首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 703 毫秒
1.
The intercalation of lithium ions into graphite electrode is the key underlying mechanism of modern lithium‐ion batteries. However, co‐intercalation of lithium‐ions and solvent into graphite is considered undesirable because it can trigger the exfoliation of graphene layers and destroy the graphite crystal, resulting in poor cycle life. Here, it is demonstrated that the [lithium–solvent]+ intercalation does not necessarily cause exfoliation of the graphite electrode and can be remarkably reversible with appropriate solvent selection. First‐principles calculations suggest that the chemical compatibility of the graphite host and [lithium–solvent]+ complex ion strongly affects the reversibility of the co‐intercalation, and comparative experiments confirm this phenomenon. Moreover, it is revealed that [lithium–ether]+ co‐intercalation of natural graphite electrode enables much higher power capability than normal lithium intercalation, without the risk of lithium metal plating, with retention of ≈87% of the theoretical capacity at current density of 1 A g?1. This unusual high rate capability of the co‐intercalation is attributed to the (i) absence of the desolvation step, (ii) negligible formation of the solid–electrolyte interphase on graphite surface, and (iii) fast charge‐transfer kinetics. This work constitutes the first step toward the utilization of fast and reversible [lithium–solvent]+ complex ion intercalation chemistry in graphite for rechargeable battery technology.  相似文献   

2.
Silicon anodes are regarded as one of the most promising alternatives to graphite for high energy‐density lithium‐ion batteries (LIBs), but their practical applications have been hindered by high volume change, limited cycle life, and safety concerns. In this work, nonflammable localized high‐concentration electrolytes (LHCEs) are developed for Si‐based anodes. The LHCEs enable the Si anodes with significantly enhanced electrochemical performances comparing to conventional carbonate electrolytes with a high content of fluoroethylene carbonate (FEC). The LHCE with only 1.2 wt% FEC can further improve the long‐term cycling stability of Si‐based anodes. When coupled with a LiNi0.3Mn0.3Co0.3O2 cathode, the full cells using this nonflammable LHCE can maintain >90% capacity after 600 cycles at C/2 rate, demonstrating excellent rate capability and cycling stability at elevated temperatures and high loadings. This work casts new insights in electrolyte development from the perspective of in situ Si/electrolyte interphase protection for high energy‐density LIBs with Si anodes.  相似文献   

3.
As an emerging electrochemical energy storage device, potassium‐ion batteries (PIBs) have drawn growing interest due to the resource‐abundance and low cost of potassium. Graphite‐based materials, as the most common anodes for commercial Li‐ion batteries, have a very low capacity when used an anode for Na‐ion batteries, but they show reasonable capacities as anodes for PIBs. The practical application of graphitic materials in PIBs suffers from poor cyclability, however, due to the large interlayer expansion/shrinkage caused by the intercalation/deintercalation of potassium ions. Here, a highly graphitic carbon nanocage (CNC) is reported as a PIBs anode, which exhibits excellent cyclability and superior depotassiation capacity of 175 mAh g?1 at 35 C. The potassium storage mechanism in CNC is revealed by cyclic voltammetry as due to redox reactions (intercalation/deintercalation) and double‐layer capacitance (surface adsorption/desorption). The present results give new insights into structural design for graphitic anode materials in PIBs and understanding the double‐layer capacitance effect in alkali metal ion batteries.  相似文献   

4.
Thanks to low costs and the abundance of the resources, sodium‐ion (SIBs) and potassium‐ion batteries (PIBs) have emerged as leading candidates for next‐generation energy storage devices. So far, only few materials can serve as the host for both Na+ and K+ ions. Herein, a cubic phase CuSe with crystal‐pillar‐like morphology (CPL‐CuSe) assembled by the nanosheets are synthesized and its dual functionality in SIBs and PIBs is comprehensively studied. The electrochemical measurements demonstrate that CPL‐CuSe enables fast Na+ and K+ storage as well as the sufficiently long duration. Specifically, the anode delivers a specific capacity of 295 mA h g?1 at current density of 10 A g?1 in SIBs, while 280 mA h g?1 at 5 A g?1 in PIBs, as well as the high capacity retention of nearly 100% over 1200 cycles and 340 cycles, respectively. Remarkably, CPL‐CuSe exhibits a high initial coulombic efficiency of 91.0% (SIBs) and 92.4% (PIBs), superior to most existing selenide anodes. A combination of in situ X‐ray diffraction and ex situ transmission electron microscopy tests fundamentally reveal the structural transition and phase evolution of CuSe, which shows a reversible conversion reaction for both cells, while the intermediate products are different due to the sluggish K+ insertion reaction.  相似文献   

5.
Given the merits of low cost, fast ionic transport in electrolyte, and high operating voltage, potassium ion batteries (PIBs) are promising alternatives to lithium‐ion batteries. However, developing suitable electrode materials that can reversibly accommodate large potassium ions is a great challenge. Here, guided by density functional theory (DFT) calculations, it is demonstrated that the strategy of interfacial engineering via surface amorphization of VO2 (B) nanorods (SA‐VO2), which results in the formation of a crystalline core/amorphous shell heterostructure, enables superior K+ storage performance in terms of large capacity, outstanding rate capability, and long cycle stability working as an anode for PIBs. DFT calculations reveal that the created crystalline/amorphous heterointerface in SA‐VO2 can substantially lower the surface energy, narrow the band gap, and reduce the K+ diffusion barrier of VO2 (B). These conditions enable enhanced K+ storage capacity and rapid K+/electron transfer, which result in large capacity and outstanding rate capability. Using in situ X‐ray diffraction and in situ transmission electron microscopy complemented by ex situ microscopic and spectroscopic techniques, it is unveiled that the superior cycling stability originates from the excellent phase reversibility with negligible strain response and robust mechanical behavior of SA‐VO2 upon (de)potassiation.  相似文献   

6.
Potassium‐ion batteries (KIBs) have attracted increasing attention for grid‐scale energy storage due to the abundance of potassium resources, low cost, and competitive energy density. The key challenge for KIBs is to develop high‐performance electrode materials. However, the exploration of high‐capacity and ultrastable electrodes for KIBs remains challenging because of the sluggish diffusion kinetics of K+ ions during the charging/discharging processes. This study reports for the first time a facile ion‐intercalation‐mediated exfoliation method with Mg2+ cations and NO3 anions as ion assistants for the fabrication of expanded few‐layered ternary Ta2NiSe5 (EF‐TNS) flakes with interlayer spacing up to 1.1 nm and abundant Se sites (NiSe4 tetrahedra/TaSe6 octahedra clusters) for superior potassium‐ion storage. The EF‐TNS deliver a high capacity of 315 mAh g–1, excellent rate capability (121 mAh g–1 at a current density of 1000 mA g–1), and ultrastable cycling performance (81.4% capacity retention after 1100 cycles). Detailed theoretical analysis via first‐principles calculations and experimental results elucidate that K+ ions intercalate through the expanded interlayers effectively and prefer to transport along zigzag pathways in layered Ta2NiSe5. This work provides a new avenue for designing novel ternary intercalation/pseudocapacitance‐type KIBs with high capacity, excellent rate capability, and superior long‐term cycling performance.  相似文献   

7.
Narrow electrochemical stability window (1.23 V) of aqueous electrolytes is always considered the key obstacle preventing aqueous sodium‐ion chemistry of practical energy density and cycle life. The sodium‐ion water‐in‐salt electrolyte (NaWiSE) eliminates this barrier by offering a 2.5 V window through suppressing hydrogen evolution on anode with the formation of a Na+‐conducting solid‐electrolyte interphase (SEI) and reducing the overall electrochemical activity of water on cathode. A full aqueous Na‐ion battery constructed on Na0.66[Mn0.66Ti0.34]O2 as cathode and NaTi2(PO4)3 as anode exhibits superior performance at both low and high rates, as exemplified by extraordinarily high Coulombic efficiency (>99.2%) at a low rate (0.2 C) for >350 cycles, and excellent cycling stability with negligible capacity losses (0.006% per cycle) at a high rate (1 C) for >1200 cycles. Molecular modeling reveals some key differences between Li‐ion and Na‐ion WiSE, and identifies a more pronounced ion aggregation with frequent contacts between the sodium cation and fluorine of anion in the latter as one main factor responsible for the formation of a dense SEI at lower salt concentration than its Li cousin.  相似文献   

8.
The intercalation of solvated sodium ions into graphite from ether electrolytes was recently discovered to be a surprisingly reversible process. The mechanisms of this “cointercalation reaction” are poorly understood and commonly accepted design criteria for graphite intercalation electrodes do not seem to apply. The excellent reversibility despite the large volume expansion, the small polarization and the puzzling role of the solid electrolyte interphase (SEI) are particularly striking. Here, in situ electrochemical dilatometry, online electrochemical mass spectrometry (OEMS), a variety of other methods among scanning electron microscopy (SEM), transmission electron microscopy (TEM), and X‐ray diffraction (XRD) as well as theory to advance the understanding of this peculiar electrode reaction are used. The electrode periodically “breathes” by about 70–100% during cycling yet excellent reversibility is maintained. This is because the graphite particles exfoliate to crystalline platelets but do not delaminate. The speed at which the electrode breathes strongly depends on the state of discharge/charge. Below 0.5 V versus Na+/Na, the reaction behaves more pseudocapacitive than Faradaic. Despite the large volume changes, OEMS gas analysis shows that electrolyte decomposition is largely restricted to the first cycle only. Combined with TEM analysis and the electrochemical results, this suggests that the reaction is likely the first example of a SEI‐free graphite anode.  相似文献   

9.
Rechargeable Li–S batteries are regarded as one of the most promising next‐generation energy‐storage systems. However, the inevitable formation of Li dendrites and the shuttle effect of lithium polysulfides significantly weakens electrochemical performance, preventing its practical application. Herein, a new class of localized high‐concentration electrolyte (LHCE) enabled by adding inert fluoroalkyl ether of 1H,1H,5H‐octafluoropentyl‐1,1,2,2‐tetrafluoroethyl ether into highly‐concentrated electrolytes (HCE) lithium bis(fluorosulfonyl) imide/dimethoxyether (DME) system is reported to suppress Li dendrite formation and minimize the solubility of the high‐order polysulfides in electrolytes, thus reducing the amount of electrolyte in cells. Such a unique LHCE can achieve a high coulombic efficiency of Li plating/stripping up to 99.3% and completely suppressing the shuttling effect, thus maintaining a S cathode capacity of 775 mAh g?1 for 150 cycles with a lean electrolyte of 4.56 g A?1 h?1. The LHCE reduces the solubility of lithium polysulfides, allowing the Li/S cell to achieve super performance in a lean electrolyte. This conception of using inert diluents in a highly concentrated electrolyte can accelerate commercialization of Li–S battery technology.  相似文献   

10.
Recently, sodium ion batteries (SIBs) have been widely investigated as one of the most promising candidates for replacing lithium ion batteries (LIBs). For SIBs or LIBs, designing a stable and uniform solid electrolyte interphase (SEI) at the electrode–electrolyte interface is the key factor to provide high capacity, long‐term cycling, and high‐rate performance. In this paper, it is described how a remarkably enhanced SEI layer can be obtained on TiO2 nanotube (TiO2 NTs) arrays that allows for a strongly improved performance of sodium battery systems. Key is that a Li+ pre‐insertion in TiO2 NTs can condition the SEI for Na+ replacement. SIBs constructed with Li‐pre‐inserted NTs deliver an exceptional Na+ cycling stability (e.g., 99.9 ± 0.1% capacity retention during 250 cycles at a current rate of 50 mA g?1) and an excellent rate capability (e.g., 132 mA h g?1 at a current rate of 1 A g?1). The key factor in this outstanding performance is that Li‐pre‐insertion into TiO2 NTs leads not only to an enhanced electronic conductivity in the tubes, but also expands the anatase lattice for facilitated subsequent Na+ cycling.  相似文献   

11.
K‐ion batteries (KIBs) are promising for large‐scale energy storage owing to various advantages like the high abundance of potassium resources in the Earth's crust, high operational potentials, and high power due to fast diffusion of K+ ions. However, to realize the practical application of KIBs, electrode materials are needed with high operational voltage, good capacity, long cycle life, and low‐cost. This work reports a layered open framework material, K2[(VOHPO4)2(C2O4)], composited with reduced graphene oxide (rGO) as a 4 V positive electrode material for KIBs. The material is prepared by a simple precipitation reaction at room temperature. The material demonstrates reversible K‐extraction/insertion with conventional carbonate ester KPF6 solutions; however, with low specific capacity and low Coulombic efficiency. A high discharge capacity of >100 mAh g?1 with good cycling stability and higher Coulombic efficiency is achieved in a highly concentrated electrolyte, 7 mol kg?1 of potassium bis(fluorosulfonyl)amide (KFSA) in dimethoxyethane (DME) at 0.1 C rate. Due to the facile migration of K+ ions in the framework, the material exhibits excellent rate capability with a discharge capacity of 80 mAh g?1 at 10 C rate, and a good capacity retention of 67% after 500 cycles at 2 C rate.  相似文献   

12.
Na‐ion capacitors have attracted extensive interest due to the combination of the merits of high energy density of batteries and high power density as well as long cycle life of capacitors. Here, a novel Na‐ion capacitor, utilizing TiO2@CNT@C nanorods as an intercalation‐type anode and biomass‐derived carbon with high surface area as an ion adsorption cathode in an organic electrolyte, is reported. The advanced architecture of TiO2@CNT@C nanorods, prepared by electrospinning method, demonstrates excellent cyclic stability and outstanding rate capability in half cells. The contribution of extrinsic pseudocapacitance affects the rate capability to a large extent, which is identified by kinetics analysis. A key finding is that ion/electron transfer dynamics of TiO2@CNT@C could be effectively enhanced due to the addition of multiwalled carbon nanotubes. Also, the biomass‐derived carbon with high surface area displays high specific capacity and excellent rate capability. Owing to the merits of structures and excellent performances of both anode and cathode materials, the assembled Na‐ion capacitors provide an exceptionally high energy density (81.2 W h kg?1) and high power density (12 400 W kg?1) within 1.0–4.0 V. Meanwhile, the Na‐ion capacitors achieve 85.3% capacity retention after 5000 cycles tested at 1 A g?1.  相似文献   

13.
Rechargeable graphite dual‐ion batteries (GDIBs) have attracted the attention of electrochemists and material scientists in recent years due to their low cost and high‐performance metrics, such as high power density (≈3–175 kW kg?1), energy efficiency (≈80–90%), long cycling life, and high energy density (up to 200 Wh kg?1), suited for grid‐level stationary storage of electricity. The key feature of GDIBs is the exploitation of the reversible oxidation of the graphite network with concomitant and highly efficient intercalation/deintercalation of bulky anionic species between graphene layers. In this review, historical and current research aspects of GDIBs are discussed, along with key challenges in their development and practical deployment. Specific emphasis is given to the operational mechanism of GDIBs and to unbiased and correct reporting of theoretical cell‐level energy densities.  相似文献   

14.
As one of the most promising cathode candidates for room‐temperature sodium‐ion batteries (SIBs), P2‐type layered oxides face the challenge of simultaneously realizing high‐rate performance while achieving long cycle life. Here, a stable Na2/3Ni1/6Mn2/3Cu1/9Mg1/18O2 cathode material is proposed that consists of multiple‐layer oriented stacking nanoflakes, in which the nickel sites are partially substituted by copper and magnesium, a characteristic of the material that is confirmed by multiscale scanning transmission electron microscopy and electron energy loss spectroscopy techniques. Owing to the optimal morphology structure modulation and chemical element substitution strategy, the electrode displays remarkable rate performance (73% capacity retention at 30C compared to 0.5C) and outstanding cycling stability in Na half‐cell system couple with unprecedented full battery performance. The underlying thermal stability, phase stability, and Na+ storage mechanisms are clearly elucidated through the systematical characterizations of electrochemical behaviors, in situ X‐ray diffraction at different temperatures, and operando X‐ray diffraction upon Na+ deintercalation/intercalation. Surprisingly, a quasi‐solid‐solution reaction is switched to an absolute solid‐solution reaction and a capacitive Na+ storage mechanism is demonstrated via quantitative electrochemical kinetics calculation during charge/discharge process. Such a simple and effective strategy might reveal a new avenue into the rational design of excellent rate capability and long cycle stability cathode materials for practical SIBs.  相似文献   

15.
Potassium‐ion batteries (PIBs) are promising energy storage systems because of the abundance and low cost of potassium. The formidable challenge is to develop suitable electrode materials and electrolytes for accommodating the relatively large size and high activity of potassium. Herein, Bi‐based materials are reported as novel anodes for PIBs. Nanostructural design and proper selection of the electrolyte salt have been used to achieve excellent cycling performance. It is found that the potassiation of Bi undergoes a solid‐solution reaction, followed by two typical two‐phase reactions, corresponding to Bi ? Bi(K) and Bi(K) ? K5Bi4 ? K3Bi, respectively. By choosing potassium bis(fluorosulfonyl)imide (KFSI) to replace potassium hexafluorophosphate (KPF6) in carbonate electrolyte, a more stable solid electrolyte interphase layer is achieved and results in notably enhanced electrochemical performance. More importantly, the KFSI salt is very versatile and can significantly promote the electrochemical performance of other alloy‐based anode materials, such as Sn and Sb.  相似文献   

16.
Sodium‐based dual ion full batteries (NDIBs) are reported with soft carbon as anode and graphite as cathode for the first time. The NDIBs operate at high discharge voltage plateau of 3.58 V, with superior discharge capacity of 103 mA h g?1, excellent rate performance, and long‐term cycling stability over 800 cycles with capacity retention of 81.8%. The mechanism of Na+ and PF6? insertion/desertion during the charging/discharging processes is proposed and discussed in detail, with the support of various spectroscopies.  相似文献   

17.
LiNixMnyCo1?x?yO2 (NMC) cathode materials with Ni ≥ 0.8 have attracted great interest for high energy‐density lithium‐ion batteries (LIBs) but their practical applications under high charge voltages (e.g., 4.4 V and above) still face significant challenges due to severe capacity fading by the unstable cathode/electrolyte interface. Here, an advanced electrolyte is developed that has a high oxidation potential over 4.9 V and enables NMC811‐based LIBs to achieve excellent cycling stability in 2.5–4.4 V at room temperature and 60 °C, good rate capabilities under fast charging and discharging up to 3C rate (1C = 2.8 mA cm?2), and superior low‐temperature discharge performance down to ?30 °C with a capacity retention of 85.6% at C/5 rate. It is also demonstrated that the electrode/electrolyte interfaces, not the electrolyte conductivity and viscosity, govern the LIB performance. This work sheds light on a very promising strategy to develop new electrolytes for fast‐charging high‐energy LIBs in a wide‐temperature range.  相似文献   

18.
Ni‐rich cathodes are considered feasible candidates for high‐energy‐density Li‐ion batteries (LIBs). However, the structural degradation of Ni‐rich cathodes on the micro‐ and nanoscale leads to severe capacity fading, thereby impeding their practical use in LIBs. Here, it is reported that 3‐(trimethylsilyl)‐2‐oxazolidinone (TMS‐ON) as a multifunctional additive promotes the dissociation of LiPF6, prevents the hydrolysis of ion‐paired LiPF6 (which produces undesired acidic compounds including HF), and scavenges HF in the electrolyte. Further, the presence of 0.5 wt% TMS‐ON helps maintain a stable solid–electrolyte interphase (SEI) at Ni‐rich LiNi0.7Co0.15Mn0.15O2 (NCM) cathodes, thus mitigating the irreversible phase transformation from layered to rock‐salt structures and enabling the long‐term stability of the SEI at the graphite anode with low interfacial resistance. Notably, NCM/graphite full cells with TMS‐ON, which exhibit an excellent discharge capacity retention of 80.4%, deliver a discharge capacity of 154.7 mAh g?1 after 400 cycles at 45 °C.  相似文献   

19.
In this study, a new dual‐ion battery (DIB) concept based on an aqueous/non‐aqueous electrolyte is reported, combining high safety in the form of a nonflammable water‐in‐salt electrolyte, a high cathodic stability by forming a protective interphase on the negative electrode (non‐aqueous solvent), and improved sustainability by using a graphite‐based positive electrode material. Far beyond the anodic stability limit of water, the formation of a stage‐2 acceptor‐type graphite intercalation compound (GIC) of bis(trifluoromethanesulfonyl) imide (TFSI) anions from an aqueous‐based electrolyte is achieved for the first time, as confirmed by ex‐situ X‐ray diffraction. The choice of negative electrode material shows a huge impact on the performance of the DIB cell chemistry, i.e., discharge capacities up to 40 mAh g?1 are achieved even at a high specific current of 200 mA g?1. In particular, lithium titanium phosphate (LiTi2(PO4)3; LTP) and lithium titanium oxide (Li4Ti5O12; LTO) are evaluated as negative electrodes, exhibiting specific advantages for this DIB setup. In this work, a new DIB storage concept combining an environmentally friendly, transition‐metal‐free, abundant graphite positive electrode material, and a nonflammable water‐based electrolyte is established, thus paving the path toward a sustainable and safe alternative energy storage technology.  相似文献   

20.
Potassium‐based dual‐ion batteries (KDIBs) have emerged as a new generation of rechargeable batteries, due to their high cell voltage, low cost, and the natural abundance of potassium resources. However, the low capacity and poor cycling stability largely hinder the further development of KDIBs. Herein, the fabrication of hierarchically porous N‐doped carbon fibers (HPNCFs) as a free‐standing anode for high‐performance KDIBs is reported. With a free‐standing hierarchical structure (micro/meso/macropores and nanochannels) and high‐content of nitrogen doping, the HPNCFs not only provide intrinsic electron pathways and efficient ion transport channels, but also afford sufficient free space to tolerate the volume change during cycling. Consequently, the KDIBs made from a graphite cathode and an optimized HPNCFs anode deliver a high reversible capacity of 197 mAh g?1 at a specific current of 50 mA g?1, and excellent cycling stability (65 mAh g?1 after 346 cycles at a specific current of 100 mA g?1, the capacity calculation of the KDIBs is based on the mass of the anode). These results indicate that the properly designed HPNCFs can effectively improve the capacity and cycling stability of the KDIBs, indicating a great potential for applications in the field of high‐performance energy‐storage devices.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号