐effective bifunctional electrocatalysts for oxygen evolution reaction (OER) and oxygen reduction reaction (ORR) are of vital importance in energy conversion and storage devices. Despite the recent progress in bifunctional oxygen electrocatalysts, their unbalanced and insufficient OER and ORR activities has continued to pose challenges for the practical application of such energy devices. The design of highly integrated, high‐performance, bifunctional oxygen electrocatalysts composed of highly graphitic nanoshells embedded in mesoporous carbon (GNS/MC) is reported. The GNS/MC exhibits very high oxygen electrode activity, which is one of the best performances among nonprecious metal bifunctional oxygen electrocatalysts, and substantially outperforms Ir‐ and Pt‐based catalysts. Moreover, the GNS/MC shows excellent durability for both OER and ORR. In situ X‐ray absorption spectroscopy and square wave voltammetry reveal the roles of residual Ni and Fe entities in enhancing OER and ORR activities. Raman spectra indicate highly graphitic, defect‐rich nature of the GNS/MC, which can contribute to the enhanced OER activity and to high stability for the OER and ORR. In aqueous Na–air battery tests, the GNS/MC air cathode‐based cell exhibits superior performance to Ir/C‐ and Pt/C‐based batteries. Significantly, the GNS/MC‐based cell demonstrates the first example of rechargeable aqueous Na–air battery.  相似文献   

6.
A bifunctional evolution reaction (OER) and oxygen reduction reaction (ORR) electrocatalysts are developed, based on codoped mesoporous carbon microspheres from ecofriendly biomass of eggs without the introduction of extrinsic dopants, via a facile and high‐throughput spray‐drying process. The obtained egg‐derived mesoporous carbon microspheres (egg‐CMS) present large specific surface area and high pore volume, as well as abundant dopant types including nitrogen, phosphorous, and iron that are originated from the innate protein and small organic molecule contents. When fabricated as OER or ORR catalysts, these egg‐CMS exhibit low onset potentials, high current densities, small Tafel slopes, and excellent stabilities. As a proof‐of‐concept, a rechargeable Zn‐air battery is demonstrated using the high‐active egg‐CMS as a bifunctional OER and ORR catalyst, suggesting the capability of utilizing full biomass materials for efficient energy storage and utilization.  相似文献   

7.
Rational design and massive production of bifunctional catalysts with superior oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) activities are essential for developing metal–air batteries and fuel cells. Herein, controllable large‐scale synthesis of sulfur‐doped CaMnO3 nanotubes is demonstrated via an electrospinning technique followed by calcination and sulfurization treatment. The sulfur doping can not only replace oxygen atoms to increase intrinsic electrical conductivity but also introduce abundant oxygen vacancies to provide enough catalytically active sites, which is further demonstrated by density functional theory calculation. The resulting sulfur‐modified CaMnO3 (CMO/S) exhibits better electrocatalytic activity for ORR and OER in alkaline solution with higher stability performance than the pristine CMO. These results highlight the importance of sulfur treatment as a facile yet effective strategy to improve the ORR and OER catalytic activity of the pristine CaMnO3. As a proof‐of‐concept, a rechargeable Zn–air battery using the bifunctional catalyst exhibits a small charge–discharge voltage polarization, and long cycling life. Furthermore, a solid‐state flexible and rechargeable Zn–air battery gives superior discharge–charge performance and remarkable stability. Therefore, the CMO/S nanotubes might be a promising replacement to the Pt‐based electrocatalysts for metal–air batteries and fuel cells.  相似文献   

8.
Herein, a facile, one‐step hydrothermal route to synthesize novel all‐carbon‐based composites composed of B‐doped graphene quantum dots anchored on a graphene hydrogel (GH‐BGQD) is demonstrated. The obtained GH‐BGQD material has a unique 3D architecture with high porosity and large specific surface area, exhibiting abundant catalytic active sites of B‐GQDs as well as enhanced electrolyte mass transport and ion diffusion. Therefore, the prepared GH‐BGQD composites exhibit a superior trifunctional electrocatalytic activity toward the oxygen reduction reaction, oxygen evolution reaction, and hydrogen evolution reaction with excellent long‐term stability and durability comparable to those of commercial Pt/C and Ir/C catalysts. A flexible solid‐state Zn–air battery using a GH‐BGQD air electrode achieves an open‐circuit voltage of 1.40 V, a stable discharge voltage of 1.23 V for 100 h, a specific capacity of 687 mAh g?1, and a peak power density of 112 mW cm?2. Also, a water electrolysis cell using GH‐BGQD electrodes delivers a current density of 10 mA cm?2 at cell voltage of 1.61 V, with remarkable stability during 70 h of operation. Finally, the trifunctional GH‐BGQD catalyst is employed for water electrolysis cell powered by the prepared Zn–air batteries, providing a new strategy for the carbon‐based multifunctional electrocatalysts for electrochemical energy devices.  相似文献   

9.
One promising approach to hydrogen energy utilization from full water splitting relies on the successful development of earth‐abundant, efficient, and stable electrocatalysts for oxygen evolution reaction (OER) and hydrogen evolution reaction (HER). Here, homologous Co–Ni‐based nanotube/nanosheet structures with tunable Co/Ni ratios, including hydroxides and nitrides, are grown on conductive substrates by a cation‐exchanging method to grow hydroxides, followed by anion exchanging to obtain corresponding nitrides. These hydroxide OER catalysts and nitride HER catalysts exhibit low overpotentials, small Tafel slopes, and high current densities, which are attributed to their large electrochemically reactive surface, 1D morphologies for charge conduction, and octahedral coordination states of metal ions for efficient catalytic activities. The homologous Co–Ni‐based nanotube hydroxides and nitrides suggest promising electrocatalysts for full water splitting with high efficiency, good stability, convenient fabrication, and low cost.  相似文献   

10.
It is urgently required to develop highly efficient and stable bifunctional non‐noble metal electrocatalysts for both the hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) for water splitting. In this study, a facile electrospinning followed by a post‐carbonization treatment to synthesize nitrogen‐doped carbon nanofibers (NCNFs) integrated with Ni and Mo2C nanoparticles (Ni/Mo2C‐NCNFs) as water splitting electrocatalysts is developed. Owing to the strong hydrogen binding energy on Mo2C and high electrical conductivity of Ni, synergetic effect between Ni and Mo2C nanoparticles significantly promote both HER and OER activities. The optimized hybrid (Ni/Mo2C(1:2)‐NCNFs) delivers low overpotentials of 143 mV for HER and 288 mV for OER at a current density of 10 mA cm?2. An alkaline electrolyzer with Ni/Mo2C(1:2)‐NCNFs as catalysts for both anode and cathode exhibits a current density of 10 mA cm?2 at a voltage of 1.64 V, which is only 0.07 V larger than the benchmark of Pt/C‐RuO2 electrodes. In addition, an outstanding long‐term durability during 100 h testing without obvious degradation is achieved, which is superior to most of the noble‐metal‐free electrocatalysts reported to date. This work provides a simple and effective approach for the preparation of low‐cost and high‐performance bifunctional electrocatalysts for efficient overall water splitting.  相似文献   

11.
Developing highly efficient, cost effective, and environmentally friendly electrocatalysts for the oxygen evolution reaction (OER), oxygen reduction reaction (ORR), and hydrogen evolution reaction (HER) is of interest for sustainable and clean energy technologies, including metal–air batteries and fuel cells. In this work, the screening of electrocatalytic activities of a series of single metallic iron, cobalt, and nickel nanoparticles and their binary and ternary alloys encapsulated in a graphitic carbon shell toward the OER, ORR, and HER in alkaline media is reported. Synthesis of these compounds proceeds by a two‐step sol–gel and carbothermal reduction procedure. Various ex situ characterizations show that with harsh electrochemical activation, the graphitic shell undergoes an electrochemical exfoliation. The modified electronic properties of the remaining graphene layers prevent their exfoliation, protect the bulk of the metallic cores, and participate in the electrocatalysis. The amount of near‐surface, higher‐oxidation‐state metals in the as‐prepared samples increases with electrochemical cycling, indicating that some metallic nanoparticles are not adequately encased within the graphite shell. Such surface oxide species provide secondary active sites for the electrocatalytic activities. The Ni–Fe binary system gives the most promising results for the OER, and the Co–Fe binary system shows the most promise for the ORR and HER.  相似文献   

12.
Construction of well‐defined metal–organic framework precursor is vital to derive highly efficient transition metal–carbon‐based electrocatalyst for hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) in water splitting. Herein, a novel strategy involving an in situ transformation of ultrathin cobalt layered double hydroxide into 2D cobalt zeolitic imidazolate framework (ZIF‐67) nanosheets grafted with 3D ZIF‐67 polyhedra supported on the surface of carbon cloth (2D/3D ZIF‐67@CC) precursor is proposed. After a low‐temperature pyrolysis, this precursor can be further converted into hybrid composites composed of ultrafine cobalt nanoparticles embedded within 2D N‐doped carbon nanosheets and 3D N‐doped hollow carbon polyhedra (Co@N‐CS/N‐HCP@CC). Experimental and density functional theory calculations results indicate that such composites have the advantages of a large number of accessible active sites, accelerated charge/mass transfer ability, the synergistic effect of components as well as an optimal water adsorption energy change. As a result, the obtained Co@N‐CS/N‐HCP@CC catalyst requires overpotentials of only 66 and 248 mV to reach a current density of 10 mA cm?2 for HER and OER in 1.0 m KOH, respectively. Remarkably, it enables an alkali‐electrolyzer with a current density of 10 mA cm?2 at a low cell voltage of 1.545 V, superior to that of the IrO2@CC||Pt/C@CC couple (1.592 V).  相似文献   

13.
A novel hybrid of small core@shell structured CoSx@Cu2MoS4 uniformly hybridizing with a molybdenum dichalcogenide/N,S‐codoped graphene hetero‐network (CoSx@Cu2MoS4‐MoS2/NSG) is prepared by a facile route. It shows excellent performance toward the oxygen reduction reaction (ORR), oxygen evolution reaction (OER), and hydrogen evolution reaction (HER) in alkaline medium. The hybrid exhibits rapid kinetics for ORR with high electron transfer number of ≈3.97 and exciting durability superior to commercial Pt/C. It also demonstrates great potential with remarkable stability for HER and OER, requiring low overpotential of 118.1 and 351.4 mV, respectively, to reach a current density of 10 mA cm?2. An electrolyzer based on CoSx@Cu2MoS4‐MoS2/NSG produces low cell voltage of 1.60 V and long‐term stability, surpassing a device of Pt/C + RuO2/C. In addition, a Zn‐air battery using cathodic CoSx@Cu2MoS4‐MoS2/NSG catalyst delivers a high cell voltage of ≈1.44 V and a power density of 40 mW cm?2 at 58 mA cm?2, better than the state‐of‐the‐art Pt/C catalyst. These achievements are due to the rational combination of highly active core@shell CoSx@Cu2MoS4 with large‐area and high‐porosity MoS2/NSG to produce unique physicochemical properties with multi‐integrated active centers and synergistic effects. The outperformances of such catalyst suggest an advanced candidate for multielectrocatalysis applications in metal‐air batteries and hydrogen production.  相似文献   

14.
Controlling active sites of metal‐free catalysts is an important strategy to enhance activity of the oxygen evolution reaction (OER). Many attempts have been made to develop metal‐free catalysts, but the lack of understanding of active‐sites at the atomic‐level has slowed the design of highly active and stable metal‐free catalysts. A sequential two‐step strategy to dope sulfur into carbon nanotube–graphene nanolobes is developed. This bidoping strategy introduces stable sulfur–carbon active‐sites. Fluorescence emission of the sulfur K‐edge by X‐ray absorption near edge spectroscopy (XANES) and scanning transmission electron microscopy electron energy loss spectroscopy (STEM‐EELS) mapping and spectra confirm that increasing the incorporation of heterocyclic sulfur into the carbon ring of CNTs not only enhances OER activity with an overpotential of 350 mV at a current density of 10 mA cm?2, but also retains 100% of stability after 75 h. The bidoped sulfur carbon nanotube–graphene nanolobes behave like the state‐of‐the‐art catalysts for OER but outperform those systems in terms of turnover frequency (TOF) which is two orders of magnitude greater than (20% Ir/C) at 400 mV overpotential with very high mass activity 1000 mA cm?2 at 570 mV. Moreover, the sulfur bidoping strategy shows high catalytic activity for the oxygen reduction reaction (ORR). Stable bifunctional (ORR and OER) catalysts are low cost, and light‐weight bidoped sulfur carbon nanotubes are potential candidates for next‐generation metal‐free regenerative fuel cells.  相似文献   

15.
Benefiting from ordered atomic structures and strong d-orbital interactions, intermetallic compounds (IMCs) are promising electrocatalysts for hydrogen evolution reaction (HER) and oxygen evolution reaction (OER). Herein, the body-centered cubic IrGa IMCs with atomic donor–acceptor architectures are synthesized and anchored on the nitrogen-doped reduced graphene oxide (i.e., IrGa/N-rGO). Structural characterizations and theoretical calculations reveal that the electron-rich Ir sites are atomically dispersed in IrGa/N-rGO, facilitating the electron transfer between Ir atoms and adsorbed species, which can efficiently decrease the energy barriers of the potential determining step for both HER and OER. Impressively, the IrGa/N-rGO||IrGa/N-rGO exhibits excellent performance for overall water splitting in alkaline medium, requiring a low cell voltage of 1.51 V to achieve 10 mA cm−2, meanwhile, exhibiting no significant degradation for 100 h. This work demonstrates that the rational design of noble metal electrocatalysts with donor–acceptor architectures is beneficial for catalytic reactions in energy conversion applications.  相似文献   

16.
Bifunctional oxygen catalysts for oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) with high activities and low‐cost are of prime importance and challenging in the development of fuel cells and rechargeable metal–air batteries. This study reports a porous carbon nanomaterial loaded with cobalt nanoparticles (Co@NC‐x/y) derived from pyrolysis of a Co/Zn bimetallic zeolitic imidazolite framework, which exhibits incredibly high activity as bifunctional oxygen catalysts. For instance, the optimal catalyst of Co@NC‐3/1 has the interconnected framework structure between porous carbon and embedded carbon nanotubes, which shows the superb ORR activity with onset potential of ≈1.15 V and half‐wave potential of ≈0.93 V. Moreover, it presents high OER activity that can be further enhanced to over commercial RuO2 by P‐doped with overpotentials of 1.57 V versus reversible hydrogen electrode at 10 mA cm?2 and long‐term stability for 2000 circles and a Tafel slope of 85 mV dec?1. Significantly, the nanomaterial demonstrates better catalytic performance and durability than Pt/C for ORR and commercial RuO2 and IrO2 for OER. These findings suggest the importance of a synergistic effect of graphitic carbon, nanotubes, exposed Co–Nx active sites, and interconnected framework structure of various carbons for bifunctional oxygen electrocatalysts.  相似文献   

17.
A flexible air electrode (FAE) with both high oxygen electrocatalytic activity and excellent flexibility is the key to the performance of various flexible devices, such as Zn–air batteries. A facile two‐step method, mild acid oxidation followed by air calcination that directly activates commercial carbon cloth (CC) to generate uniform nanoporous and super hydrophilic surface structures with optimized oxygen‐rich functional groups and an enhanced surface area, is presented here. Impressively, this two‐step activated CC (CC‐AC) exhibits superior oxygen electrocatalytic activity and durability, outperforming the oxygen‐doped carbon materials reported to date. Especially, CC‐AC delivers an oxygen evolution reaction (OER) overpotential of 360 mV at 10 mA cm?2 in 1 m KOH, which is among the best performances of metal‐free OER electrocatalysts. The practical application of CC‐AC is presented via its use as an FAE in a flexible rechargeable Zn–air battery. The bendable battery achieves a high open circuit voltage of 1.37 V, a remarkable peak power density of 52.3 mW cm?3 at 77.5 mA cm?3, good cycling performance with a small charge–discharge voltage gap of 0.98 V and high flexibility. This study provides a new approach to the design and construction of high‐performance self‐supported metal‐free electrodes.  相似文献   

18.
The development of highly efficient and low‐cost electrocatalysts for oxygen evolution reaction (OER) and hydrogen evolution reaction (HER) is paramount for water splitting associated with the storage of clean and renewable energy. Here, this study reports its findings in the development of a nanostructured perovskite oxide as OER/HER bifunctional electrocatalyst for overall water splitting. Prepared by a facile electrospinning method, SrNb0.1Co0.7Fe0.2O3–δ perovskite nanorods (SNCF‐NRs) display excellent OER and HER activity and stability in an alkaline solution, benefiting from the catalytic nature of perovskites and unique structural features. More importantly, the SNCF‐NR delivers a current density of 10 mA cm?2 at a cell voltage of merely ≈1.68 V while maintaining remarkable durability when used as both anodic and cathodic catalysts in an alkaline water electrolyzer. The performance of this bifunctional perovskite material is among the best ever reported for overall water splitting, offering a cost‐effective alternative to noble metal based electrocatalysts.  相似文献   

19.
Effectively active oxygen evolution reaction (OER) electrocatalysts are highly desired for water splitting. Herein, the design and fabrication of nanometer‐sized Fe‐modulated CoOOH nanoparticles by a novel conversion tailoring strategy is reported for the first time and these nanoparticles are assembled on graphene matrix to construct 2D nanohybrids (Fe? CoOOH/G) with ultrasmall particles and finely modulated local electronic structure of Co cations. The Fe components are capable of tailoring and converting the micrometer‐sized sheets into nanometer‐sized particles, indicative of ultrasensitive Fe‐triggered behavior. The as‐made Fe? CoOOH/G features highly exposed edge active sites, well‐defined porous structure, and finely modulated electron structure, together with effectively interconnected conducting networks endowed by graphene. Density functional theory calculations have revealed that the Fe dopants in the Fe? CoOOH nanoparticles have an enhanced adsorption capability toward the oxygenated intermediates involved in OER process, thus facilitating the whole catalytic reactions. Benefiting from these integrated characteristics, the as‐made Fe? CoOOH/G nanohybrids as an oxygen evolution electrocatalyst can deliver a low overpotential of 330 mV at 10 mA cm?2 and excellent electrochemical durability in alkaline medium. This strategy provides an effective, durable, and nonprecious‐metal electrocatalyst for water splitting.  相似文献   

20.
A conventional water electrolyzer consists of two electrodes, each of which is embedded with a costly and rare electrocatalyst, typically IrO2/C for oxygen evolution reaction (OER) and Pt/C for hydrogen evolution reaction (HER), respectively. HER and OER electrocatalysts usually require very different pH values to keep them stable and active. Thus, the development of earth‐abundant nonprecious metal catalysts for both HER and OER is of great importance to practical applications. This work reports the results of integrated water electrolysis using the hybrids of electrospun La0.5(Ba0.4Sr0.4Ca0.2)0.5Co0.8Fe0.2O3–δ (L‐0.5) perovskite nanorods attached to reduced graphene oxide (rGO) nanosheets as bifunctional electrodes. Via rationalizing the composition and morphology of L‐0.5/rGO nanohybrids, excellent catalytic performance and stability toward OER and HER are achieved in alkaline media. The operating voltage of integrated L‐0.5/rGO electrolyzer is tested to be 1.76 V at 50 mA cm–2, which is close to that of the commercially available IrO2/C‐Pt/C couple (1.76 V @ 50 mA cm–2). Such a bifunctional electrocatalyst could be extended toward practical electrolysis use with low expanse and high efficiency. More generally, the protocol described here broadens our horizons in terms of the designs and the diverse functionalities of catalysts for use in various applications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号