首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Evaporating seawater and separating salt from water is one of the most promising solutions for global water scarcity. State‐of‐the‐art water desalination devices combining solar harvesting and heat localization for evaporation using nanomaterials still suffer from several issues in energy efficiency, long‐term performance, salt fouling, light blocking, and clean water collection in real‐world applications. To address these issues, this work devises plasma‐enabled multifunctional all‐carbon nanoarchitectures with on‐surface waterways formed by nitrogen‐doped hydrophilic graphene nanopetals (N‐fGPs) seamlessly integrated onto the external surface of hydrophobic self‐assembled graphene foam (sGF). The N‐fGPs simultaneously transport water and salt ions, absorb sunlight, serve as evaporation surfaces, then capture the salts, followed by self‐cleaning. The sGF ensures effective thermal insulation and enhanced heat localization, contributing to high solar‐vapor efficiency of 88.6 ± 2.1%. Seamless connection between N‐fGPs and sGF and self‐cleaning of N‐fGP structures by redissolution of the captured salts in the waterways lead to long‐term stability over 240 h of continuous operation in real seawater without performance degradation, and a high daily evaporation yield of 15.76 kg m?2. By eliminating sunlight blocking and guiding condensed vapor, a high clean water collection ratio of 83.5% is achieved. The multiple functionalities make the current nanoarchitectures promising as multipurpose advanced energy materials.  相似文献   

2.
Solar vaporization has received tremendous attention for its potential in desalination, sterilization, distillation, etc. However, a few major roadblocks toward practical application are the high cost, process intensive, fragility of solar absorber materials, and low efficiency. Herein an inexpensive cellular carbon sponge that has a broadband light absorption and inbuilt structural features to perform solitary heat localization for in situ photothermic vaporization is reported. The defining advantages of elastic cellular porous sponge are that it self‐confines water to the perpetually hot spots and accommodates cyclical dynamic fluid flow‐volume variable stress for practical usage. By isolating from bulk water, the solar‐to‐vapor conversion efficiency is increased by 2.5‐fold, surpassing that of conventional bulk heating. Notably, complementary solar steam generation‐induced electricity can be harvested during the solar vaporization so as to capitalize on waste heat. Such solar distillation and waste heat‐to‐electricity generation functions may provide potential opportunities for on‐site electricity and fresh water production for remote areas/emergency needs.  相似文献   

3.
Solar‐driven interfacial vaporization by localizing solar‐thermal energy conversion to the air–water interface has attracted tremendous attention due to its high conversion efficiency for water purification, desalination, energy generation, etc. However, ineffective integration of hybrid solar thermal devices and poor material compliance undermine extensive solar energy exploitation and practical outdoor use. Herein, a 3D organic bucky sponge that has a combination of desired chemical and physical properties, i.e., broadband light absorbing, heat insulative, and shape‐conforming abilities that render efficient photothermic vaporization and energy generation with improved operational durability is reported. The highly compressible and readily reconfigurable solar absorber sponge not only places less constraints on footprint and shape defined fabrication process but more importantly remarkably improves the solar‐to‐vapor conversion efficiency. Notably, synergetic coupling of solar‐steam and solar‐electricity technologies is realized without trade‐offs, highlighting the practical consideration toward more impactful solar heat exploitation. Such solar distillation and low‐grade heat‐to‐electricity generation functions can provide potential opportunities for fresh water and electricity supply in off‐grid or remote areas.  相似文献   

4.
Plasmonic nanoparticles with outstanding photothermal conversion efficiency are promising for solar vaporization. However, the high cost and the required intense light excitation of noble metals, hinder their practical application. Herein, an inexpensive 3D plasmonic solar absorber gel that embraces all the desirable optical, thermal, and wetting properties for efficient solar vaporization is reported. The broadband absorption and strong near‐field intertip enhancement of the sparsely dispersed gold nanoflowers contribute to efficient light‐to‐heat conversion, while the macro‐nano thermal insulative silica gel retains and channels the plasmonic heat directly to the water pathways contained within the porous gel. The plasmonic‐based solar absorber gel shows a vaporization efficiency of 85% under solar irradiation of 1 sun intensity (1 kW m?2). Moreover, the porous gel framework exhibits high mechanical stability and antifouling properties, potentially useful for polluted/turbid water evaporation. Complementary water condensation‐induced triboelectricity can be harvested alongside fresh water condensate, granting simultaneous fresh water production and electricity generation functionalities. The facile sol‐gel synthesis at room temperature makes the solar absorber gel highly adaptable for practical large‐scale photothermal applications.  相似文献   

5.
Device architectures for semi‐transparent perovskite solar cells are proposed that are not only highly efficient but also very effective in thermal‐mirror operation. With the optimal top transparent electrode design based on thin metal layer capped with a high‐index dielectric layer for selective transmittance in visible and high reflectance in near‐infrared (NIR) region, the proposed see‐through devices exhibit average power conversion efficiency as large as 13.3% and outstanding NIR rejection of 85.5%, demonstrating their great potential for ideal “energy‐generating and heat‐rejecting” solar windows that can make a smart use of solar energy.  相似文献   

6.
Plasmonic metal nanoparticles are a category of plasmonic materials that can efficiently convert light into heat under illumination, which can be applied in the field of solar steam generation. Here, this study designs a novel type of plasmonic material, which is made by uniformly decorating fine metal nanoparticles into the 3D mesoporous matrix of natural wood (plasmonic wood). The plasmonic wood exhibits high light absorption ability (≈99%) over a broad wavelength range from 200 to 2500 nm due to the plasmonic effect of metal nanoparticles and the waveguide effect of microchannels in the wood matrix. The 3D mesoporous wood with numerous low‐tortuosity microchannels and nanochannels can transport water up from the bottom of the device effectively due to the capillary effect. As a result, the 3D aligned porous architecture can achieve a high solar conversion efficiency of 85% under ten‐sun illumination (10 kW m?2). The plasmonic wood also exhibits superior stability for solar steam generation, without any degradation after being evaluated for 144 h. Its high conversion efficiency and excellent cycling stability demonstrate the potential of newly developed plasmonic wood to solar energy‐based water desalination.  相似文献   

7.
Solar steam generation has been proven to be one of the most efficient approaches for harvesting solar energy for diverse applications such as distillation, desalination, and production of freshwater. Here, the synthesis of monolithic carbon aerogels by facile carbonization of conjugated microporous polymer nanotubes as efficient solar steam generators is reported. The monolithic carbon‐aerogel networks consist of randomly aggregated hollow‐carbon‐nanotubes (HCNTs) with 100–250 nm in diameter and a length of up to several micrometers to form a hierarchically nanoporous network structure. Treatment of the HCNTs aerogels with an ammonium peroxydisulfate/sulfuric acid solution endows their superhydrophilic wettability which is beneficial for rapid transportation of water molecules. In combination with their abundant porosity (92%) with open channel structure, low apparent density (57 mg cm?3), high specific surface area (826 m2 g?1), low thermal conductivity (0.192 W m?1 K?1), and broad light absorption (99%), an exceptionally high conversion efficiency of 86.8% is achieved under 1 sun irradiation, showing great potential as an efficient photothermal material for solar steam generation. The findings may provide a new opportunity for tailored design and creation of new carbon‐aerogels‐based photothermal materials with adjustable structure, tunable porosity, simple fabrication process, and high solar energy conversion efficiency for solar steam generation.  相似文献   

8.
Stability has become the main obstacle for the commercialization of perovskite solar cells (PSCs) despite the impressive power conversion efficiency (PCE). Poor crystallization and ion migration of perovskite are the major origins of its degradation under working condition. Here, high‐performance PSCs incorporated with pyridine‐2‐carboxylic lead salt (PbPyA2) are fabricated. The pyridine and carboxyl groups on PbPyA2 can not only control crystallization but also passivate grain boundaries (GBs), which result in the high‐quality perovskite film with larger grains and fewer defects. In addition, the strong interaction among the hydrophobic PbPyA2 molecules and perovskite GBs acts as barriers to ion migration and component volatilization when exposed to external stresses. Consequently, superior optoelectronic perovskite films with improved thermal and moisture stability are obtained. The resulting device shows a champion efficiency of 19.96% with negligible hysteresis. Furthermore, thermal (90 °C) and moisture (RH 40–60%) stability are improved threefold, maintaining 80% of initial efficiency after aging for 480 h. More importantly, the doped device exhibits extraordinary improvement of operational stability and remains 93% of initial efficiency under maximum power point (MPP) tracking for 540 h.  相似文献   

9.
Mixed iodide‐bromide organolead perovskites with a bandgap of 1.70–1.80 eV have great potential to boost the efficiency of current silicon solar cells by forming a perovskite‐silicon tandem structure. Yet, the stability of the perovskites under various application conditions, and in particular combined light and heat stress, is not well studied. Here, FA0.15Cs0.85Pb(I0.73Br0.27)3, with an optical bandgap of ≈1.72 eV, is used as a model system to investigate the thermal‐photostability of wide‐bandgap mixed halide perovskites. It is found that the concerted effect of heat and light can induce both phase segregation and decomposition in a pristine perovskite film. On the other hand, through a postdeposition film treatment with benzylamine (BA) molecules, the highly defective regions (e.g., film surface and grain boundaries) of the film can be well passivated, thus preventing the progression of decomposition or phase segregation in the film. Besides the stability improvement, the BA‐modified perovskite solar cells also exhibit excellent photovoltaic performance, with the champion device reaching a power conversion efficiency of 18.1%, a stabilized power output efficiency of 17.1% and an open‐circuit voltage (V oc) of 1.24 V.  相似文献   

10.
Photo‐electrochemical (PEC) solar energy conversion offers the promise of low‐cost renewable fuel generation from abundant sunlight and water. In this Review, recent developments in photo‐electrochemical water splitting are discussed with respect to this promise. State‐of‐the‐art photo‐electrochemical device performance is put in context with the current understanding of the necessary requirements for cost‐effective solar hydrogen generation (in terms of solar‐to‐hydrogen conversion efficiency and system durability, in particular). Several important studies of photo‐electrochemical hydrogen generation at p‐type photocathodes are highlighted, mostly with protection layers (for enhanced durability), but also a few recent examples where protective layers are not needed. Recent work with the widely studied n‐type BiVO4 photoanode is detailed, which highlights the needs and necessities for the next big photoanode material yet to be discovered. The emerging new research direction of photo‐electrocatalytic upgrading of biomass substrates toward value‐added chemicals is then discussed, before closing with a commentary on how research on PEC materials remains a worthwhile endeavor.  相似文献   

11.
Polymer solar cells (PSCs) are fabricated without solvent additives using a low‐bandgap polymer, PBDTTT‐C‐T, as the donor and [6,6]‐phenyl‐C61‐butyric‐acid‐methyl‐ester (PC61BM) as the acceptor. Donor‐acceptor blend and layer‐by‐layer (LL) solution process are used to form active layers. Relative to the blend devices, the LL devices exhibit stronger absorption, better vertical phase separation, higher hole and electron mobilities, and better charge extraction at correct electrodes. As a result, after thermal annealing the LL devices exhibit an average power conversion efficiency (PCE) of 6.86%, which is much higher than that of the blend devices (4.31%). The best PCE of the LL devices is 7.13%, which is the highest reported for LL processed PSCs and among the highest reported for PC61BM‐based single‐junction PSCs.  相似文献   

12.
Realizing solar‐to‐hydrogen (STH) efficiencies close to 20% using low‐cost semiconductors remains a major step toward accomplishing the practical viability of photoelectrochemical (PEC) hydrogen generation technologies. Dual‐absorber tandem cells combining inexpensive semiconductors are a promising strategy to achieve high STH efficiencies at a reasonable cost. Here, a perovskite photovoltaic biased silicon (Si) photoelectrode is demonstrated for highly efficient stand‐alone solar water splitting. A p+nn+ ‐Si/Ti/Pt photocathode is shown to present a remarkable photon‐to‐current efficiency of 14.1% under biased condition and stability over three days under continuous illumination. Upon pairing with a semitransparent mixed perovskite solar cell of an appropriate bandgap with state‐of‐the‐art performance, an unprecedented 17.6% STH efficiency is achieved for self‐driven solar water splitting. Modeling and analysis of the dual‐absorber PEC system reveal that further work into replacing the noble‐metal catalyst materials with earth‐abundant elements and improvement of perovskite fill factor will pave the way for the realization of a low‐cost high‐efficiency PEC system.  相似文献   

13.
This review article presents and discusses the recent progress made in the stabilization, protection, improvement, and design of halide perovskite‐based photocatalysts, photoelectrodes, and devices for solar‐to‐chemical fuel conversion. With the target of water splitting, hydrogen iodide splitting, and CO2 reduction reactions, the strategies established for halide perovskites used in photocatalytic particle‐suspension systems, photoelectrode thin‐film systems, and photovoltaic‐(photo)electrocatalysis tandem systems are organized and introduced. Moreover, recent achievements in discovering new and stable halide perovskite materials, developing protective and functional shells and layers, designing proper reaction solution systems, and tandem device configurations are emphasized and discussed. Perspectives on the future design of halide perovskite materials and devices for solar‐to‐chemical fuel conversion are provided. This review may serve as a guide for researchers interested in utilizing halide perovskite materials for solar‐to‐chemical fuel conversion.  相似文献   

14.
With recent progress in interfacial solar steam generation, direct solar desalination is considered a promising technology for providing a clean water solution through a cost effective and environmental‐friendly pathway. As a high and stable water production rate is the key to enable widespread applications, salt deposition becomes a critical issue that needs to be addressed. Herein, the authors demonstrate that a flexible Janus absorber fabricated by sequential electrospinning can enable stable and efficient solar desalination. Taking advantage of the unique structure of Janus, two functions of steam generation, solar absorption and water pumping, are decoupled into different layers, with an upper hydrophobic carbon black nanoparticles (CB) coating polymethylmethacrylate (PMMA) layer for light absorption, and a lower hydrophilic polyacrylonitrile (PAN) layer for pumping water. Therefore, salt can only be deposited in the hydrophilic PAN layer and quickly be dissolved because of continuous water pumping. Janus absorber demonstrates high efficiency (72%) and stable water output (1.3 kg m–2 h–1, over 16 days) under 1‐sun, not achieved in most previous absorbers. With a unique structure design achieved by scalable process, this flexible Janus absorber provides an efficient, stable and portable solar steam generator for direct solar desalination.  相似文献   

15.
The record efficiency of the state‐of‐the‐art polymer solar cells (PSCs) is rapidly increasing, due to the discovery of high‐performance photoactive donor and acceptor materials. However, strong questions remain as to whether such high‐efficiency PSCs can be produced by scalable processes. This paper reports a high power conversion efficiency (PCE) of 13.5% achieved with single‐junction ternary PSCs based on PTB7‐Th, PC71BM, and COi8DFIC fabricated by slot‐die coating, which shows the highest PCE ever reported in PSCs fabricated by a scalable process. To understand the origin of the high performance of the slot‐die coated device, slot‐die coated photoactive films and devices are systematically investigated. These results indicate that the good performance of the slot‐die PSCs can be due to a favorable molecule‐structure and film‐morphology change by introducing 1,8‐diiodooctane and heat treatment, which can lead to improved charge transport with reduced carrier recombination. The optimized condition is then used for the fabrication of large‐area modules and also for roll‐to‐roll fabrication. The slot‐die coated module with 30 cm2 active‐area and roll‐to‐roll produced flexible PSC has shown 8.6% and 9.6%, respectively. These efficiencies are the highest in each category and demonstrate the strong potential of the slot‐die coated ternary system for commercial applications.  相似文献   

16.
In this study, the effect of plasmonic core‐shell structures, consisting of dielectric cores and metallic nanoshells, on energy conversion in dye‐sensitized solar cells (DSSCs) is investigated. The structure of the core‐shell particles is controlled to couple with visible light so that the visible component of the solar spectrum is amplified near the core‐shell particles. In core‐shell particle – TiO2 nanoparticle films, the local field intensity and light pathways are increased due to the surface plasmons and light scattering. This, in turn, enlarges the optical cross‐section of dye sensitizers coated onto the mixed films. When 22 vol% of core‐shell particles are added to a 5 μm thick TiO2 film, the energy conversion efficiency of DSSCs increases from 2.7% to 4.0%, in spite of a more than 20% decrease in the amount of dyes adsorbed on the composite films. The correlation between core‐shell particle content and energy conversion efficiency in DSSCs is explained by the balance among near‐field effects, light scattering efficiency, and surface area in the composite films.  相似文献   

17.
The tunnel junction (TJ) intermediate connection layer (ICL), which is the most critical component for high‐efficient tandem solar cell, generally consists of hole conducting layer and polyethyleneimine (PEI) polyelectrolyte. However, because of the nonconducting feature of pristine PEI, photocurrent is open‐restricted in ICL even with a little thick PEI layer. Here, high‐efficiency homo‐tandem solar cells are demonstrated with enhanced efficiency by introducing carbon quantum dot (CQD)‐doped PEI on TJ–ICL. The CQD‐doped PEI provides substantial dynamic advantages in the operation of both single‐junction solar cells and homo‐tandem solar cells. The inclusion of CQDs in the PEI layer leads to improved electron extraction property in single‐junction solar cells and better series connection in tandem solar cells. The highest efficient solar cell with CQD‐doped PEI layer in between indium tin oxide (ITO) and photoactive layer exhibits a maximum power conversion efficiency (PCE) of 9.49%, which represents a value nearly 10% higher than those of solar cells with pristine PEI layer. In the case of tandem solar cells, the highest performing tandem solar cell fabricated with C‐dot‐doped PEI layer in ICL yields a PCE of 12.13%; this value represents an ≈15% increase in the efficiency compared with tandem solar cells with a pristine PEI layer.  相似文献   

18.
2D materials are of particular interest in light‐to‐heat conversion, yet challenges remain in developing a facile method to suppress their light reflection. Herein, inspired by the black scales of Bitis rhinoceros, a generalized approach via sequential thermal actuations to construct biomimetic 2D‐material nanocoatings, including Ti3C2Tx MXene, reduced graphene oxide (rGO), and molybdenum disulfide (MoS2) is designed. The hierarchical MXene nanocoatings result in broadband light absorption (up to 93.2%), theoretically validated by optical modeling and simulations, and realize improved light‐to‐heat performance (equilibrium temperature of 65.4 °C under one‐sun illumination). With efficient light‐to‐heat conversion, the bioinspired MXene nanocoatings are next incorporated into solar steam‐generation devices and stretchable solar/electric dual‐heaters. The MXene steam‐generation devices require much lower solar‐thermal material loading (0.32 mg cm?2) and still guarantee high steam‐generation performance (1.33 kg m?2 h?1) compared with other state‐of‐the‐art devices. Additionally, the mechanically deformed MXene structures enable the fabrication of stretchable and wearable heaters dual‐powered by sunlight and electricity, which are reversibly stretched and heated above 100 °C. This simple fabrication process with effective utilization of active materials promises its practical application value for multiple solar–thermal technologies.  相似文献   

19.
Dye‐sensitized solar cells (DSCs) have attracted great interest as one of the most promising photovoltaic technologies, and transparent DSCs show potential applications as photovoltaic windows. However, the competition between light absorption for photocurrent generation and light transmittance for obtaining high transparency limits the performance of transparent DSCs. Here, transparent DSCs exhibiting a high light transmittance of 60.3% and high energy conversion efficiency (3.66%) are reported. The strategy is to create a cocktail system composed of ultraviolet and near‐infrared dye sensitizers that selectively and efficiently harvest light in the invisible or low‐eye‐sensitivity region while transmitting light in high‐eye‐sensitivity regions. This new design provides a reasonable approach for realizing high efficiency and transparency DSCs that have potential applications as photovoltaic windows.  相似文献   

20.
Here an all‐purpose fibrous electrode based on MoS2 is demonstrated, which can be employed for versatile energy harvesting and storage applications. In this coaxial electrode, ultrathin MoS2 nanofilms are grown on TiO2 nanoparticles coated carbon fiber. The high electrochemical activity of MoS2 and good conductivity of carbon fiber synergistically lead to the remarkable performances of this novel composite electrode in fibrous dye‐sensitized solar cells (showing a record‐breaking conversion efficiency of 9.5%) and high‐capacity fibrous supercapacitors. Furthermore, a self‐powering energy fiber is fabricated by combining a fibrous dye‐sensitized solar cell and a fibrous supercapacitor into a single device, showing very fast charging capability (charging in 7 s under AM1.5G solar illumination) and an overall photochemical‐electricity energy conversion efficiency as high as 1.8%. In addition, this wire‐shaped electrode can also be used for fibrous Li‐ion batteries and electrocatalytic hydrogen evolution reactions. These applications indicate that the MoS2‐based all‐purpose fibrous electrode has great potential for the construction of high‐performance flexible and wearable energy devices.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号