首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Blue energy harvested from the ocean is an important and promising renewable energy for the sustainable development of society. Triboelectric nanogenerators (TENGs) are considered one of the most promising approaches for harvesting blue energy. In this work, a liquid–solid‐contact triboelectric nanogenerator (LS TENG) is fabricated to enhance the friction and magnify energy output by 48.7 times, when compared with the solid–solid‐contact TENG with the same area. The buoy‐like LS TENG can harvest energy from different types of low‐frequency vibration (including up–down, shaking, and rotation movements). Moreover, the outputs of the LS TENGs network can reach 290 µA, 16 725 nC, and 300 V, and the LS TENGs network can directly power hundreds of LEDs and drive a radio frequency emitter to form a self‐powered wireless save our souls (SOS) system for ocean emergencies. This work renders an innovative and effective approach toward large‐scale blue energy harvesting and applications.  相似文献   

2.
Water waves are increasingly regarded as a promising source for large‐scale energy applications. Triboelectric nanogenerators (TENGs) have been recognized as one of the most promising approaches for harvesting wave energy. This work examines a freestanding, fully enclosed TENG that encloses a rolling ball inside a rocking spherical shell. Through the optimization of materials and structural parameters, a spherical TENG of 6 cm in diameter actuated by water waves can provide a peak current of 1 μA over a wide load range from a short‐circuit condition to 10 GΩ, with an instantaneous output power of up to 10 mW. A multielectrode arrangement is also studied to improve the output of the TENG under random wave motions from all directions. Moreover, at a frequency of 1.43 Hz, the wave‐driven TENG can directly drive tens of LEDs and charge a series of supercapacitors to rated voltage within several hours. The stored energy can power an electronic thermometer for 20 min. This rolling‐structured TENG is extremely lightweight, has a simple structure, and is capable of rocking on or in water to harvest wave energy; it provides an innovative and effective approach toward large‐scale blue energy harvesting of oceans and lakes.  相似文献   

3.
Energy and the environment are two of the main issues facing the world today. As a consequence abundant renewable green energy sources such as wave energy, have become hot topics. Here, a multiple‐frequency triboelectric nanogenerator based on the water balloon (WB‐TENG) is proposed for harvesting water wave energy in any direction. Owing to the high elasticity of the water balloon, the WB‐TENG can realize a multiple‐frequency response to low‐frequency external mechanical simulations to generate high‐frequency electrical output. In addition, the water balloon can achieve self‐support without any additional supporting structure because of its tension, to make WB‐TENG still produce electrical output under slight vibration, which can also bring high energy conversion efficiency. Moreover, the fabricated WB‐TENG generates a maximum instantaneous short‐circuit current and an open‐circuit voltage of 147 µA and 1221 V, respectively. Most noteworthy, under the same conditions, the total transferred charge of WB‐TENG is 28 times than that of traditional TENG based on double plate structure during one working cycle. Therefore, this design can provide an effective way to promote the development of TENGs in blue energy.  相似文献   

4.
Triboelectric nanogenerator (TENG) has been considered to be a more effective technology to harvest various types of mechanic vibration energies such as wind energy, water energy in the blue energy, and so on. Considering the vast energy from the blue oceans, harvesting of the water energy has attracted huge attention. There are two major types of “mechanical” water energy, water wave energy in random direction and water flow kinetic energy. However, although the most reported TENG can be used to efficiently harvest one type of water energy, to simultaneously collect two or more types of such energy still remains challenging. In this work, two different freestanding, multifunctional TENGs are successfully developed that can be used to harvest three types of energies including water waves, air flowing, and water flowing. These two new TENGs designed in accordance with the same freestanding model yield the output voltages of 490 and ≈100 V with short circuit currents of 24 and 2.7 µA, respectively, when operated at a rotation frequency of 200 rpm and the movement frequency of 3 Hz. Moreover, the developed multifunctional TENG can also be explored as a self‐powered speed sensor of wind by correlating the short‐circuit current with the wind speed.  相似文献   

5.
Triboelectric nanogenerators (TENGs), as a promising energy harvesting technology, have been rapidly developed in recent years. However, the research based on fully flexible and environmentally friendly TENGs is still limited. Herein, for the first time, a hydrogel‐based triboelectric nanogenerator (Hydrogel‐TENG) with high flexibility, recyclability, and environmental friendliness simultaneously has been demonstrated. The standard Hydrogel‐TENG can generate a maximum output power of 2 mW at a load resistance of 10 MΩ. The tube‐shaped Hydrogel‐TENG can harvest mechanical energy from various human motions, including bending, twisting, and stretching. Furthermore, the system can serve as self‐powered sensors to detect the human motions. Additionally, the utilized Polyvinyl Alcohol hydrogel employed in this study is recyclable to benefit for fabricating the renewable TENG. The open‐circuit voltage of renewed hydrogel‐TENG can reach up to 92% of the pristine output voltage. This research will pave a potential approach for the development of flexible energy sources and self‐powered motion sensors in environmentally friendly way.  相似文献   

6.
Ocean wave energy is a promising renewable energy source, but harvesting such irregular, “random,” and mostly ultra‐low frequency energies is rather challenging due to technological limitations. Triboelectric nanogenerators (TENGs) provide a potential efficient technology for scavenging ocean wave energy. Here, a robust swing‐structured triboelectric nanogenerator (SS‐TENG) with high energy conversion efficiency for ultra‐low frequency water wave energy harvesting is reported. The swing structure inside the cylindrical TENG greatly elongates its operation time, accompanied with multiplied output frequency. The design of the air gap and flexible dielectric brushes enable mininized frictional resistance and sustainable triboelectric charges, leading to enhanced robustness and durability. The TENG performance is controlled by external triggering conditions, with a long swing time of 88 s and a high energy conversion efficiency, as well as undiminished performance after continuous triggering for 4 00 000 cycles. Furthermore, the SS‐TENG is demonstrated to effectively harvest water wave energy. Portable electronic devices are successfully powered for self‐powered sensing and environment monitoring. Due to the excellent performance of the distinctive mechanism and structure, the SS‐TENG in this work provides a good candidate for harvesting blue energy on a large scale.  相似文献   

7.
Triboelectric nanogenerator (TENG) is an emerging approach for harvesting energy from the living environment. But its performance is limited by the maximum density of surface charges created by contact electrification. Here, by rationally designing a synchronous rotation structure, a charge pumping strategy is realized for the first time in a rotary sliding TENGs, which is demonstrated to enhance the charge density by a factor of 9, setting up a record for rotary TENGs. The average power is boosted by more than 15 times compared with normal TENGs, achieving an ultrahigh average power density of 1.66 kW m?3, under a low drive frequency of 2 Hz. Moreover, the charge pumping mechanism enables decoupling of bound charge generation and the severity of interfacial friction in the main TENG, allowing surface lubricants to be applied for suppressing abrasion and lowering heat generation. The adaptability of the strategy to rotation and sliding type TENGs in low‐frequency agitations provides a breakthrough to the bottleneck of power output for mechanical energy harvesting, and should have a great impact on high‐power TENG design and practical applications in various fields.  相似文献   

8.
Triboelectric nanogenerators (TENGs) have recently been invented as a potential energy technology for harvesting low‐frequency mechanical energy. The load power acquired from a TENG is far less than the maximum output power of the TENG for the large internal impedance and impedance mismatch, and this difference results in an extremely low energy transmission efficiency. Here, a universal strategy is proposed for improving the energy transmission efficiency and load power through dielectric material design, including a reduction in the effective thickness and the directional alignment of the electric dipole. This strategy reduces the internal impedances of TENGs with different modes and results in the improvement of energy transmission efficiency and load power. According to this strategy, the internal impedance of an as‐fabricated TENG is reduced from 16 to 1.3 MΩ, and the energy transmission efficiency is enhanced from 22.46% to 99.5%. Moreover, the load power under 1 MΩ resistance is improved from 0.014 to 0.251 µW, an increase of 18 times. The strategy not only opens a universal and new road to power management, but also paves the way for the industrial applications of TENGs.  相似文献   

9.
The air breakdown phenomenon is generally considered as a negative effect in previous research on triboelectric nanogenerators (TENGs), which is always accompanied by air ionization. Here, by utilizing the air breakdown induced ionized air channel, a direct‐current triboelectric nanogenerator (DC‐TENG) is designed for harvesting contact‐separation mechanical energy. During working process, the charges first transfer from bottom to top electrodes through an external circuit in contact state, then flow back via the ionized air channel created by air breakdown in the separation process. So a unidirectional flow of electrical charges can be observed in the external circuit. With repeating contact‐separation cycles, continuous pulsed DC output through the external circuit can be realized. This working mechanism was verified by real‐time electrode potential monitoring, photocurrent signal detection, and controllable discharging observation. The DC‐TENG can be used for directly and continuously charging an energy storage unit and/or driving electronic devices without using a bridge rectifier. Owing to its simplicity in structure, the mechanism is further applied to fabricate the first flexible DC‐TENG. This research provides a significant fundamental study for DC‐TENG technology and may expand its application in flexible electronics and flexible self‐charging power systems.  相似文献   

10.
Recycling of random mechanical energy in the environment has become an important research hotspot. The triboelectric nanogenerators (TENGs) were invented to harvest energy, and have been widely applied due to their simple structure, small size, and low cost. This paper reports a mechanical regulation triboelectric nanogenerator (MR‐TENG) for the first time with controllable output performance used to harvest random or irregular energy in the environment. It comprises a transmission unit, switch structure, generator unit, flywheel, and shell. Random linear motion or rocking motion is transferred via the transmission unit to the flywheel. The rotor of the generator unit fixed on the flywheel and the stator of the generator unit fixed on the shell combine. By controlling the storage and release of energy in the flywheel, the switch structure assists the flywheel to convert random or irregular energy into a controllable and stable energy output. The MR‐TENG can generate an open‐circuit voltage of 350 V, a short‐circuit current of 12 μA, a transfer charge of 130 nC, and a peak power of 2.52 mW. Furthermore, a thermometer and more than 300 light emitting diodes (LEDs) are separately powered by this MR‐TENG in simulated water waves, demonstrating its potential application in water wave energy harvesting.  相似文献   

11.
Material abrasion in contact‐based freestanding mode‐triboelectric nanogenerators (FS‐TENGs) seriously deteriorates device mechanical durability and electrical stability, which causes TENGs to be only applicable in the harvesting of mechanical energy at low‐frequency. Here, a wide‐frequency and ultra‐robust rotational TENG is reported that is composed of a built‐in traction rope structure and capable of transforming from contact mode to non‐contact mode automatically as driven by the centrifugal force. With optimizing the fixed x and y position on slider and center shaft, respectively, the mode transition threshold speed can be reduced to 225 rpm. Additionally, the automatic working mode transition TENG exhibits excellent electrical stability, which can maintain 90% electric output after over 24 h of continuous operation, while the contact and non‐contact mode TENGs only retain 30% and 2% output, respectively. The high stability and large output density ensure its usage in the fast and effective charging of commercial capacitors or electronics. This work provides a prospective strategy for rotational TENGs to extend the frequency operation region and mechanical durability for practical applications.  相似文献   

12.
The newly invented triboelectric nanogenerator (TENG) is deemed to be a more efficient strategy than an electromagnetic generator (EMG) in harvesting low‐frequency (<2 Hz) water wave energy. Various TENGs with different structures and functions for blue energy have been developed, which can be roughly divided into two types: liquid–solid contact electrification TENGs and fully enclosed solid–solid contact electrification TENGs. Robustness and packaging are critical factors in the development of TENGs toward practical applications. Furthermore, for fully enclosed TENGs, the requirements and costs of packaging are very high, and they can difficult to disassemble after enclosed, if there is something wrong with the devices. Herein, a nonencapsulative pendulum‐like paper based hybrid nanogenerator for energy harvesting is designed, which mainly consists of three parts, one solar panel, two paper based zigzag multilayered TENGs, and three EMG units. This unique structure reveals the superior robustness and a maximum peak power of zigzag multilayered TENGs up to 22.5 mW is realized. Moreover, the device can be used to collect the mechanical energy of human motion in hand shaking. This work presents a new platform of hybrid generators toward energy harvesting as a portable practical power source, which has potential applications in navigation and lighting.  相似文献   

13.
A new “wireless” paradigm for harvesting mechanical energy via a 3D‐printed wireless triboelectric nanogenerator (W‐TENG) comprised of an ecofriendly graphene polylactic acid (gPLA) nanocomposite and Teflon is demonstrated. The W‐TENG generates very high output voltages >2 kV with a strong electric field that enables the wireless transmission of harvested energy over a distance of 3 m. The W‐TENG exhibited an instantaneous peak power up to 70 mW that could be wirelessly transmitted for storage into a capacitor obviating the need for hard‐wiring or additional circuitry. Furthermore, the use of W‐TENG for wireless and secure actuation of smart‐home applications such as smart tint windows, temperature sensors, liquid crystal displays, and security alarms either with a single or a specific user‐defined passcode of mechanical pulses (e.g., Fibonacci sequence) is demonstrated. The scalable additive manufacturing approach for gPLA‐based W‐TENGs, along with their high electrical output and unprecedented wireless applications, is poised for revolutionizing the present mechanical energy harvesting technologies.  相似文献   

14.
With the advantages of its light weight, low cost, and high efficiency especially at low operation frequency, the triboelectric nanogenerator (TENG) is considered to be a potential solution for self‐powered sensor networks and large‐scale renewable blue energy. However, the conventional TENG converts mechanical energy into electrical energy only via either electrostatic induction or electrostatic breakdown. Here, a novel dual‐mode TENG is presented, which can simultaneously harvest mechanical energy by electrostatic induction and dielectric breakdown in a single device. Based on the complementary working mechanism, it achieves a great improvement in the output performance with the sum of two TENGs via a single mechanism and reveals the effect of dielectric layer thickness on the triboelectrification, electrostatic induction, and air breakdown. This study establishes a new methodology to optimize TENGs and provides a new tool to investigate the triboelectrification, electrostatic induction and dielectric breakdown simultaneously.  相似文献   

15.
The high‐output triboelectric nanogenerator (TENG) is indispensable for its practical applications toward industrial products. However, the electricity loss in simple parallel connection among all units and the typically high crest factor output seriously hamper the practical applications of TENG. Here, a rectified TENG is reported in parallel structure to solve the problem of electricity loss in simple parallel connection. The rotational contact–separation structure with phase difference between rectified TENGs addresses high crest factor output and extends service life of rotational TENG simultaneously. The current crest factor is dramatically decreased to 1.31 in multiple rectifier multiple TENG in parallel (MRM‐TENG), while that of TENG in simple parallel is higher than 6. Meanwhile, the current output can retain up to ≈93% of its initial performance after 7 200 000 rotations under 2.00 r s?1 of 1000 h. Furthermore, the equivalent current can be in linear growth with low crest factor by making MRM‐TENG in parallel for distributed energy supply without electricity loss. This work may provide a new strategy for TENG in parallel to achieve a low crest factor output and long‐term cycling stability power generation in distributed energy harvesting for large‐scale power application.  相似文献   

16.
The surface charge density and the output impedance of triboelectric nanogenerators (TENGs) are two critical factors for TENGs to speed up their commercialization, so it is important to explore unique methods to reduce the output impedance and increase the surface charge density. Here, an approach is demonstrated to effectively boost the output performance of TENG while reducing the output impedance of TENGs by utilizing grating‐electrode‐enabled surface plasmon excitation. A sustainable and enhanced output performance of about 40 µA (short‐circuit current) and 350 V (peak‐to‐peak voltage at a resistance of 10 MΩ) is produced via grating‐coupled surface plasmon resonance on the TENG with the aluminum grating electrode in the line density of 600 lines mm?1, and it delivers a peak output power of 3.6 mW under a loading resistance of 1 MΩ, giving over 4.5‐fold enhancement in output power and a 75% reduction in the output impedance. Finally a self‐powered ultrasonic ranging system is utilized to verify the capability of the TENG in powering portable electrics.  相似文献   

17.
As the world is marching into the era of the internet of things (IoTs) and artificial intelligence, the most vital development for hardware is a multifunctional array of sensing systems, which forms the foundation of the fourth industrial revolution toward an intelligent world. Given the need for mobility of these multitudes of sensors, the success of the IoTs calls for distributed energy sources, which can be provided by solar, thermal, wind, and mechanical triggering/vibrations. The triboelectric nanogenerator (TENG) for mechanical energy harvesting developed by Z.L. Wang's group is one of the best choices for this energy for the new era, since triboelectrification is a universal and ubiquitous effect with an abundant choice of materials. The development of self‐powered active sensors enabled by TENGs is revolutionary compared to externally powered passive sensors, similar to the advance from wired to wireless communication. In this paper, the fundamental theory, experiments, and applications of TENGs are reviewed as a foundation of the energy for the new era with four major application fields: micro/nano power sources, self‐powered sensors, large‐scale blue energy, and direct high‐voltage power sources. A roadmap is proposed for the research and commercialization of TENG in the next 10 years.  相似文献   

18.
As interest in triboelectric nanogenerators (TENGs) continues to increase, some studies have reported that certain limitations exist in TENG due to high potential difference, resulting in air breakdown and field emission. In addition, with known limitations such as extremely low voltage at low external resistance, a breakthrough is required to overcome the limitations of TENG. Here, a new TENG mechanism is reported, utilizing ion‐enhanced field emission (IEFE). Using a simple IEFE‐inducing layer, which consists of a charge accumulation layer and a metal‐to‐metal contact point, electrons can flow directly to a counter electrode while generating high‐output power. Under vertical contact–separation input, the generated root mean square (RMS) power of IEFE‐TENG is 635% higher compared to conventional TENG. As the fundamental mechanism of the IEFE‐TENG is based on installing this simple IEFE‐inducing layer, the power output of existing TENGs including sliding mode types can be boosted. This new TENG mechanism can be a new standard for metal–metal contact TENGs to effectively amplify the output power and to overcome potential limitations.  相似文献   

19.
The open‐circuit voltage of a triboelectric nanogenerator (TENG) increases with the tribo‐charge density and the separated distance between two tribo‐surfaces, which can reach several thousand volts and is much higher than the working voltage required by most electrical devices and energy storage units. Therefore, improving the effective efficiency of TENGs requires reducing the output voltage and enhancing the transferred charges. Here, a multilayered‐electrode‐based TENG (ME‐TENG) is developed in which the output voltage can be managed by controlling the charge flow in a process of multiple (N) steps, which results in N times lower voltage but N times higher total charge transport. The ME‐TENG is demonstrated to work in various modes, including multichannel, single‐channel, and double‐tribo‐surface structures. The effects of insulator layer thickness and total layer number on the output voltage are simulated by the finite element method. The output voltage can be modulated from 14 to 102 V by changing the insulator layer number between two adjacent working electrodes, based on which the 8‐bit logic representations of the characters in the ACSII code table are demonstrated. The ME‐TENG provides a novel method to manage the output power and has potential applications in self‐powered sensors array and human–machine interfacing with logic communications.  相似文献   

20.
The triboelectric nanogenerator (TENG) is a new energy technology that is enabled by coupled contact electrification and electrostatic induction. The conventional TENGs are usually based on organic polymer insulator materials, which have the limitations and disadvantages of high impedance and alternating output current. Here, a tribovoltaic effect based metal–semiconductor direct‐current triboelectric nanogenerator (MSDC‐TENG) is reported. The tribovoltaic effect is facilitated by direct voltage and current by rubbing a metal/semiconductor on another semiconductor. The frictional energy released by the forming atomic bonds excites nonequilibrium carriers, which are directionally separated to form a current under the built‐in electric field. The continuous average open‐circuit voltage (10–20 mV), short‐circuit direct‐current output (10–20 µA), and low impedance characteristic (0.55–5 kΩ) of the MSDC‐TENG can be observed during relative sliding of the metal and silicon. The working parameters are systematically studied for electric output and impedance characteristics. The results reveal that faster velocity, larger pressure, and smaller area can improve the maximum power density. The internal resistance is mainly determined by the velocity and the electrical resistance of semiconductor. This work not only expands the material candidates of TENGs from organic polymers to semiconductors, but also demonstrates a tribovoltaic effect based electric energy conversion mechanism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号