首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 22 毫秒
1.
Rearing Technique and Biological Traits of Atheloca subrufella (Hulst) (Lepidoptera: Phycitidae) in Coconut Fruits. Larvae of the coconut moth Atheloca subrufella (Hulst) develop in flowers and fruits of coconut, Cocos nucifera, causing precocious abscission of these structures and, hence, yield decrease. This work studied a feasible and suitable rearing technique for A. subrufella using fruits of coconut. We first determined the appropriate density of larvae to be reared per coconut fruit (among two, three, four or five larvae) and later tested the suitability of this rearing technique for three successive generations. The storage of egg and pupal stages during 0, 5, 10 and 20 days was also studied at 12oC. Based on the fertility life table parameters, the best results were achieved by rearing two or three larvae per fruit as they yielded the best net reproductive rate and intrinsic rate of population increase. In addition, eggs and pupae of A. subrufella can be stored at 12oC up to five days with viability higher than 90%. Adult moths emerged from pupae stored for five days at 12oC produced an average of 219.4 eggs and lived 18.8 days. Storage periods for eggs and pupae over 10 days significantly reduced egg viability and adult fecundity, respectively. Thus, the technique in here described was shown to be suitable for the continuous rearing of A. subrufella in laboratory conditions.  相似文献   

2.
The eriophyid mite Aceria guerreronis occurs in most coconut growing regions of the world and causes enormous damage to coconut fruits. The concealed environment of the fruit perianth under which the mite resides renders its control extremely difficult. Recent studies suggest that biological control could mitigate the problems caused by this pest. Neoseiulus paspalivorus and Proctolaelaps bickleyi are two of the most frequently found predatory mites associated with A. guerreronis on coconut fruits. Regarding biological control, the former has an advantage in invading the tight areas under the coconut fruit perianth while the latter is more voracious on the pest mites and has a higher reproductive capacity. Based on the idea of the combined use/release of both predators on coconut fruits, we studied their compatibility in spatial niche use and intraguild predation (IGP). Spatial niche use on coconut fruits was examined on artificial arenas mimicking the area under the coconut fruit perianth and the open fruit surface. Both N. paspalivorus and P. bickleyi preferentially resided and oviposited inside the tight artificial chamber. Oviposition rate of P. bickleyi and residence time of N. paspalivorus inside the chamber were reduced in the presence of a conspecific female. Residence of N. paspalivorus inside the chamber was also influenced by the presence of P. bickleyi. Both N. paspalivorus and P. bickleyi preyed upon each other with relatively moderate IGP rates of adult females on larvae but neither species yielded nutritional benefits from IGP in terms of adult survival and oviposition. We discuss the relevance of our findings for a hypothetic combined use of both predators in biological control of A. guerreronis.  相似文献   

3.
Being minute in size, eriophyoid mites can reach places that are small enough to be inaccessible to their predators. The coconut mite, Aceria guerreronis, is a typical example; it finds partial refuge under the perianth of the coconut fruit. However, some predators can move under the perianth of the coconut fruits and attack the coconut mite. In Sri Lanka, the phytoseiid mite Neoseiulus baraki, is the most common predatory mite found in association with the coconut mite. The cross-diameter of this predatory mite is c. 3 times larger than that of the coconut mite. Nevertheless, taking this predator’s flat body and elongated idiosoma into account, it is—relative to many other phytoseiid mites—better able to reach the narrow space under the perianth of infested coconut fruits. On uninfested coconut fruits, however, they are hardly ever observed under the perianth. Prompted by earlier work on the accessibility of tulip bulbs to another eriophyoid mite and its predators, we hypothesized that the structure of the coconut fruit perianth is changed in response to damage by eriophyoid mites and as a result predatory mites are better able to enter under the perianth of infested coconut fruits. This was tested in an experiment where we measured the gap between the rim of the perianth and the coconut fruit surface in three cultivars (‘Sri Lanka Tall’, ‘Sri Lanka Dwarf Green’ and ‘Sri Lanka Dwarf Green × Sri Lanka Tall’ hybrid) that are cultivated extensively in Sri Lanka. It was found that the perianth-fruit gap in uninfested coconut fruits was significantly different between cultivars: the cultivar ‘Sri Lanka Dwarf Green’ with its smaller and more elongated coconut fruits had a larger perianth-fruit gap. In the uninfested coconut fruits this gap was large enough for the coconut mite to creep under the perianth, yet too small for its predator N. baraki. However, when the coconut fruits were infested by coconut mites, the perianth-rim-fruit gap was not different among cultivars and had increased to such an extent that the space under the perianth became accessible to the predatory mites.  相似文献   

4.
Ambulatory movement of plant-feeding mites sets limits to the distances they can cover to reach a new food source. In absence of food-related cues these limits are determined by survival, walking activity, walking path tortuosity and walking speed, whereas in presence of food the limits are also determined by the ability to orient and direct the path towards the food source location. For eriophyoid mites such limits are even more severe because they are among the smallest mites on earth, because they have only two pairs of legs and because they are very sensitive to desiccation. In this article we test how coconut mites (Aceria guerreronis Keifer) are constrained in their effective displacement by their ability to survive in absence of food (meristematic tissue under the coconut perianth) and by their ability to walk and orient in absence or presence of food-related cues. We found that the mean survival time decreased with increasing temperature and decreasing humidity. Under climatic conditions representative for the Tropics (27 °C and 75 % relative humidity) coconut mites survived on average for 11 h and covered 0.4 m, representing the effective linear displacement away from the origin. Within a period of 5 h, coconut mites collected from old fruits outside the perianth moved further away from the origin than mites collected under the perianth of young fruits. However, in the presence of food-related cues coconut mites traveled over 30 % larger distances than in absence of these cues. These results show that ambulatory movement of eriophyoid mites may well bring them to other coconuts within the same bunch and perhaps also to other bunches on the same coconut palm, but it is unlikely to help them move from palm to palm, given that palms usually do not touch each other.  相似文献   

5.
The coconut palm is an important crop in the sub arid coastal plain of Dhofar, Oman, for the high demand for its nut water and its use as ornamental plant. Damage of coconut fruits by the eriophyid mite Aceria guerreronis Keifer was first reported in that region in the late 1980s, but background information about the ecology of the pest in Oman was missing. Four surveys were conducted in different seasons from 2008 to 2009, to assess the distribution and prevalence of the coconut mite and its damage as well as the presence of natural enemies. Infestation by the coconut mite was conspicuous on most (99.7 %) palm trees, with 82.5 % damaged fruits. The average (±SE) density of coconut mites per fruit was 750 ± 56; this level of infestation led to the incidence of over 25 % of surface damage on more than half of the fruits. The mite appeared more abundant at the end of the cold season through the summer. No significant differences were observed between infestation levels on local varieties, hybrids and on dwarf varieties. Neoseiulus paspalivorus (De Leon), Cydnoseius negevi (Swirski & Amitai) and Amblyseius largoensis (Muma) were the predatory mites found under the bracts of over 30 % of the coconut fruits and on 68 % of the coconut trees. Considering all sampling dates and all varieties together, average (± SE) phytoseiid density was 1.4 ± 1.19 per fruit. Other mites found in the same habitat as A. guerreronis included the tarsonemids Steneotarsonemus furcatus De Leon and Nasutitarsonemus omani Lofego & Moraes. The pathogenic fungus Hirsutella thompsonii Fisher was rarely found infecting the coconut mite in Dhofar. Other fungal pathogens, namely Cordyceps sp. and Simplicillium sp., were more prevalent.  相似文献   

6.
The coconut mite Aceria guerreronis (Eriophyidae) is considered the most important pest of coconut fruits in Africa; however, quantitative knowledge about its distribution and abundance is lacking. We conducted four diagnostic surveys—three in Southern Benin and one along the coast of Tanzania—to determine the distribution of A. guerreronis and the severity of its damage to coconut fruits, as well as the diversity and abundance of other associated mites and potential natural enemies. Aceria guerreronis was found in all visited plantations with the percentage of damaged fruits varying considerably among plantations—67–85% in Benin and 43–81% in Tanzania. Overall, 30–40% of the fruit surfaces were damaged by A. guerreronis. Damage severity increased with fruit age and negatively affected fruit weight of 7- to 12-months-old fruits. Aceria guerreronis was by far the most abundant mite on coconut fruits but its abundance depended on fruit age. The highest densities of A. guerreronis were observed on 3- to 4-months-old fruits. Neocypholaelaps sp. (Ameroseiidae) was the most abundant mite on inflorescences. Three species of predatory mites (Phytoseiidae)—Neoseiulus baraki, N. neobaraki and N. paspalivorus—were the most commonly found predatory mites beneath the coconut bracts in association with A. guerreronis. Neoseiulus neobaraki was the prevailing predator in Tanzania while N. paspalivorus was the most frequent predator in Benin. Other mites found beneath the bracts were the herbivore Steneotarsonemus furcatus (Tarsonemidae) and the detritivore and fungivore Tyrophagus putrescentiae (Acaridae).  相似文献   

7.
The coconut mite, Aceria guerreronis Keifer, is one of the main pests of coconut palms (Cocos nucifera) in northeastern Brazil. The objective of this study was to evaluate the levels of the coconut mite and other mites on coconut palms in the state of S?o Paulo and to estimate the possible role of predatory mites in the control of this pest. The effect of cultivated genotypes and sampling dates on the mite populations was also estimated. We sampled attached fruits, leaflets, inflorescences, and fallen fruits. The coconut mite was the main phytophagous mite found on attached and fallen fruits, with average densities of 110.0 and 20.5 mites per fruit, respectively. The prevalent predatory mites on attached and fallen fruits were Proctolaelaps bulbosus Moraes, Reis & Gondim Jr. and Proctolaelaps bickleyi (Bram), both Melicharidae. On leaflets, the tenuipalpids Brevipalpus phoenicis (Geijsks) and Tenuipalpus coyacus De Leon and the tetranychid Oligonychus modestus (Banks) were the predominant phytophagous mites. On both leaflets and inflorescences, the predominant predatory mites belonged to the Phytoseiidae. Neoseiulus baraki (Athias-Henriot) and Neoseiulus paspalivorus (De Leon), predators widely associated with the coconut mite in northeastern Brazil and several other countries, were not found. The low densities of the coconut mite in S?o Paulo could be related to prevailing climatic conditions, scarcity of coconut plantations (hampering the dispersion of the coconut mite between fields), and to the fact that some of the genotypes cultivated in the region are unfavorable for its development.  相似文献   

8.
John F. Addicott 《Oecologia》1986,70(4):486-494
Summary Yucca moths are both obligate pollinators and obligate seed predators of yuccas. I measured the costs and net benefits per fruit arising for eight species of yuccas from their interaction with the yucca moth Tegeticula yuccasella. Yucca moths decrease the production of viable seeds as a result of oviposition by adults and feeding by larvae. Oviposition through the ovary wall caused 2.3–28.6% of ovules per locule to fail to develop, leaving fruit with constrictions, and overall, 0.6–6.6% of ovules per fruit were lost to oviposition by yucca moths. Individual yucca moth larvae ate 18.0–43.6% of the ovules in a locule. However, because of the number of larvae per fruit and the proportion of viable seeds, yucca moth larvae consumed only 0.0–13.6% of potentially viable ovules per fruit. Given both oviposition and feeding effects, yucca moths decreased viable seed production by 0.6–19.5%. The ratio of costs to (gross) benefits varied from 0% to 30%, indicating that up to 30% of the benefits available to yuccas are subsequently lost to yucca moths. The costs are both lower and more variable than in a similar pollinator-seed predator mutualism involving figs and fig wasps.There were differences between species of yuccas in the costs of associating with yucca moths. Yuccas with baccate fruit experienced lower costs than species with capsular fruit. There were also differences in costs between populations within species and high variation in costs between fruit within populations. High variability was the result of no yucca moth larvae being present in over 50% of the fruit in some populations, while other fruit produced up to 24 larvae. I present hypotheses explaining both the absence and high numbers of larvae per fruit.  相似文献   

9.
The Oriental fruit moth, Grapholita molesta (Busck) (Lepidoptera: Tortricidae) has become a pest of tree fruits since its introduction to the United States in the early twentieth century. Oriental fruit moth has historically been a major pest problem in peach production, and outbreaks in commercial apple (Malus spp.) orchards in the eastern United States were rare until the late 1990s. Recent outbreaks in Mid-Atlantic apple orchards have lead researchers to investigate host-associated effects on oriental fruit moth biology, behavior, and population dynamics. Studies were designed to assess cultivar level effects in apples on oviposition and larval feeding behavior of oriental fruit moth. In a mixed cultivar apple orchard, total oriental fruit moth oviposition and oviposition site preferences varied between cultivars. These preferences also varied over time, when sampling was repeated at various times of the growing season. Although most adult female oriental fruit moth preferentially oviposited in the calyx and stem areas of apple fruit, noticeable numbers of eggs also were laid on the sides of fruit, contradicting some previous reports. Oriental fruit moth females exhibited a strong ovipositional preference for fruit that were previously damaged by oriental fruit moth or codling moth, Cydia ponmonella (L.). The majority of newly hatched oriental fruit moth larvae were observed to spend <24 h on the surface of apple fruit before entry, and this behavior was observed on several apple cultivars. Neonate larvae exhibited a preference for entering fruit at either the stem or calyx ends, regardless of their initial site of placement. Our findings underscore the importance of adequate spray coverage and accurate timing of insecticide applications targeting oriental fruit moth.  相似文献   

10.
The dispersal of plant-feeding mites can occur involuntarily, through transportation of infested plant parts, or voluntarily, by walking to new plant parts or to suitable spots where biotic (phoresis) or abiotic (wind, agricultural tools, etc.) factors carry them over long distances. Elucidating the dispersal mechanisms of the coconut mite, Aceria guerreronis Keifer, is important for understanding the process of colonization of new fruits of a same or different plants, essential for the improvement of control strategies of this serious coconut pest. Thus, the objective of this work was to investigate the voluntary dispersal mechanisms of this mite. The hypothesis that the coconut mite disperses by walking, phoresis or wind were tested. The coconut mite was shown to be able to walk short distances between fruits of the same bunch or between bunches of the same plant. Phoresis on insects of the orders Hymenoptera (Apidae), Coleoptera (Curculionidae) and Lepidoptera (Phycitidae) was evaluated in the laboratory and in the field. Although in the laboratory mites were shown to be able to climb onto honeybees, field investigations failed to show these insects as important carriers of the pest, corroborating findings of previous works; however, both laboratory and field investigations suggested the curculionid Parisoschoenus obesulus Casey to be able to transport the coconut mite between plants. Similarly, laboratory and field investigations suggested wind to be important in the dispersal of the coconut mite between plants.  相似文献   

11.
For more than three decades the coconut mite Aceria guerreronis Keifer is one of the most important pests of coconut palms and has recently spread to many coconut production areas worldwide. Colonization of coconut palms is thought to arise from mites dispersing aerially after take-off from other plants within the same plantation or other plantations. The underlying dispersal behaviour of the mite at take-off, in the airborne state and after landing is largely unknown and this is essential to understand how they spread from tree to tree. In this article we studied whether take-off to aerial dispersal of coconut mites is preceded by characteristic behaviour, whether there is a correlation between the body position preceding aerial dispersal and the direction of the wind, and whether the substrate (outer surface of coconut bracts or epidermis) and the wind speed matter to the decision to take-off. We found that take-off can sometimes be preceded by a raised body stance, but more frequently take-off occurs while the mite is walking or resting on its substrate. Coconut mites that become airborne assumed a body stance that had no relation to the wind direction. Take-off was suppressed on a substrate providing food to coconut mites, but occurred significantly more frequently on the outer surface of coconut bracts than on the surface of the fruit. For both substrates, take-off frequency increased with wind speed. We conclude that coconut mites have at least some degree of control over take-off for aerial dispersal and that there is as yet no reason to infer that a raised body stance is necessary to become airborne.  相似文献   

12.
For the coconut mite, Aceria guerreronis Keifer, its host plant, the coconut palm, is not merely a source of food, but more generally a habitat to live in for several generations. For these minute organisms, finding a new plant is difficult and risky, especially because their main mode of dispersal is passive drifting with the wind and because they are highly specialized on their host plant. Consequently, the probability of landing on a suitable host is very low, let alone to land in their specific microhabitat within the host. How coconut mites manage to find their microhabitat within a host plant is still underexplored. We tested the hypothesis that they use volatile chemical information emanating from the plant to find a specific site within their host plants and/or use non-volatile plant chemicals to stay at a profitable site on the plant. This was investigated in a Y-tube olfactometer (i.e. under conditions of a directed wind flow) and on cross-shaped arenas (i.e. under conditions of turbulent air) that either allowed contact with odour sources or not. The mites had to choose between odours from specific parts (leaflet, spikelet or fruit) of a non-infested coconut plant and clean air as the alternative. In the olfactometer experiments, no mites were found to reach the upwind end of the Y-tube: <5 % of the mites were able to pass the bifurcation of the “Y”. On the cross-shaped arenas, however, a large number of coconut mites was found only when the arm of the arena contained discs of fruit epidermis and contact with these discs was allowed. The results suggest that coconut mites on palm trees are not attracted to specific sites on the plant by volatile plant chemicals, but that they arrested once they contact the substrate of specific sites. Possibly, they perceive non-volatile chemicals, but these remain to be identified.  相似文献   

13.
Studies were conducted in 1997 and 1998 to evaluate the effects of three particle film formulations consisting of kaolin and adjuvants on neonate larvae, ovipositing adult females, and eggs of the codling moth, Cydia pomonella (L.). Neonate larval walking speed, fruit discovery rate, and fruit penetration rate on apple host plants coated with particle films were significantly lower than on host plants without particle films in laboratory assays. Females oviposited less on host plants covered with a particle film residue than on untreated plants in laboratory choice and no-choice tests. Hatch rate of codling moth neonate larvae was unaffected by particle films sprayed on host plants either before or after oviposition. Fruit infestation rates were significantly reduced on particle film-treated trees compared with untreated trees for both first- and second-generation codling moth in field trials in both apple and pear orchards. Particle films appear to be a promising supplemental control approach for codling moth in orchards where moth density is high, and may represent a stand-alone method where moth densities are lower.  相似文献   

14.
The phytophagous mite Aceria guerreronis Keifer is an important pest of coconut worldwide. A promising method of control for this pest is the use of predatory mites. Neoseiulus baraki (Athias-Henriot) and Proctolaelaps bickleyi Bram are predatory mites found in association with A. guerreronis in the field. To understand how these predators respond to olfactory cues from A. guerreronis and its host plant, the foraging behavior of the predatory mites was investigated in a Y-tube olfactometer and on T-shaped arenas. The predators were subjected to choose in an olfactometer: (1) isolated parts (leaflet, spikelet or fruit) of infested coconut plant or clean air stream; (2) isolated parts of non-infested or infested coconut plant; and (3) two different plant parts previously shown to be attractive. Using T-shaped arenas the predators were offered all possible binary combinations of discs of coconut fruit epidermis infested with A. guerreronis, non-infested discs or coconut pollen. The results showed that both predators were preferred (the volatile cues from) the infested plant parts over clean air. When subjected to odours from different infested or non-infested plant parts, predators preferred the infested parts. Among the infested plant parts, the spikelets induced the greatest attraction to predators. On the arenas, both predators preferred discs of coconut fruits infested with A. guerreronis over every other alternative. The results show that both predators are able to locate A. guerreronis by olfactory stimuli. Foraging strategies and implications for biological control are discussed.  相似文献   

15.
Distribution patterns and numerical variability of the coconut mite Aceria guerreronis Keifer (Acari: Eriophyidae) and its predator Neoseiulus aff. paspalivorus DeLeon (Phytoseiidae) on the nuts of 3- to 7-month-old bunches of coconut palms were studied at two sites in Sri Lanka. At the two sites, coconut mites were present on 88 and 75% of the nuts but no more than three-quarters of those nuts showed damage symptoms. N. aff. paspalivorus was found more on mature nuts than on immature nuts. Spatial and temporal distribution of coconut mites and predatory mites differed significantly. The mean number of coconut mites per nut increased until 5-month-old bunches and declined thereafter. The densities of predatory mites followed a similar trend but peaked 1 month later. Variability in the numbers of mites among palms and bunches of the same age was great, but was relatively low on 6-month-old bunches. The results indicate that assessment of infestation levels by damage symptoms alone is not reliable. Sampling of coconut and/or predatory mite numbers could be improved by using several nuts of 6-month-old bunches. The effect of predatory mites on coconut mites over time suggests that N. aff. paspalivorus could be a prospective biological control agent of A. guerreronis.  相似文献   

16.
甘肃酒泉苹果蠹蛾的发生规律   总被引:2,自引:0,他引:2  
苹果蠹蛾Cydia pomonella(L.)是我国重要的果树害虫和检疫对象。本文通过田间调查和性诱芯诱捕器诱捕的方法,研究了2008年苹果蠹蛾在甘肃酒泉的年发生规律和空间分布特性。结果表明,苹果蠹蛾在我国甘肃酒泉1年发生2代;越冬代和第1代成虫发生高峰期分别为5月上旬至中旬和7月上旬至中旬,成虫在树冠的中层、向阳的方向(东部和南部)、果实和叶背面产卵较多;幼虫发生的两次高峰分别发生在6月17日和7月26日,刚孵化幼虫很快蛀果隐蔽为害,给防治带来很大困难;幼虫化蛹前,主要从树的上部向下爬行,并常以老熟幼虫潜入树干或分枝的树皮下结茧化蛹或越冬,次年4月中下旬开始羽化。  相似文献   

17.
The dry bulb mite, Aceria tulipae, is the most important pest of stored tulip bulbs in The Netherlands. This tiny, eriophyoid mite hides in the narrow space between scales in the interior of the bulb. To achieve biological control of this hidden pest, candidate predators small enough to move in between the bulb scales are required. Earlier experiments have shown this potential for the phytoseiid mite, Neoseiulus cucumeris, but only after the bulbs were exposed to ethylene, a plant hormone that causes a slight increase in the distance between tulip bulb scales, just sufficient to allow this predator to reach the interior part of the bulb. Applying ethylene, however, is not an option in practice because it causes malformation of tulip flowers. In fact, to prevent this cosmetic damage, bulb growers ventilate rooms where tulip bulbs are stored, thereby removing ethylene produced by the bulbs (e.g. in response to mite or fungus infestation). Recently, studies on the role of predatory mites in controlling another eriophyoid mite on coconuts led to the discovery of an exceptionally small phytoseiid mite, Neoseiulus paspalivorus. This predator is able to move under the perianth of coconuts where coconut mites feed on meristematic tissue of the fruit. This discovery prompted us to test N. paspalivorus for its ability to control A. tulipae on tulip bulbs under storage conditions (ventilated rooms with bulbs in open boxes; 23 °C; storage period June–October). Using destructive sampling we monitored predator and prey populations in two series of replicated experiments, one at a high initial level of dry bulb mite infestation, late in the storage period, and another at a low initial dry bulb mite infestation, halfway the storage period. The first and the second series involved treatment with N. paspalivorus and a control experiment, but the second series had an additional treatment in which the predator N. cucumeris was released. Taking the two series of experiments together we found that N. paspalivorus controlled the populations of dry bulb mites both on the outer scale of the bulbs as well as in the interior part of the bulbs, whereas N. cucumeris significantly reduced the population of dry bulb mites on the outer scale, but not in the interior part of the bulb. Moreover, N. paspalivorus was found predominantly inside the bulb, whereas N. cucumeris was only found on the outer scale, thereby confirming our hypothesis that the small size of N. paspalivorus facilitates access to the interior of the bulbs. We argue that N. paspalivorus is a promising candidate for the biological control of dry bulb mites on tulip bulbs under storage conditions in the Netherlands.  相似文献   

18.
The rate of entry by neonate larvae of the frugivorous codling moth, Cydia pomonella (L.) (Lepidoptera: Tortricidae), into fruit material was investigated. We used no‐choice bioassays in climate‐controlled rooms to assay larval entry across four host plant species (apple, pear, quince, walnut) and three varieties within a single fruit species (apple). Larvae successfully entering apples were reared to adulthood, and we collected tissue samples from apples which were successfully colonized in order to determine sucrose concentrations. This information was used to evaluate differences in adult moth size, development time, and pulp sucrose concentration due to apple variety. Four important findings emerged: (1) neonate larvae had the highest frequency of entry (86% of larvae) into apple fruits, compared with pear (78%), quince (56%), and walnut (32%); (2) the frequency of larval entry into immature apples differed across apple varieties, and larval entry rate was highest in variety Golden Delicious (72%), compared with Granny Smith (46%) and Red Delicious (64%); (3) on average, adult moths were larger and development times were shorter on the variety with the highest entry frequency (Golden Delicious); and (4) apple pulp sucrose concentrations were higher for Golden Delicious (17.5 μg mg?1) than for either Granny Smith (15.9 μg mg?1) or Red Delicious (15.1 μg mg?1) varieties, which correlates positively with entry and development data. We conclude that host fruit species and varietals within a species affect the entry rate of neonate codling moth larvae in no‐choice assays. We hypothesize that larval development is influenced by mean sucrose concentrations or other phytochemical differences associated with host fruit varieties.  相似文献   

19.
The acaricidal mycopathogen Hirsutella thompsonii has been found to secrete metabolites that are active against femaleTetranychus urticae. Specifically, the rose-colored exudate produced on sporulating cultures of Mexican HtM120I strain sterilized female spider mites in a dose-dependent fashion. Topical application of the exudate resulted in a 100% reduction in mite fecundity over the initial six days of experimentation. Depending upon the exudate dosage, mites partially recovered within 3 and 6 d post-treatment and produced a limited number of eggs. The spider mite active HtM120I exudate contained less detectable HtA toxin than the HtM120I broth filtrate, and it was innocuous when injected into the greater wax moth Galleria mellonella L. larvae. Broth filtrates of HtM120I cultures, although toxic to assayed G. mellonella larvae, did not inhibit mite oviposition to the degree or duration of the exudate preparations. These findings suggest that the factor responsible for suppressing oviposition in female spider mites is linked to the sporulation process and is distinct from the well-characterized HtA produced by vegetative cells. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

20.
In laboratory and field experiments, stimuli were tested that might affect oviposition decisions by female peach twig borer moths, Anarsia lineatella Zeller (Lepidoptera: Gelechiidae). When given a choice between immature green peach fruits, green mature peach fruits and soft-ripe peach fruits, the latter received the fewest eggs. Fuzzy halves of peach fruits received ten times more eggs then shaved hairless halves. Volatiles from both almond and peach shoots induced more oviposition by females than by control stimuli. Similarly, volatiles from immature green peach fruits, mature green or mature hard-ripe peach fruits induced more oviposition than their respective control stimuli. In a choice experiment, volatiles from immature peach fruit stimulated three times more oviposition than those from soft-ripe peach fruit. Discrimination against mature soft-ripe peach fruits as potential oviposition sites may lie in the phenology of A. lineatella and host peach fruits. Larval development to the pupal stage takes 15–27 days. Therefore, any eggs laid on a ripe fruit 14 days before it falls from the tree will not likely develop into adult insects because developing larvae will only reach third or fourth instar before the fruit is decomposed, and only first and second instar larvae can overwinter.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号