首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 625 毫秒
1.
Organic/inorganic hybrid solar cells, typically mesoscopic and perovskite solar cells, are regarded as promising candidates to replace conventional silicon or thin film photovoltaics. There have been intensive investigations on the development of advanced materials for improved power conversion efficiencies, however, economical feasibilities and reliabilities of the organic/inorganic photovoltaics are yet to reach at a sufficient level for practical utilizations. In this study, cobalt nitride (CoN) nanofilms prepared by room‐temperature vapor deposition in an inert N2 atmosphere, which is a facile and highly reproducible procedure, are proposed as a low‐cost counter electrode in mesoscopic dye‐sensitized solar cells (DSCs) and a hole transport material in inverted planar perovskite solar cells (PSCs) for the first time. The CoN film successfully replaces conventional Pt in DSCs, resulting in a power conversion efficiency comparable to the ones based on Pt. In addition, PSCs employing the CoN manifest high efficiency even up to 15.0%, which is comparable to state‐of‐the‐art performance in the cases of PSCs employing inorganic hole transporters. Furthermore, flexible solar cell applications of the CoN are performed in both mesoscopic and perovskite solar cells, verifying the advantages of the room‐temperature deposition process and feasibilities of the CoN nanofilms in various fields.  相似文献   

2.
Compared to inorganic semiconductors and/or fullerene derivatives, nonfullerene n‐type organic semiconductors present some advantages, such as low‐temperature processing, flexibility, and molecule structure diversity, and have been widely used in perovskite solar cells (PSCs). In this research news article, the recent advances in nonfullerene n‐type organic semiconductors which function as electron‐transporting, interface‐modifying, additive, and light‐harvesting materials in PSCs are summarized. The remaining challenges and promising future directions of nonfullerene‐based PSCs are also discussed.  相似文献   

3.
Semitransparent perovskite solar cells (st‐PSCs) have received remarkable interest in recent years because of their great potential in applications for solar window, tandem solar cells, and flexible photovoltaics. However, all reported st‐PSCs require expensive transparent conducting oxides (TCOs) or metal‐based thin films made by vacuum deposition, which is not cost effective for large‐scale fabrication: the cost of TCOs is estimated to occupy ≈75% of the manufacturing cost of PSCs. To address this critical challenge, this study reports a low‐temperature and vacuum‐free strategy for the fabrication of highly efficient TCO‐free st‐PSCs. The TCO‐free st‐PSC on glass exhibits 13.9% power conversion efficiency (PCE), and the four‐terminal tandem cell made with the st‐PSC top cell and c‐Si bottom cell shows an overall PCE of 19.2%. Due to the low processing temperature, the fabrication of flexible st‐PSCs is demonstrated on polyethylene terephthalate and polyimide, which show excellent stability under repeated bending or even crumbing.  相似文献   

4.
Herein, this study reports high‐efficiency, low‐temperature ZnO based planar perovskite solar cells (PSCs) with state‐of‐the‐art performance. They are achieved via a strategy that combines dual‐functional self‐assembled monolayer (SAM) modification of ZnO electron accepting layers (EALs) with sequential deposition of perovskite active layers. The SAMs, constructed from newly synthesized molecules with high dipole moments, act both as excellent surface wetting control layers and as electric dipole layers for ZnO‐EALs. The insertion of SAMs improves the quality of PbI2 layers and final perovskite layers during sequential deposition, while charge extraction is enhanced via electric dipole effects. Leveraged by SAM modification, our low‐temperature ZnO based PSCs achieve an unprecedentedly high power conversion efficiency of 18.82% with a VOC of 1.13 V, a JSC of 21.72 mA cm?2, and a FF of 0.76. The strategy used in this study can be further developed to produce additional performance enhancements or fabrication temperature reductions.  相似文献   

5.
Recently, there is an urgent need for alternative energy resources due to the nonrenewable nature of fossil fuels and increasing CO2 greenhouse gas emissions. The photovoltaic technologies which directly utilize the abundant and sustainable solar energy are critical. Among various photovoltaic devices (solar cells), dye‐sensitized solar cells (DSSCs) have gained increasing attention due to their high efficiency and easy fabrication process in the past decade. The cathode is a critical part in DSSCs while the benchmark Pt cathode suffers from high cost and scarcity. Thus, the development of alternative Pt‐free cathodes has attracted significant attention with the aim to heighten the cost competitiveness of DSSCs. Among various cathodes, metal oxides are of growing interest due to their superior activity, robust stability, and low cost. Simple oxides such as WO3 and SnO2 are used as cathodes for DSSCs. Considering the fixed atomic environment in simple oxides, complex oxides are more attractive as cathodes because of their more flexible physical and chemical properties. This review attempts to present the rational design of simple/complex metal oxide–based cathodes in DSSCs and then to provide useful guidance for the future design of Pt‐free cathodes. The demonstrated design strategies can be extended to other electrocatalysis‐based applications.  相似文献   

6.
A new series of 4‐hexyl‐4H‐thieno[3,2‐b]indole (HxTI) based organic chromophores is developed by structural engineering of the electron donor (D) group in the D–HxTI–benzothiadiazole‐phenyl‐acceptor platform with different fluorenyl moieties, such as unsubstituted fluorenyl (SGT‐146) and hexyloxy (SGT‐147), decyloxy (SGT‐148) and hexyloxy‐phenyl substituted (SGT‐149) fluorenyl moieties. In comparison to a reference dye SGT‐137 with a biphenyl‐based donor, the effects of the donating ability and bulkiness of the fluorenyl based donor in this D–π–A‐structured platform on molecular properties and photovoltaic performance are investigated to establish the structure–property relationship. The photovoltaic performance of dye‐sensitized solar cells (DSSCs) is improved according to the bulkiness of the donor groups. As a result, the DSSCs based on SGT‐149 show high power conversion efficiencies (PCEs) of 11.7% and 10.0% with a [Co(bpy)3]2+/3+ (bpy = 2,2′‐bipyridine) and an I?/I3? redox electrolyte, respectively. Notably, the co‐sensitization of SGT‐149 with a SGT‐021 porphyrin dye by utilizing a simple “cocktail” method, exhibit state‐of‐the‐art PCEs of 14.2% and 11.6% with a [Co(bpy)3]2+/3+ and an I?/I3? redox electrolyte, respectively.  相似文献   

7.
In the past few years, organic–inorganic metal halide ABX3 perovskites (A = Rb, Cs, methylammonium, formamidinium (FA); B = Pb, Sn; X = Cl, Br, I) have rapidly emerged as promising materials for photovoltaic applications. Tuning the film morphology by various deposition techniques and additives is crucial to achieve solar cells with high performance and long‐term stability. In this work, carbon nanoparticles (CNPs) containing functional groups are added to the perovskite precursor solution for fabrication of fluorine‐doped tin oxide/TiO2/perovskite/spiro‐OMeTAD/gold devices. With the addition of CNPs, the perovskite films are thermally more stable, contain larger grains, and become more hydrophobic. NMR experiments provide strong evidence that the functional groups of the CNPs interact with FA cations already in the precursor solution. The fabricated solar cells show a power‐conversion efficiency of 18% and negligible hysteresis.  相似文献   

8.
Zn(II)–porphyrin sensitizers, coded as SGT‐020 and SGT‐021 , are designed and synthesized through donor structural engineering. The photovoltaic (PV) performances of SGT sensitizer‐based dye‐sensitized solar cells (DSSCs) are systematically evaluated in a thorough SM315 as a reference sensitizer. The effect of the donor ability and the donor bulkiness on photovoltaic performances is investigated for establishing the structure–performance relationship in the platform of porphyrin‐triple bond‐benzothiadiazole‐acceptor sensitizers. By introducing a more bulky fluorene unit to the amine group in the SM315 , the power conversion efficiency (PCE) is enhanced with the increased short‐circuit current (Jsc) and open‐circuit voltage (Voc), due to the improved light‐harvesting ability and the efficient prevention of charge recombination, respectively. As a consequence, a maximum PCE of 12.11% is obtained for SGT‐021 , whose PCE is much higher than the 11.70% PCE for SM315 . To further improve their maximum efficiency, the first parallel tandem DSSCs employing cobalt electrolyte in the top and bottom cells are demonstrated and an extremely high efficiency of 14% is achieved, which is currently the highest reported value for tandem DSSCs. The series tandem DSSCs give a remarkably high Voc value of >1.83 V. From this DSSC tandem configuration, 7.4% applied bias photon‐to‐current efficiency is achieved for solar water splitting.  相似文献   

9.
Scaling large‐area solar cells is in high demand for the commercialization of perovskite solar cells (PSCs) with a high power‐conversion efficiency (PCE). However, few roll‐to‐roll‐compatible deposition methods for the formation of highly oriented uniform perovskite films are reported. Herein, a facile cold antisolvent bathing approach compatible with large‐area fabrication is introduced. The wet precursor films are submerged in a cold antisolvent bath at 0 °C, and the retarded nucleation and growth kinetics allow highly oriented perovskite to be grown along the [110] and [220] directions, perpendicular to the substrate. The high degree of the preferred crystal orientation benefits the effective charge extraction and reduces the amount of inter‐ and intra‐grain defects inside the perovskite films, improving the PCE from 16.48% (ambient‐bathed solar cell) to 18.50% (cold‐bathed counterpart). The cold antisolvent bathing method is employed for the fabrication of large‐area (8 × 10 cm2) PSCs with uniform photovoltaic device parameters, thereby verifying the scale‐up capability of the method.  相似文献   

10.
Solution‐processable halide perovskites have emerged as strong contenders for next‐generation solar cells owing to their favorable optoelectronic properties. To maintain the efficiency momentum of perovskite solar cells (PSCs), development of advanced processing techniques, particularly for the perovskite layer, is imperative. There is a close correlation between the quality of the perovskite layer and its photophysical properties: Highly crystalline large grains with uniform morphology of the perovskite layer and their interface with charge transporters are crucial for achieving high performance. Significant efforts have been dedicated to achieve perovskite films with large grains reaching the millimeter‐scale for high‐efficiency PSCs. Recent work showcases a transition from large grain polycrystalline to single‐crystalline (SC) PSCs made possible by the facile growth of perovskite single crystals. In this review, the recent progress of the large grain polycrystalline PSCs and grain boundary‐free SC‐PSCs is reported, particularly focusing on the recent approach of depositing large‐grained perovskite layers and single crystal growth technique, that have been adopted for fabrication of efficient PSCs. In addition, prospects of SC‐PSCs and their further development in terms of efficiency, device design, scalability, and stability are discussed.  相似文献   

11.
Recently, considerable progress is achieved in lab prototype perovskite solar cells (PSCs); however, the stability of outdoor applications of PSCs remains a challenge due to the high sensitivity of perovskite material under moist and ultraviolet (UV) light conditions. In this work, the UV photostability of PSC devices is improved by incorporating a photon downshifting layer—SrAl2O4: Eu2+, Dy3+ (SAED)—prepared using the pulsed laser deposition approach. Light‐induced deep trap states in the photoactive layer are depressed, and UV light‐induced device degradation is inhibited after the SAED modification. Optimized power conversion efficiency (PCE) of 17.8% is obtained through the enhanced light harvesting and reduced carrier recombination provided by SAED. More importantly, a solar energy storage effect due to the long‐persistent luminescence of SAED is obtained after light illumination is turned off. The introduction of downconverting material with long‐persistent luminescence in PSCs not only represents a new strategy to improve PCE and light stability by photoconversion from UV to visible light but also provides a new paradigm for solar energy storage.  相似文献   

12.
A series of four new dyes, based on the D35 type donor moiety with varied linker units, is synthesized using a facile convergent/divergent method, enabled by an improved synthesis of the D35 donor. The dyes are evaluated in dye sensitized solar cells with Co(II/III)(bpy)3‐based electrolytes. By extending the linker fragment, higher photocurrents and solar energy conversion efficiencies are achieved. It is also found that the linker unit plays a crucial role in maintaining a high open‐circuit photovoltage. Based on the photovoltaic performance it is concluded that the hexylthiophene unit is the most suitable for this purpose, as it allows further enhancement of the already high open‐circuit voltage of D35 to 0.92 V. The best dye in this series reaches an efficiency of 6.8%.  相似文献   

13.
Semitransparent perovskite solar cells (PSCs) are of interest for application in tandem solar cells and building‐integrated photovoltaics. Unfortunately, several perovskites decompose when exposed to moisture or elevated temperatures. Concomitantly, metal electrodes can be degraded by the corrosive decomposition products of the perovskite. This is even the more problematic for semitransparent PSCs, in which the semitransparent top electrode is based on ultrathin metal films. Here, we demonstrate outstandingly robust PSCs with semitransparent top electrodes, where an ultrathin Ag layer is sandwiched between SnOx grown by low‐temperature atomic layer deposition. The SnOx forms an electrically conductive permeation barrier, which protects both the perovskite and the ultrathin silver electrode against the detrimental impact of moisture. At the same time, the SnOx cladding layer underneath the ultra‐thin Ag layer shields the metal against corrosive halide compounds leaking out of the perovskite. Our semitransparent PSCs show an efficiency higher than 11% along with about 70% average transmittance in the near‐infrared region (λ > 800 nm) and an average transmittance of 29% for λ = 400–900 nm. The devices reveal an astonishing stability over more than 4500 hours regardless if they are exposed to ambient atmosphere or to elevated temperatures.  相似文献   

14.
Carbon‐based hole transport material (HTM)‐free perovskite solar cells (PSCs) have shown much promise for practical applications because of their high stability and low cost. However, the efficiencies of this kind of PSCs are still relatively low, especially for the simplest paintable carbon‐based PSCs, in comparison with the organic HTM‐based PSCs. This can be imputed to the perovskite deposition methods that are not very suitable for this kind of devices. A solvent engineering strategy based on two‐step sequential method is exploited to prepare a high‐quality perovskite layer for the paintable carbon‐based PSCs in which the solvent for CH3NH3I (MAI) solution at the second step is changed from isopropanol (IPA) to a mixed solvent of IPA/Cyclohexane (CYHEX). This mixed solvent not only accelerates the conversion of PbI2 to CH3NH3PbI3 but also suppresses the Ostwald ripening process resulting in a high‐quality perovskite layer, e.g., pure phase, even surface, and compact capping layer. The paintable carbon‐based PSCs fabricated from IPA/CYHEX solvent exhibits a considerable enhancement in photovoltaic performance and performance reproducibility in comparison with that from pure IPA, especially on fill factor (FF), owing mainly to the better contact of perovskite/carbon interface, lower trap density in perovskite, higher light absorption ability, and faster charge transport of perovskite layer. As a result, the highest power conversion efficiency (PCE) of 14.38% is obtained, which is a record value for carbon‐based HTM‐free PSCs. Furthermore, a PCE of as high as 10% is achieved for the large area device (1 cm2), also the highest of its kind.  相似文献   

15.
Owing to their high efficiency, low‐cost solution‐processability, and tunable bandgap, perovskite solar cells (PSCs) made of hybrid organic‐inorganic perovskite (HOIP) thin films are promising top‐cell candidates for integration with bottom‐cells based on Si or other low‐bandgap solar‐cell materials to boost the power conversion efficiency (PCE) beyond the Shockley‐Quiesser (S‐Q) limit. In this review, recent progress in such tandem solar cells based on the emerging PSCs is summarized and reviewed critically. Notable achievements for different tandem solar cell configurations including mechanically‐stacked, optical coupling, and monolithically‐integrated with PSCs as top‐cells are described in detail. Highly‐efficient semitransparent PSC top‐cells with high transmittance in near‐infrared (NIR) region are critical for tandem solar cells. Different types of transparent electrodes with high transmittance and low sheet‐resistance for PSCs are reviewed, which presents a grand challenge for PSCs. The strategies to obtain wide‐bandgap PSCs with good photo‐stability are discussed. The PCE reduction due to reflection loss, parasitic absorption, electrical loss, and current mismatch are analyzed to provide better understanding of the performance of PSC‐based tandem solar cells.  相似文献   

16.
Transferring the high power conversion efficiencies (PCEs) of spin‐coated perovskite solar cells (PSCs) on the laboratory scale to large‐area photovoltaic modules requires a significant advance in scalable fabrication methods. Digital inkjet printing promises scalable, material, and cost‐efficient deposition of perovskite thin films on a wide range of substrates and in arbitrary shapes. In this work, high‐quality inkjet‐printed triple‐cation (methylammonium, formamidinium, and cesium) perovskite layers with exceptional thicknesses of >1 µm are demonstrated, enabling unprecedentedly high PCEs > 21% and stabilized power output efficiencies > 18% for inkjet‐printed PSCs. In‐depth characterization shows that the thick inkjet‐printed perovskite thin films deposited using the process developed herein exhibit a columnar crystal structure, free of horizontal grain boundaries, which extend over the entire thickness. A thin film thickness of around 1.5 µm is determined as optimal for PSC for this process. Up to this layer thickness X‐ray photoemission spectroscopy analysis confirms the expected stoichiometric perovskite composition at the surface and shows strong deviations and inhomogeneities for thicker thin films. The micrometer‐thick perovskite thin films exhibit remarkably long charge carrier lifetimes, highlighting their excellent optoelectronic characteristics. They are particularly promising for next‐generation inkjet‐printed perovskite solar cells, photodetectors, and X‐ray detectors.  相似文献   

17.
In this study, the effect of plasmonic core‐shell structures, consisting of dielectric cores and metallic nanoshells, on energy conversion in dye‐sensitized solar cells (DSSCs) is investigated. The structure of the core‐shell particles is controlled to couple with visible light so that the visible component of the solar spectrum is amplified near the core‐shell particles. In core‐shell particle – TiO2 nanoparticle films, the local field intensity and light pathways are increased due to the surface plasmons and light scattering. This, in turn, enlarges the optical cross‐section of dye sensitizers coated onto the mixed films. When 22 vol% of core‐shell particles are added to a 5 μm thick TiO2 film, the energy conversion efficiency of DSSCs increases from 2.7% to 4.0%, in spite of a more than 20% decrease in the amount of dyes adsorbed on the composite films. The correlation between core‐shell particle content and energy conversion efficiency in DSSCs is explained by the balance among near‐field effects, light scattering efficiency, and surface area in the composite films.  相似文献   

18.
Organic–inorganic hybrid perovskite solar cells (PSCs) are a promising photovoltaic technology that has rapidly developed in recent years. Nevertheless, a large number of ionic defects within perovskite absorber can serve as non‐radiative recombination center to limit the performance of PSCs. Here, organic donor‐π‐acceptor (D‐π‐A) molecules with different electron density distributions are employed to efficiently passivate the defects in the perovskite films. The X‐ray photoelectron spectroscopy (XPS) analysis shows that the strong electron donating N,N‐dibutylaminophenyl unit in a molecule causes an increase in the electron density of the passivation site that is a carboxylate group, resulting in better binding with the defects of under‐coordinated Pb2+ cations. Carrier lifetime in the perovskite films measured by the time‐resolved photoluminescence spectrum is also prolonged by an increase in donation ability of the D‐π‐A molecules. As a consequence, these benefits contribute to an increase of 80 mV in the open circuit voltage of the devices, enabling a maximum power conversion efficiency (PCE) of 20.43%, in comparison with PCE of 18.52% for the control device. The authors' findings provide a novel strategy for efficient defect passivation in the perovskite solar cells based on controlling the electronic configuration of passivation molecules.  相似文献   

19.
A new multifunctional coating for photovoltaic cells incorporating light‐management, UV‐protection, and easy‐cleaning capabilities is presented. Such coating consists of a new photocurable fluorinated polymer embedding a luminescent europium complex that acts as luminescent down‐shifting (LDS) material converting UV photons into visible light. The combination of this system with ruthenium‐free organic dye‐sensitized solar cells (DSSCs) gives a 70% relative increase in power conversion efficiency as compared with control uncoated devices, which is the highest efficiency enhancement reported to date on organic DSSC systems by means of a polymeric LDS layer. Long‐term (>2000 h) weathering tests in real outdoor conditions reveal the excellent stabilizing effect of the new coating on DSSC devices, which fully preserve their initial performance. This excellent outdoor stability is attributed to the combined action of the luminescent material that acts as UV‐screen and the highly photostable, hydrophobic fluoropolymeric carrier that further prevents photochemical and physical degradation of the solar cell components. The straightforward approach presented to simultaneously improve performance and outdoor stability of DSSC devices may be readily extended to a large variety of sensitizer/luminophore combinations, thus enabling the fabrication of highly efficient and extremely stable DSSCs in an easy and versatile fashion.  相似文献   

20.
In this report, highly efficient and humidity‐resistant perovskite solar cells (PSCs) using two new small molecule hole transporting materials (HTM) made from a cost‐effective precursor anthanthrone (ANT) dye, namely, 4,10‐bis(1,2‐dihydroacenaphthylen‐5‐yl)‐6,12‐bis(octyloxy)‐6,12‐dihydronaphtho[7,8,1,2,3‐nopqr]tetraphene (ACE‐ANT‐ACE) and 4,4′‐(6,12‐bis(octyloxy)‐6,12‐dihydronaphtho[7,8,1,2,3‐nopqr]tetraphene‐4,10‐diyl)bis(N,N‐bis(4‐methoxyphenyl)aniline) (TPA‐ANT‐TPA) are presented. The newly developed HTMs are systematically compared with the conventional 2,2′,7,7′‐tetrakis(N,N′‐di‐p‐methoxyphenylamino)‐9,9′‐spirbiuorene (Spiro‐OMeTAD). ACE‐ANT‐ACE and TPA‐ANT‐TPA are used as a dopant‐free HTM in mesoscopic TiO2/CH3NH3PbI3/HTM solid‐state PSCs, and the performance as well as stability are compared with Spiro‐OMeTAD‐based PSCs. After extensive optimization of the metal oxide scaffold and device processing conditions, dopant‐free novel TPA‐ANT‐TPA HTM‐based PSC devices achieve a maximum power conversion efficiency (PCE) of 17.5% with negligible hysteresis. An impressive current of 21 mA cm?2 is also confirmed from photocurrent density with a higher fill factor of 0.79. The obtained PCE of 17.5% utilizing TPA‐ANT‐TPA is higher performance than the devices prepared using doped Spiro‐OMeTAD (16.8%) as hole transport layer at 1 sun condition. It is found that doping of LiTFSI salt increases hygroscopic characteristics in Spiro‐OMeTAD; this leads to the fast degradation of solar cells. While, solar cells prepared using undoped TPA‐ANT‐TPA show dewetting and improved stability. Additionally, the new HTMs form a fully homogeneous and completely covering thin film on the surface of the active light absorbing perovskite layers that acts as a protective coating for underlying perovskite films. This breakthrough paves the way for development of new inexpensive, more stable, and highly efficient ANT core based lower cost HTMs for cost‐effective, conventional, and printable PSCs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号