首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Ectoparasitoids inject venom into hemolymph during oviposition. We determined the influence of envenomation by the parasitoid, Habrobracon hebetor, on the hemocytes of its larval host, Galleria mellonella. An increase in both intracellular Са2+ content and phospholipase C activity of the host hemocytes was recorded during 2 days following envenomation by the parasitoid. The decreased hemocyte viability was detected 1, 2, and 24 h after the envenomation. Injecting of the crude venom (final protein concentration 3 μg/ml) into the G. mellonella larvae led to the reduced hemocyte adhesion. The larval envenomation caused a decrease in transmembrane potential of the hemocytes. These findings document the suppression of hemocytic immune effectors in the parasitized host larvae.  相似文献   

2.
The impacts of different doses of the plant growth regulator gibberellic acid (GA(3)) in diet on the number of total and differential hemocytes, frequency of apoptotic, and necrotic hemocytes, mitotic indices, encapsulation, and melanization responses were investigated using the greater wax moth Galleria mellonella L. (Lepidoptera: Pyralidae) larvae. Total hemocyte counts increased in G. mellonella larvae at all treatment doses whereas GA(3) application had no effect on the number of different hemocyte types. The occurrence of apoptosis, necrosis and mitotic indices in GA(3) treated and untreated last instars were detected by acridine orange or ethidium bromide double staining by fluorescence microscopy. While the ratio of necrotic hemocytes increased at all GA(3) treatments, that of late apoptotic cells was only higher at doses >200 ppm when compared with untreated larvae. The percentage of mitotic index also increased at 5,000 ppm. Positively charged DEAE Sephadex A-25 beads were used for analysis of the levels of encapsulation and melanization in GA(3) treated G. mellonella larvae. At four and 24 h posttreatments with Sephadex A-25 bead injection, insects were dissected under a stereomicroscope. Encapsulation rates of larval hemocytes were dependent on the extent of encapsulation and time but not treatment groups. While the extent of melanization of hemocytes showed differences related to time, in general, a decrease was observed at all doses of GA(3) treated larvae at 24 h. We suggest that GA(3) treatment negatively affects hemocyte physiology and cell immune responses inducing cells to die by necrosis and apoptosis in G. mellonella larvae.  相似文献   

3.
Host susceptibility and patterns of infection are predicted to differ between males and females due to sex-based tradeoffs between the demands of reproduction and costly immune defenses. In this study, we examined immune defenses and the response to experimental infection by a protozoan parasite, Ophryocystis elektroscirrha, in male and female monarch butterflies, Danaus plexippus. We quantified two measures of immunity in late instar larvae: the concentration of circulating hemocytes and mid-gut phenoloxidase activity, and also quantified final parasite loads, body size, longevity, and wing melanism of adult butterflies. Results showed that females had greater average hemocyte counts than males in the absence of infection; males, but not females, showed an increased concentration of hemocytes in the presence of infection. However, higher hemocyte concentrations in larvae were not significantly correlated with lower adult parasite loads, and mid-gut phenoloxidase activity was not significantly associated with hemocyte counts or parasite treatments. Among unparasitized females, greater hemocyte concentrations were costly in terms of reduced body size, but for parasite-treated females, hemocyte concentrations and body size were positively associated. Across all monarchs, unparasitized butterflies showed greater wing melanism (darker forewings) than parasitized monarchs. Overall, this study provides support for differential costs of immune defenses in male and female monarch butterflies, and a negative association between parasite infection and monarch wing melanism.  相似文献   

4.
In parasitoid species devoid of polydnaviruses and virus‐like particles, venom appears to play a major role in suppression of host immunity. Venom from the pupal endoparasitoid Pimpla turionellae L. (Hymenoptera: Ichneumonidae) has previously been shown to contain a mixture of biologically active components, which display potent paralytic, cytotoxic, and cytolytic effects toward lepidopteran and dipteran hosts. The current study was undertaken to investigate if parasitism and/or envenomation by P. turionellae affects the frequency of apoptotic and necrotic hemocytes, hemocyte viability and mitotic indices in Galleria mellonella L. (Lepidoptera: Pyralidae) pupae and larvae. Our study indicates that parasitism and experimental envenomation of G. mellonella by P. turionellae resulted in markedly different effects on the ratio of apoptotic hemocytes circulating in hemolymph depending on the host developmental stages. The ratio of early and late apoptotic hemocytes increased in G. mellonella pupae and larvae upon parasitization and at high doses of venom when compared to untreated, null and Phosphate Buffered Saline (PBS) injected controls. In contrast, an increase in necrotic hemocytes was only observed in parasitized pupae at 24 h and no difference was observed in larvae. The lowest hemocyte viability values were observed with pupae as 69.87%, 69.80%, and 72.47% at 4, 8, and 24 h post‐parasitism. The ratio of mitotic hemocytes also decreased in pupae and larvae upon parasitization and at high doses of venom. Staining of hemocytes with annexin V‐FITC revealed green fluorescent ‘halos’ along the plasma membranes of venom treated cells within 15 min following exposure to venom. By 1 h post‐venom – treatment, the majority of hemocytes displayed binding of this probe, indicative of early stage apoptosis. These same hemocytes also displayed a loss of plasma membrane integrity at the same time points as evidenced by accumulation of propidium iodide in nuclei.  相似文献   

5.
A protein that inhibits hemocyte aggregation has been isolated from hemolymph of Manduca sexta larvae and named hemocyte aggregation inhibitor protein (HAIP). HAIP has a Mr = 50,000, pI = 8.5, and contains 7% carbohydrate. It is present at 230 ± 20 μg/ml in hemolymph of day 3 fifth instar larvae. Antibodies to HAIP do not cross-react with M. sexta hemolin, which is similar in size and charge and also inhibits hemocyte aggregation. HAIP and hemolin have some similarity in amino acid composition and NH2-terminal sequence, but are different in overall secondary structure, as determined by CD spectroscopy. The concentration of HAIP in hemolymph is not affected by injection of larvae with bacteria. A protein of approximately 50,000 daltons that reacts with antibody to M. sexta HAIP is present in hemolymph of Bombyx mori, Heliothis zea, and Galleria mellonella. Although the function of HAIP in vivo is not yet clear, it may have a role in modulating adhesion of hemocytes during defensive responses. © 1994 Wiley-Liss, Inc.  相似文献   

6.
The physiological effects of nucleopolyhedrovirus (NPV) infection and parasitism by Microplitis pallidipes (Hymenoptera: Braconidae) on the hemocytes of Spodoptera exigua (Lepidoptera: Noctuidae) larvae were examined. We found that compared to healthy (control) larvae, the total hemocyte count (THC) and granulocyte count in parasitized larvae increased 1 day after parasitization and then decreased, while the plasmatocyte count was not significantly affected for the first 5 days but was significantly enhanced on day 6 after parasitization. In parasitized + infected larvae, both the THC and granulocyte counts began be lower from day 1 compared to parasitized larvae, while the plasmatocyte count was generally lower than in parasitized larvae. Compared to the control, THC, and granulocyte counts of virus-infected larvae were higher 1 day after infection. Compared to that in virus-infected larvae, THC and granulocyte counts in parasitized + infected larvae began to decrease from day 1 while the plasmatocyte count generally decreased. We concluded that the host immune response of cell communities to parasitization by M. pallidipes was elicited during the development of the parasitoid egg, but that immune response was inhibited during larval development of parasitoids in the host body. Meanwhile, we found that NPV infection impeded the regulatory effect of M. pallidipes on host cellular immune responses, and parasitization by M. pallidipes similarly inhibited the host cellular immune response caused by NPV infection.  相似文献   

7.
There is no study implying the effect of plant lectins on insect immune elements in both challenged and non‐challenged conditions with entomopathogenic agents. Lectins may bind to immune receptors on the surface of insect hemocytes, thus inducing or even disabling common immune functions including hemocyte counts, nodulation/encapsulation, phenoloxidase activity, and synthesis of antimicrobial peptides. In the present study, effect of Polygonum persicaria L. agglutinin (PPA) on immune responses of Helicoverpa armigera Hübner was investigated by feeding artificial diet treated to the larvae. Subsequently hemocyte count and expression of some immune‐related genes were considered for analyses. The two groups of larvae including control and PPA‐treated (1%) were divided into four subgroups of intact, Tween‐80 injected, latex‐bead injected and Beauveria bassiana‐injected. Except for intact larvae, the highest numbers of total and differential hemocyte counts were recorded 12 hr postinjection, however, the PPA‐fed larvae showed a significantly lower hemocyte counts compared to control. The number of nodules in PPA‐fed larvae was significantly lower than control, but the injected larvae of both control and PPA showed the highest nodulation 24 hr postinjection. Although the highest activity of phenoloxidase was observed 12 and 24 hr postinjection but its activity significantly decreased in PPA‐fed larvae compared to control. Gene expression of antimicrobial peptides including attacin, cecropin, and peptidoglycan receptor proteins were significantly decreased in artificial diet‐fed larvae containing PPA and then injected by B. bassiana spores and latex bead compared to control. These results clearly indicate adverse effects of PPA on immune responses in H. armigera.  相似文献   

8.
Juvenile hormone (JH) analogs are nowadays in use to control harmful pests. In order to develop new bioactive molecules as potential pesticides, we have incorporated different active structural features like sulfonamide, aromatic rings, amide group, and amino acid moiety to the base structure. We have screened a series of designed novel JH analogs against JH receptor protein (jhbpGm-2RCK) of Galleria mellonella in comparison to commercial insect growth regulators (IGRs) – Pyriproxyfen (T1) and Fenoxycarb (T2). All analogs exhibit the binding energy profile comparable to commercial IGRs. Based upon these results, a series of sulfonamide-based JHAs (T3–T8) as IGRs have been synthesized and characterized. Further, the efficacy of synthesized analogs (T3–T8) and commercial IGRs (Pyriproxyfen and Fenoxycarb) has been assessed against fourth instars larvae of G. mellonella under the laboratory conditions. LC50 values of all the analogs (T1–T8) against the fourth instars larvae were 9.99, 10.12, 24.76, 30.73, 38.45, 34.15, 34.14, 19.48 ppm and the LC90 153.27, 131.69, 112.15, 191.46, 427.02, 167.13, 217.10, 172.00 ppm, respectively. Among these analogs, N-(1-isopropyl-2-oxo-3-aza-3-N-ethyl-pentanyl)-p-toluene sulfonamide (T8) and N-(1-isopropyl-2-oxo-3-aza-3-N-ethyl-pentanyl) benzene sulfonamide (T7) exhibited the good pest larval mortality at different exposure periods (in hours) and different concentrations (in ppm) in comparison to in use IGRs- T1 and T2. Bio assay results are supported by docking at higher concentration. The present investigation clearly exhibits that analog T8 could serve as a potential IGR in comparison to in use IGRs (T1 and T2). The results are promising and provide new array of synthetic chemicals that may be utilized as IGRs.  相似文献   

9.
《Journal of Asia》2020,23(3):660-665
The present study was aimed at investigating the effect of plant based compound, ellagic acid on parasitoid Bracon hebetor (Say) through its host, the common cutworm, Spodoptera litura (Fabricius). The effect on S. litura was ascertained by feeding six days old larvae on artificial diet incorporated with different concentrations (5 ppm, 25 ppm, 125 ppm, 625 ppm, 3125 ppm) of ellagic acid and water as control. Its effect on B. hebetor was determined by allowing the adult B. hebetor to parasitize the treated host larvae. The mortality of S. litura larvae was increased whereas adult emergence declined with increasing concentration of ellagic acid. The developmental period was delayed significantly and all the nutritional indices were reduced with treatment. Ellagic acid at LC30 (7.70 ppm) had not much influence on the growth of parasitoid B. hebetor but LC50 (43.45 ppm) adversely influenced the development of the parasitoid, B. hebetor when reared on treated larvae of S. litura. This was evident from reduced parasitization, fecundity, egg laying, egg hatching, emergence, increased larval mortality, reduced pupation and prolonged development of the immature stages at LC50. However, parasitization, egg hatching and larval mortality of the parasitoid were not significantly impacted at LC30 indicating the possibility of its use in integrated pest management programmes.  相似文献   

10.
In this research work, the susceptibility of egg and four larval instars of Leptinotarsa decemlineata (Say) (Col.: Chrysomelidae) to Insect Growth Regulators (IGRs) compounds (lufenuron 25% EC and fenoxycarb 25% WP) was determined. Different larval instar groups were separated by measuring the head capsule width and were used in all bioassays. The data were analysed with log-probit transformation using the SPSS software. The LC50 for egg was determined by dipping egg masses in different concentration of either compound for 10 s, and LC50 values for each group of larvae was estimated by using treated potato plants. The LC50 values of lufenuron on egg, first, second and third instars of larvae were 682.65, 40.58, 47.83 and 261.38 ppm, respectively, and for fenoxycarb, these were estimated as 897.50, 35.60, 57.91 and 355.23 ppm, respectively. The LD50 values of lufenuron and fenoxycarb on second instar larvae were 139.56 and 228.42 ppm, respectively.  相似文献   

11.
为了阐明幼虫密度对草地螟Loxostege sticticalis L.(鳞翅目: 螟蛾科)细胞免疫能力的影响, 本研究调查了在活体灰菜植株上1,5,10和20头/瓶(900 mL)4种密度条件下的其5龄幼虫血细胞种类、数量和组成。结果表明: 草地螟幼虫血淋巴中有原血细胞、浆血细胞、 颗粒血细胞、珠血细胞和类绛色血细胞等5种(类)血细胞。血细胞总数、 浆血细胞、颗粒血细胞数量随幼虫密度的增加而显著递增, 但原血细胞、珠血细胞和类绛色血细胞数量在幼虫密度间的差异不明显;各种血细胞所占血细胞总数的比例在4个密度中的排序相同, 但10和20头/瓶密度下的浆血细胞比例显著高于1头/瓶的,其余4种血细胞的比例在不同密度之间无显著差异。可见, 幼虫密度主要是通过影响草地螟幼虫浆血细胞和颗粒血细胞的数量及血细胞总数, 从而影响草地螟的细胞免疫能力。  相似文献   

12.
Hemocytes are crucial cells of the insect immune system because of their involvement in multiple immune responses including coagulation, phagocytosis and encapsulation. There are various types of hemocytes, each having a particular role in immunity, such that variation in their relative abundance affects the outcome of the immune response. This study aims to characterize these various types of hemocytes in larvae of the grapevine pest insect Eupoecilia ambiguella, and to assess variation in their concentration as a function of larval diet and immune challenge. Four types of hemocytes were found in the hemolymph of 5th instar larvae: granulocytes, oenocytoids, plasmatocytes and spherulocytes. We found that the total concentration of hemocytes and the concentration of each hemocyte type varied among diets and in response to the immune challenge. Irrespective of the diet, the concentration of granulocytes increased following a bacterial immune challenge, while the concentration of plasmatocytes and spherulocytes differentially varied between larval diets. The concentration of oenocytoids did not vary among diets before the immune challenge but varied between larval diets in response to the challenge. These results suggest that the resistance of insect larvae to different natural enemies critically depends on the effect of larval diet on the larvae’s investment into the different types of hemocytes.  相似文献   

13.
Dastarcus helophoroides is an ectoparasitoid beetle of Monochamus alternatus, and the parasitism by D. helophoroides larvae remarkably influenced on the immune responses of M. alternatus larvae in many aspects. The hemolymph melanization reactions in the hosts were inhibited 1 h and 24 h postparasitization. The phenoloxidase activities of hemolymph were significantly stimulated 4 h postparasitization and inhibited 12 h postparasitization, and back to control level. The antibacterial activities of hemolymph in the parasitized hosts were significantly lower than that in the unparasitized ones 1 h postparasitization. By 72 h postparasitism, the total hemocyte numbers of the parasitized larvae declined to not more than one‐seconds of the number collected from the unparasitized larvae. All sampled hemolymph held the capability of nodulation, and there were fluctuations in the number of nodules the hemocytes made. However, there were no significant differences between unparasitized and parasitized larvae at each time point in the hemagglutination activity and the ratios of spreading hemocytes. In conclusion, D. helophoroides larvae could regulate M. alternatus immune system and resulted in the changes in host immune responses.  相似文献   

14.
Large inoculum of infective or UV-irradiated Chilo iridescent virus (CIV) caused an early drastic cytopathy of the larval hemocytes of the greater wax moth, Galleria mellonella. Cytopathy of the hemocyte could be detected 2 hr after virus injection at 25°C and most hemocytes were completely destroyed within 8 hr after virus injection. Heat-treated CIV did not produce any cytopathy of Galleria hemocytes. Antiserum to CIV neutralized this cytopathic effect, while that to Tipula iridescent virus did not demonstrate any inhibitory effect. Actinomycin D, mitomycin C, and puromycin did not inhibit hemocyte destruction by UV-irradiated CIV. Galleria larva injected with a large dose of UV-irradiated CIV progressively became stunted with a decrease of body weight and did not regain its hemocyte numbers. Hemocytes infected with CIV were not destroyed by any additive injection of a large dose of UV-irradiated CIV.  相似文献   

15.
The efficacy of plant extracts (neem tree, Azadirachta indica A. Juss.; Meliaceae) and copepods [Mesocyclops aspericornis (Daday)] for the control of the dengue vector Aedes aegypti L. was tested in the laboratory. Neem Seed Kernel Extract (NSKE) at 25, 50, 100, 200 and 400 ppm caused significant mortality of Ae. aegypti larvae. Lethal concentrations (LC50 and LC90) were worked out. The LC50 and LC90 values for I to IV larval instars were 111.98, 138.34, 158.93, 185.22 ppm and for pupae was 146.13 ppm, respectively. The LC90 value of I instar was 372.95 ppm, II instar was 422.77 ppm, III instar was 440.63 ppm, IV instar was 456.96 ppm, and pupae was 476.92 ppm, respectively. A study was conducted to test the whether the predatory efficiency of copepods on first instars changed in the presence of NSKE. The percentage of predatory efficiency of copepod was 6.80% in treatments without NSKE and the percentage of predatory efficiency increased up to 8.40% when copepods were combined with NSKE. This increase in predation efficiency may caused by detrimental effects of the neem active principle compound (Azadirachtin) on the mosquito larvae. Our results suggest that the combined application of copepods and neem extract to control Aedes populations is feasible. Repeated application of neem does not cause changes in copepod populations, because neem is highly degradable in the environment.  相似文献   

16.
Maintenance of hemocyte populations is critical for both development and immune responses. In insects, the maintenance of hemocyte populations is regulated by mitotic division of circulating hemocytes and by discharge from hematopoietic organs. We found cell clusters in the hemolymph of Mamestra brassicae larvae that are composed of small, spherical cells. Microscopic observations revealed that the cells in these clusters are similar to immature or precursor cells present in hematopoietic organs. The results of bromodeoxyuridine (BrdU) incorporation experiments demonstrate that these cells are mitotically active. Furthermore, these cells maintain their immature state and proliferate until late in the last larval instar. The results of in vitro experiments showed that most of the cells changed their morphology to one consistent with plasmatocytes or granulocytes, and that the change was promoted by addition of larval hemolymph to the culture medium, in particular when hemolymph was collected at a prepupal stage. Taken together, our results suggested that cells in clusters may be an additional source of hemocytes during larval development.  相似文献   

17.
Culexpipiens quinquefasciatus (C. quinquefasciatus) is an important vector that can transmit human diseases such as West Nile virus, lymphatic filariasis, Japanese encephalitis and St. Louis encephalitis. However, very limited research concerning the humoral and cellular immune defenses of C. quinquefasciatus has been done. Here we present the research on hemocyte identification and plasma including hemocyte prophenoloxidase from C. quinquefasciatus at all developmental stages in order to obtain a complete picture of C. quinquefasciatus innate immunity. We identified hemocytes into four types: prohemocytes, oenocytoids, plasmatocytes and granulocytes. Prophenoloxidase (PPO) is an essential enzyme to induce melanization after encapsulation. PPO-positive hemocytes and plasma PPO were observed at all developmental stages. As for specific hemocyte types, prophenoloxidase was found in the plasmatocytes at larval stage alone and in the smallest prohemocytes during almost all developmental stages. Moreover, the granulocytes were PPO-positive from blood-fed female mosquitoes and oenocytoids were observed PPO-positive in pupae and in adult females after blood-feeding. As for plasma, there were different patterns of PPO in C. quinquefasciatus at different developmental stages. These results are forming a basis for further studies on the function of C. quinquefasciatus hemocytes and prophenoloxidase as well as their involvement in fighting against mosquito-borne pathogens.  相似文献   

18.
In this study, we investigated the effect of the entomopathogenic fungus Nomuraea rileyi on Helicoverpa armigera cellular immune responses. Nomuraea rileyi infection had no effect on total hemocyte count (THC), but impaired hemocyte‐mediated phagocytosis, nodulation, and encapsulation responses. Nomuraea rileyi infection led to a significant reduction in hemocyte spreading. An in vitro assay revealed that plasma from N. rileyi infected H. armigera larvae suppressed the spreading ability of hemocytes from naïve larvae. We infer that N. rileyi suppresses the cellular immune response of its host, possibly by secreting exogenous, cytotoxic compounds into the host's hemolymph.  相似文献   

19.
ABSTRACT

Cellular immunity is evolutionarily conserved in invertebrates and vertebrates. In insects, cellular immune response is provided by the hemocytes, and its molecular mechanisms are currently not fully understood. Here, we identified a CD109 antigen-like gene (HaCD109) from Helicoverpa armigera which is highly expressed in the hemocytes of larvae. Stimulation by Escherichia coli and chromatography beads significantly upregulated HaCD109 expression. In vivo HaCD109 silencing significantly increased bacterial load in larval hemolymphs and reduced the hemocyte spread. 20-Hydroxyecdysone (20E) can induce HaCD109 expression through its receptors, EcR and USP. In vivo HaCD109 silencing nearly abolished 20E-induced bacterial clearance and hemocyte spread. These results suggested that HaCD109 plays an important role in cellular immunity, and the 20E-induced cellular immune response in H. armigera requires HaCD109 involvement. Our study contributes to the understanding of regulatory mechanisms for innate immune response and provides new insights into the interaction between innate immunity and steroid hormone signaling.  相似文献   

20.
We studied the immune response to Bacillus thuringiensis kurstaki (Btk) in susceptible (Bt-RS) and resistant (Bt-R) Trichoplusia ni after exposure to low doses of Btk and injection with Escherichia coli. We measured the levels of resistance, the expression profiles of hemolymph proteins, the phenoloxidase (PO) activity, and the differential number of circulating hemocytes in resistant and susceptible individuals. Individuals from the Bt-RS line became more resistant following a previous exposure to sub lethal concentrations of Btk, but the resistance to Btk of the Bt-R line did not change significantly. Similarly the Bt-R strain showed no significant changes in any of the potential immune responses, hemolymph protein levels or PO activity. The number of circulating hemocytes was significantly lower in the Bt-R strain than in the Bt-RS strain. Exposure to Btk decreased the hemocyte counts and reduced PO activity of Bt-RS larvae. Hemolymph protein concentrations also declined significantly in the susceptible larvae continually exposed to Btk. Seven peptides with antibacterial activity were identified in the hemolymph of Bt-RS larvae after exposure to Btk and five were found in the Bt-R larvae. When exposed to a low level Bt challenge the susceptible strain increases in tolerance and there are concomitant reductions in hemolymph protein concentrations, PO activity and the number of circulating hemocytes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号