首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
PA101 and PA104 are Rous sarcoma virus variants that are differentially temperature sensitive in cell transformation parameters, including stimulation of cell proliferation, morphological alteration, and anchorage independence. To investigate the biochemical basis for the differential expression of these parameters, the tyrosine kinase activity and subcellular localization of the mutant p60v-src proteins encoded in the variants were examined. Analysis of chimeric src proteins derived from the mutant proteins revealed that lesions in the kinase domain inhibit in vitro kinase activity and confer temperature sensitivity on tyrosine phosphorylation of cellular protein p34 in vivo. The amino-terminal portions of the mutant src proteins also influence tyrosine phosphorylation in vivo and in vitro, which is consistent with an interaction between an amino-terminal region and the kinase domain. Large proportions of the mutant src proteins exist in soluble complexes with cellular proteins p50 and p90, even though the src proteins are myristylated. The formation of these soluble complexes segregates with lesions in the kinase domain and is independent of temperature. Our results demonstrate that the transformation parameters examined correlate to a limited extent with p34 phosphorylation but not with the levels of in vitro kinase activity or soluble complex formation.  相似文献   

2.
Expression of p60v-src of Rous sarcoma virus in cultured chicken embryo neuroretinal cells was previously shown to result in the transformation and sustained proliferation of normally quiescent cell populations. We show here that Rous sarcoma virus variants that encode p60c-src, the cellular homolog of p60v-src, lack the ability to induce morphological transformation and cell proliferation of cultured neuroretinal cells. Neuroretinal cells infected with c-src-containing viruses, however, possess no less p60 protein kinase activity assayed in the immune complex than those infected with the transformation-defective Rous sarcoma virus mutants PA101 or PA104, which do stimulate the growth of these cells.  相似文献   

3.
Expression of the src gene of Rous sarcoma virus in chicken embryo neuroretinal cells results in morphological transformation and sustained proliferation of this normally resting cell population. PA101 and PA104 are two mutants of Rous sarcoma virus which induce neuroretinal cell proliferation in the absence of morphological transformation. Their mitogenic property is temperature sensitive, and they both encode p60src proteins with low kinase activity. To study the role of the mitogenic function and protein kinase activity of p60src in tumorigenesis, we investigated the oncogenicity of PA101 and PA104. Both mutants were less tumorigenic than wild-type virus when injected into chicks. Tumorigenicity was further assayed by inoculating infected chicken embryo fibroblasts and neuroretinal cells onto the chorioallantoid membrane of embryonated duck eggs. This system provides a nonpermissive and immunodeficient environment for xenogenic cell grafting and allows the study of cell tumorigenicity within a temperature range of 37 to 39.5 degrees C. Chicken embryo fibroblasts and neuroretinal cells infected with PA101 were as tumorigenic as wild type-infected cells at 37 degrees C, but tumor development was significantly reduced at 39.5 degrees C. In contrast, both cell types infected with PA104 displayed sharply reduced tumorigenicity. Cell cultures derived from PA101 tumors induced on the chorioallantoid membrane were similar to the corresponding cells maintained in vitro in terms of morphology, production of plasminogen activator, relative amounts of phosphotyrosine in total cellular proteins, and phosphorylation of 34,000-molecular-weight protein. These results indicate that the expression of the mitogenic function of src does not account per se for cell tumorigenicity and that tumor formation is compatible with low levels of p60src protein kinase activity.  相似文献   

4.
Expression of the src gene of Rous sarcoma virus (RSV) in chicken embryo neuroretinal (NR) cells results in morphological transformation and sustained proliferation of a normally resting cell population. We have previously reported the isolation of mutants of RSV which retain full growth-promoting activity while displaying reduced transforming properties. Two such mutants, PA101 and PA104, were used to investigate whether the p60src-associated kinase activity is required for the mitogenic function of src. A comparison of the patterns of phosphorylation of wild-type and mutant p60src revealed that the phosphorylation of tyrosine residues of p60src of PA104 was markedly reduced, whereas the relative amount of phosphotyrosine in p60src of PA101 was comparable to that of the wild-type protein. In vitro kinase activity of p60src immunoprecipitated from NR cells infected with PA101 or PA104 as measured by phosphorylation of the heavy chains of specific immunoglobulin G molecules was 1/10 that of the wild-type molecule. Moreover, when NR cells infected with mutants temperature sensitive for mitogenic capacity were maintained at a temperature either permissive or restrictive for cell growth, quantitation of kinase activity indicated that proliferation of NR cells could not be linked to the absolute level of in vitro kinase activity of p60src. Transformation of NR cells by wild-type RSV resulted in a 10-fold increase in total cellular phosphotyrosine and in the phosphorylation of tyrosine residues of a 34K protein, a possible in vivo substrate for p60src. In contrast, phosphorylation of tyrosine residues of cellular targets was markedly reduced in NR cells infected with PA101 or PA104. These results indicate that the mitogenic capacity of RSV in NR cells does not require elevated levels of p60src kinase activity.  相似文献   

5.
6.
Substrates critical for transformation by pp60v-src remain unknown, as does the precise role of the src homology 2 (SH2) domain in this process. To continue exploring the role of the SH2 domain in pp60v-src-mediated transformation, site-directed mutagenesis was used to create mutant v-src alleles predicted to encode proteins with overall structural integrity intact but with reduced ability to bind phosphotyrosine-containing peptides. Arginine-175, which makes critical contacts in the phosphotyrosine-binding pocket, was mutated to lysine or alanine. Unexpectedly, both mutations created v-src alleles that transform chicken cells with wild-type (wt) efficiency and are reduced for transformation of rat cells; these alleles are host dependent for transformation. Additionally, these alleles resulted in a round morphological transformation of chicken cells, unlike 12 of the 13 known host-dependent src SH2 mutations that result in a fusiform morphology. Analysis of phosphopeptide binding by the mutant SH2 domains reveal that the in vitro ability to bind phosphopeptides known to have a high affinity for wt src SH2 correlates with wt (round) morphological transformation in chicken cells and in vitro ability to bind phosphopeptides known to have a low affinity for wt src SH2 correlates with rat cell transformation. These results suggest that the search for critical substrates in rat cells should be among proteins that interact with pp60v-src with low affinity.  相似文献   

7.
Previous studies showed that the amino-terminal domain of Rous sarcoma virus p60v-src involved in myristylation and membrane association of the protein is required for morphological transformation and anchorage independence. Analysis of src delection mutants revealed that the amino-terminal one-third of p60v-src, including the membrane-binding domain, is not essential for induction of cell proliferation. These results demonstrated that, in contrast to the cellular target(s) involved in morphological transformation and anchorage independence, the target(s) involved in mitogenic activity is accessible to nonmyristylated src proteins.  相似文献   

8.
The transforming protein of Rous sarcoma virus, pp60v-src, is known to be a tyrosine protein kinase, but the mechanism of cell transformation remains unclear. In further investigating pp60v-src structure and function, we have analyzed two temperature-sensitive (ts) Rous sarcoma virus src gene mutants, tsLA29 and tsLA32. The mutations in tsLA29 and tsLA32 map in the carboxy-terminal region and the amino-terminal half of pp60v-src, respectively, and encode mutant proteins with either temperature-labile (tsLA29) or -stable (tsLA32) kinase activities. Here we examined the intracellular processing and localization of these pp60v-src mutants and extended our characterization of transformation parameters expressed by cells infected by the Rous sarcoma virus variants. No obvious defects in functional integrity of the tsLA32 pp60v-src could yet be demonstrated, whereas the tsLA29 pp60v-src was perturbed not only in kinase activity, but also in aspects of protein processing and localization. Analysis of transformation parameters expressed by infected cells demonstrated the complete temperature lability of both mutants.  相似文献   

9.
pp60v-src is a nonreceptor protein tyrosine kinase that can transform both chicken and rodent fibroblasts. The src homology 2 (SH2) domain of this protein serves a critical role in the regulation of protein tyrosine kinase activity. The host range proteins pp60v-src-L, which contains a deletion of a highly conserved residue (Phe-172) in the SH2 domain, and pp60v-src-PPP, which contains a change from a Leu to a Phe at amino acid 186 in the SH2 domain, transform chicken but not rat cells and have slightly reduced kinase activity measured in vitro. The data presented here show that these altered proteins require autophosphorylation on Tyr-416 for high kinase activity and transforming ability. In the absence of autophosphorylation, there is a further decrease of at least threefold in in vitro kinase activity relative to the phosphorylated host range parental protein, no morphological transformation, a reduction in anchorage independent growth, and no disruption of the actin cytoskeleton. In addition, these SH2 mutations abolish the ability of the SH2 domain to bind a phosphorylated peptide that corresponds to the autophosphorylation site of pp60src. Thus, like mutant alleles of c-src encoding transformation competent proteins, and unlike v-src, transformation by pp60v-src-F172 delta and pp60v-src-L186F is dependent on phosphorylation of Y-416 for high kinase activity and transformation ability. The dependence of transformation on phosphotyrosine is not a reflection of an intramolecular interaction between the autophosphorylation site and the SH2 domains since purified SH2 domains are incapable of binding phosphorylated autophosphorylation site peptides in vitro.  相似文献   

10.
Analysis of the src genes of three temperature-sensitive (ts) mutants of Rous sarcoma virus (tsNY68, tsNY72-4, and PA104) showed that each has two C-terminal mutations in the kinase domain required for temperature sensitivity, as assayed by morphological alteration and anchorage-independent growth. In all three mutants, one of the mutations is a valine-to-methionine change at position 461. To assess the contribution of each mutation to the biochemical properties of the src protein, we analyzed the kinase activity and the interaction with cellular proteins p50 and p90 of recombinant src gene products in which only one mutation was combined with wild-type src sequences. Chimeric src protein containing only the Met-461 mutation was indistinguishable from the wild type by all criteria examined, while the effect of the second C-terminal mutation alone varied with the defectiveness of the parental ts mutant. The second mutation alone, while not sufficient to cause ts transformation, altered p60src complex formation with cellular proteins p50 and p90 and altered the in vitro thermolability of src kinase activity. The results indicate that these biochemical properties of p60src are more sensitive to mutation than others, such as in vivo kinase activity, which require more profound structural alterations.  相似文献   

11.
dlPA105 is a spontaneous variant of Rous sarcoma virus, subgroup E, which carries a deletion in the N-terminal portion of the v-src gene coding sequence. This virus was isolated on the basis of its ability to induce proliferation of quiescent quail neuroretina cells. The altered v-src gene encodes a phosphoprotein of 45,000 daltons which possesses tyrosine kinase activity. DNA sequencing of the mutant v-src gene has shown that deletion extends from amino acid 33 to 126 of wild-type p60v-src. We investigated the tumorigenic and transforming properties of this mutant virus. dlPA105 induced fibrosarcomas in quails with an incidence identical to that induced by wild-type virus. Quail neuroretina cells infected with the mutant virus were morphologically transformed and formed colonies in soft agar. In contrast, dlPA105 induced only limited morphological alterations in quail fibroblasts and was defective in promoting anchorage-independent growth of these cells. Synthesis and tyrosine kinase activity of the mutant p45v-src were similar in both cell types. These data indicate that the portion of the v-src protein deleted in p45v-src is dispensable for the mitogenic and tumorigenic properties of wild-type p60v-src, whereas it is required for in vitro transformation of fibroblasts. The ability of dlPA105 to induce different transformation phenotypes in quail fibroblasts and quail neuroretina cells is a property unique to this Rous sarcoma virus mutant and provides evidence for the existence of cell-type-specific response to v-src proteins.  相似文献   

12.
The src gene of Rous sarcoma virus (v-src) and its cellular homolog, the c-src gene, share extensive sequence homology. The most notable differences between these genes reside in the region encoding the carboxy terminus of the src proteins. We constructed mutations within the 3' end of the v-src gene to determine the significance of this region to the transforming potential of the v-src protein, pp60v-src. The mutants CHdl300 and CHis1511 contain mutations that alter the last 23 amino acids of pp60v-src, whereas the mutant CHis1545-C contains a linker insertion that alters the last 11 amino acids of pp60v-src, and the mutant CHis1545-H contains a linker insertion that results in a 9-amino-acid insertion at position 415. Plasmids bearing each of these mutations were unable to transform chicken cells when introduced into these cells by DNA transfection. In addition, the structurally altered src proteins encoded by the mutants had much-reduced levels of tyrosine protein kinase activity in vivo, as measured by autophosphorylation and phosphorylation of the 34,000-Mr cellular protein, and in vitro, as determined by measuring the level of pp60src autophosphorylation. These data indicate that the carboxy-terminal amino acid sequences play an important role in maintaining the structure of the catalytic domain of pp60v-src. In contrast, the transfection of chicken cells with plasmid DNA containing a chimeric v-c-src gene resulted in morphological cell transformation and the synthesis of an enzymatically active hybrid protein. Therefore, the carboxy-terminal sequence alterations observed in the c-src protein do not alone serve to alter the functional activity of a hybrid v-c-src protein appreciably.  相似文献   

13.
Immunoprecipitates of p60v-src proteins from chicken embryo fibroblasts infected with Rous sarcoma virus were assayed for phosphatidylinositol (PI) kinase activity in the absence of detergents. The product of the PI kinase reaction, phosphatidylinositol monophosphate (PIP), migrated slightly slower than did the authentic phosphatidylinositol-4-monophosphate marker in thin-layer chromatography and was indistinguishable from phosphatidylinositol-3-monophosphate produced by PI kinase type I. Furthermore, the deacylated product comigrated with glycerophosphoinositol-3-phosphate in high-performance liquid chromatography. Both sucrose gradient fractionation and the heat stability of PI kinase activity from cells infected with temperature-sensitive mutants suggest that the PI kinase activity is not intrinsic to p60v-src but is a property of another molecule complexed with p60v-src. All transforming variants of p60src were associated with PI kinase activity, whereas this enzyme activity was hardly detectable in immunoprecipitates from cells infected with nontransforming viruses encoding p60c-src or an enzymatically inactive variant. However, PI kinase activity was found in p60src immunoprecipitates from cells infected with nonmyristylated, nontransforming mutants as well as temperature-sensitive mutants at the nonpermissive temperature, which indicated that simple association of PI kinase activity with p60src is not sufficient for cell transformation.  相似文献   

14.
The host cell regulators and substrates of the Rous sarcoma virus transforming protein pp60v-src remain largely unknown. Viral mutants which induce a host-dependent phenotype may result from mutations which affect the interaction of pp60v-src with host cell components. To isolate such mutants and to examine the role of different regions of src in regulating pp60v-src function, we generated 46 linker insertion and 5 deletion mutations within src. The mutant src genes were expressed in chicken embryo fibroblasts and in rat-2 cells by using retrovirus expression vectors. Most linker insertions within the kinase domain (residues 260 to 512) inactivated kinase activity and transforming capacity, while most insertions in the N-terminal domain and at the extreme C terminus were tolerated. A number of mutations generated a host-dependent phenotype. Insertions after residues 225 and 227, within the N-terminal regulatory domain (SH2), produced a fusiform transformation in chicken embryo fibroblasts and abolished transformation in rat-2 cells; a similar phenotype also resulted from two deletions affecting SH2 (residues 149 to 174 and residues 77 to 225). Insertions immediately C terminal to Lys-295, which is involved in ATP binding, also produced a conditional phenotype. Insertions after residues 299 and 300 produced a temperature-sensitive phenotype, while insertions after residues 304 and 306 produced a host cell-dependent phenotype. An insertion which removed the major tyrosine autophosphorylation site (Tyr-416) greatly reduced transformation of rat-2 cells, a property not previously observed with other mutations at this site. We conclude that mutations at certain sites within src result in conditional phenotypes. These sites may represent regions important in interactions with host cell components.  相似文献   

15.
p60v-src has been shown to associate with a detergent-insoluble cellular matrix containing cytoskeletal proteins, but p60c-src does not bind to this matrix. We analyzed the association of mutant src proteins with the matrix and found that mutants which lack an amino-terminal portion (residues 149 to 169) of the SH2 domain cannot bind to the matrix. Neither the SH3 region nor other portions of the SH2 region were required for association. We also tested protein kinase-defective mutants and chimeras of p60v-src and p60c-src. We found a strong correlation between the kinase activity of p60src and its association with the detergent-insoluble matrix. Double infection of kinase-defective and kinase-active mutants did not result in matrix binding of the kinase-defective src proteins. We also found that Tyr-416, the major site of autophosphorylation in p60v-src, was not required for matrix association.  相似文献   

16.
The products of the viral and cellular src genes, p60v-src and p60c-src, appear to be composed of multiple functional domains. Highly conserved regions called src homology 2 and 3 (SH2 and SH3), comprising amino acid residues 88 to 250, are believed to modulate the protein-tyrosine kinase activity present in the carboxy-terminal halves of the src proteins. To explore the functions of these regions more fully, we have made 34 site-directed mutations in a transformation-competent c-src gene encoding phenylalanine in place of tyrosine 527 (Y527F c-src). Twenty of the new mutations change only one or two amino acids, and the remainder delete small or large portions of the SH2-SH3 region. These mutant alleles have been incorporated into a replication-competent Rous sarcoma virus vector to examine the biochemical and biological properties of the mutant proteins after infection of chicken embryo fibroblasts. Four classes of mutant proteins were observed: class 1, mutants with only slight differences from the parental gene products; class 2, mutant proteins with diminished transforming and specific kinase activities; class 3, mutant proteins with normal or enhanced specific kinase activity but impaired biological activity, often as a consequence of instability; and class 4, mutant proteins with augmented biological and catalytic activities. In general, there was a strong correlation between total kinase activity (or amounts of intracellular phosphotyrosine-containing proteins) and transforming activity. Deletion mutations and some point mutations affecting residues 109 to 156 inhibited kinase and transforming functions, whereas deletions affecting residues 187 to 226 generally had positive effects on one or both of those functions, confirming that SH2-SH3 has complex regulatory properties. Five mutations that augmented the transforming and kinase activities of Y527F c-src [F172P, R175L, delta(198-205), delta(206-226), and delta(176-226)] conferred transformation competence on an otherwise normal c-src gene, indicating that mutations in SH2 (like previously described lesions in SH3, the kinase domain, and a carboxy-terminal inhibitory domain) can activate c-src.  相似文献   

17.
Expression of pp60v-src, the transforming protein of Rous sarcoma virus, arrests the growth of the yeast Saccharomyces cerevisiae. To determine the basis of this growth arrest, yeast strains were constructed that expressed either wild-type v-src or various mutant v-src genes under the control of the galactose-inducible, glucose repressible GAL1 promoter. When shifted to galactose medium, cells expressing wild-type v-src ceased growth immediately and lost viability, whereas cells expressing a catalytically inactive mutant (K295M) continued to grow normally, indicating that the kinase activity of pp60v-src is required for its growth inhibitory effect. Mutants of v-src altered in the SH2/SH3 domain (XD4, XD6, SPX1, and SHX13) and a mutant lacking a functional N-terminal myristoylation signal (MM4) caused only a partial inhibition of growth, indicating that complete growth inhibition requires either targeting of the active kinase or binding of the kinase to phosphorylated substrates, or both. Cells arrested by v-src expression displayed aberrant microtubule structures, alterations in DNA content and elevated p34CDC28 kinase activity. Immunoblotting with antiphosphotyrosine antibody showed that many yeast proteins, including the p34CDC28 kinase, became phosphorylated at tyrosine in cells expressing v-src. Both the growth inhibition and the tyrosine-specific protein phosphorylation observed following v-src expression were reversed by co-expression of a mammalian phosphotyrosine-specific phosphoprotein phosphatase (PTP1B). However a v-src mutant with a small insertion in the catalytic domain (SRX5) had the same lethal effect as wild-type v-src, yet induced only very low levels of protein-tyrosine phosphorylation. These results indicate that inappropriate phosphorylation at tyrosine is the primary cause of the lethal effect of pp60v-src expression but suggest that only a limited subset of the phosphorylated proteins are involved in this effect.  相似文献   

18.
Host range mutants of Schmidt-Ruppin v-src that transform chicken embryo fibroblasts (CEF) but not Rat-2 cells were generated previously by linker insertion-deletion mutagenesis (J. E. DeClue and G. S. Martin, J. Virol. 63:542-554, 1989). One of these mutants, SRX5, in which Tyr-416 is substituted by the sequence Ser Arg Asp, retained high levels of kinase activity in vitro and in vivo, both in CEF and in Rat-2 cells. Phosphorylation of p36 (the calpactin I heavy chain) was drastically reduced in cells expressing SRX5 src, suggesting that the phenotype of SRX5 results from an alteration in substrate recognition by the src kinase. Three mutants, SPX1, SHX13, and XD6, containing linker insertions or small deletions within the src homology 2 (SH2) region, induced reduced levels of kinase activity in both CEF and Rat-2 cells. However, the residual levels of kinase activity in Rat-2 cells were above the threshold at which wild-type pp60v-src transforms Rat-2 cells, indicating that the reduction in kinase activity was not sufficient to account for the failure to transform. Cells infected by these mutants exhibited reduced levels of phosphorylation of 120- and 62-kDa proteins. We have reported elsewhere (M. F. Moran, C. A. Koch, D. Anderson, C. Ellis, L. England, G. S. Martin, and T. Pawson, Proc. Natl. Acad. Sci. USA 87:8622-8626, 1990) that ras GTPase-activating protein GAP and associated protein p62 are not tyrosine phosphorylated in Rat-2 cells expressing SHX13 or XD6. The transformation defect in Rat-2 cells may result from the failure to phosphorylate those proteins. The fifth mutant, XD4, contains a deletion which removes all of the src homology 3 (SH3) and most of the SH2 sequences of src. The protein encoded by XD4 is active as a kinase when expressed in CEF, indicating that in CEF the SH2 and SH3 regions of v-src are not necessary for kinase activity and transformation. The XD4 src product is not tyrosine phosphorylated and is inactive as a kinase when expressed in Rat-2 cells. Thus, host cell factors can affect the tyrosine phosphorylation and activity of the v-src kinase in the absence of the SH2 and SH3 regions. These results indicate that the host-dependent transformation phenotype results from alterations in src kinase activity and substrate specificity.  相似文献   

19.
We constructed a mutant, called RSV-SF2, at the ATP-binding site of pp60v-src. In this mutant, lysine-295 is replaced with methionine. SF2 pp60v-src was found to have a half-life similar to that of wild-type pp60v-src and was localized in the membranous fraction of the cell. Rat cells expressing SF2 pp60v-src were morphologically untransformed and do not form tumors. The SF2 pp60v-src isolated from these cells lacked kinase activity with either specific immunoglobulin or other substrates, and expression of SF2 pp60v-src failed to cause an increase of total phosphotyrosine in the proteins of infected cells. Wild-type pp60v-src was phosphorylated on serine and tyrosine in infected cells, and the analogous phosphorylations could also be carried out in vitro. Phosphorylation of serine was catalyzed by a cyclic AMP-dependent protein kinase, and phosphorylation of tyrosine was perhaps catalyzed by pp60v-src itself. By contrast, SF2 pp60v-src could not be phosphorylated on serine or tyrosine either in infected cells or in vitro. These findings strengthen the belief that the phosphotransferase activity of pp60v-src is required for neoplastic transformation by the protein and suggest that the binding of ATP to pp60v-src elicits an allosteric change required for phosphorylation of serine in the protein.  相似文献   

20.
We found local sequence-similarity between the non-catalytic region of the Rous sarcoma virus oncogene product, p60v-src, and the core region of cytoskeletal keratin through an extensive similarity search of segments of proteins. The segments showing similarity in p60v-src were in the region that is important for morphological transformation, and corresponded to segments with unique structural features predicted for intermediate filament proteins. We suggest that cellular components related with intermediate filament proteins or the sequence shared by the two proteins may be involved in the regulation of the kinase activity or substrate specificity of p60v-src.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号