首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
Imaginal discs contain a population of cells, known as peripodial epithelium, that differ morphologically and genetically from the rest of imaginal cells. The peripodial epithelium has a small contribution to the adult epidermis, though it is essential for the eversion of the discs during metamorphosis. The genetic mechanisms that control the identity and cellular morphology of the peripodial epithelia are poorly understood. In this report, we investigate the mechanisms that pattern the peripodial side of the wing imaginal disc during early larval development. At this time, the activities of the Wingless (Wg) and Epidermal growth factor receptor (Egfr) signalling pathways specify the prospective wing and notum fields, respectively. We show that peripodial epithelium specification occurs in the absence of Wingless and Egfr signalling. The ectopic activity in the peripodial epithelium of any of these signalling pathways transforms the shape of peripodial cells from squamous to columnar and resets their gene expression profile. Furthermore, peripodial cells where Wingless signalling is ectopically active acquire hinge identity, while ectopic Egfr activation results in notum specification. These findings suggest that suppression of Wg and Egfr activities is an early step in the development of the peripodial epithelium of the wing discs.  相似文献   

2.
Imaginal discs of Drosophila provide an excellent system with which to study morphogenesis, pattern formation and cell proliferation in an epithelium. Discs are sac-like in structure and are composed of two epithelial layers: an upper peripodial epithelium and lower disc proper. Although development of the disc proper has been studied extensively in terms of cell proliferation, cell signaling mechanisms and pattern formation, little is known about these same processes in the peripodial epithelium. We address this topic by focusing on morphogenesis, compartmental organization, proliferation and cell lineage of the PE in wing, second thoracic leg (T2) and eye discs. We show that a subset of peripodial cells in different imaginal discs undergo a cuboidal-to-squamous cell shape change at distinct larval stages. We find that this shape change requires both Hedgehog and Decapentapelagic, but not Wingless, signaling. Additionally, squamous morphogenesis shifts the anteroposterior (AP) compartment boundary in the peripodial epithelium relative to the stationary AP boundary in the disc proper. Finally, by lineage tracing cells in the PE, we surprisingly find that peripodial cells are displaced into the disc proper during larval development and this movement leads to Ubx repression.  相似文献   

3.
All imaginal discs in Drosophila are made up of a layer of columnar epithelium or the disc proper and a layer of squamous epithelium called the peripodial membrane. Although the developmental and molecular events in columnar epithelium or the disc proper are well understood, the peripodial membrane has gained attention only recently. Using the technique of lineage tracing, we show that peripodial and disc proper cells arise from a common set of precursors cells in the embryo, and that these cells diverge in the early larval stages. However, peripodial and disc proper cells maintain a spatial relationship even after the separation of their lineages. The peripodial membrane plays a significant role during the regional subdivision of the wing disc into presumptive wing, notum and hinge. The Egfr/Ras pathway mediates this function of the peripodial membrane. These results on signaling between squamous and columnar epithelia are particularly significant in the context of in vitro studies using human cell lines that suggest a role for the Egfr/Ras pathway in metastasis and tumour progression.  相似文献   

4.
Gibson MC  Schubiger G 《Cell》2000,103(2):343-350
Cells employ a diverse array of signaling mechanisms to establish spatial patterns during development. Nowhere is this better understood than in Drosophila, where the limbs and eyes arise from discrete epithelial sacs called imaginal discs. Molecular-genetic analyses of pattern formation have generally treated discs as single epithelial sheets. Anatomically, however, discs comprise a columnar cell monolayer covered by a squamous epithelium known as the peripodial membrane. Here we demonstrate that during development, peripodial cells signal to disc columnar cells via microtubule-based apical extensions. Ablation and targeted gene misexpression experiments demonstrate that peripodial cell signaling contributes to growth control and pattern formation in the eye and wing primordia. These findings challenge the traditional view of discs as monolayers and provide foundational evidence for peripodial cell function in Drosophila appendage development.  相似文献   

5.
The eversion, migration, spreading, and fusion of the thoracic imaginal discs during metamorphosis of Drosophila are described using timed whole-mount preparations and several molecular markers. The leading edge of the migrating disc epithelia consists of two groups of cells, stalk cells (S cells) and specialized imaginal cells (I cells), that both express the gene puckered. With this and other markers, opening of the stalk, eversion of the discs, migration of the leading edges, and fusion of the imaginal epithelia can be visualized in detail. Fusion is initiated by S cells that migrate over the larval epithelium and constitute a bridge between two imaginal epithelia. S cells are subsequently lost and imaginal fusion is mediated by the I cells that remain at the site of fusion. The possible cellular basis of this process is discussed. Fusion along the dorsal midline of the notum from the mesothoracic wing discs occurs earlier than that of the prothoracic and metathoracic discs, which remain in a lateral position. For a relatively long period (30 h) the mesothoracic epithelium becomes attached to the head and abdomen, causing a temporary local discontinuity of the order of segments. Later the pro- and metathoracic discs intercalate between head and mesothorax and between abdomen and mesothorax, respectively, to reestablish the normal order.  相似文献   

6.
Drosophila imaginal discs are sac-like appendage primordia comprising apposed peripodial and columnar cell layers. Cell survival in disc columnar epithelia requires the secreted signal Decapentaplegic (DPP), which also acts as a gradient morphogen during pattern formation. The distribution mechanism by which secreted DPP mediates global cell survival and graded patterning is poorly understood. Here we report detection of DPP in the lumenal cavity between apposed peripodial and columnar cell layers of both wing and eye discs. We show that peripodial cell survival hinges upon DPP signal reception and implicate DPP-dependent viability of the peripodial epithelium in growth of the entire disc. These results are consistent with lumenal transmission of the DPP survival signal during imaginal disc development.  相似文献   

7.
In Drosophila, the Jun-N-terminal Kinase-(JNK) signaling pathway is required for epithelial cell shape changes during dorsal closure of the embryo. In the absence of JNK pathway activity, as in the DJNKK/hemipterous (hep) mutant, the dorsolateral ectodermal cells fail both to elongate and move toward the dorsal midline, leading to dorsally open embryos. We show here that hep and the JNK pathway are required later in development, for correct morphogenesis of other epithelia, the imaginal discs. During metamorphosis, the imaginal discs undergo profound morphological changes, giving rise to the adult head and thoracic structures, including the cuticle and appendages. hep mutant pupae and pharate adults show severe defects in discs morphogenesis, especially in the fusion of the two lateral wing discs. We show that these defects are accompanied by a loss of expression of puckered (puc), a JNK phosphatase-encoding gene, in a subset of peripodial cells that ultimately delineates the margins of fusing discs. In further support of a role of puc in discs morphogenesis, pupal and adult hep phenotypes are suppressed by reducing puc function, indicative of a negative role of puc in disc morphogenesis. Furthermore, we show that the small GTPase Dcdc42, but not Drac1, is an activator of puc expression in a hep-dependent manner in imaginal discs. Altogether, these results demonstrate a new role for the JNK pathway in epithelial morphogenesis, and provide genetic evidence for a role of the peripodial membrane in disc morphogenesis. We discuss a general model whereby the JNK pathway regulates morphogenesis of epithelia with differentiated edges.  相似文献   

8.
Drosophila adult structures derive from imaginal discs, which are sacs with apposed epithelial sheets, the disc proper (DP) and the peripodial epithelium (PE). The Drosophila TGF-beta family member decapentaplegic (dpp) contributes to the development of adult structures through expression in all imaginal discs, driven by enhancers from the 3' cis-regulatory region of the gene. In the eye/antennal disc, there is 3' directed dpp expression in both the DP and PE associated with cell proliferation and eye formation. Here, we analyze a new class of dpp cis-regulatory mutations, which specifically disrupt a previously unknown region of dpp expression, controlled by enhancers in the 5' regulatory region of the gene and limited to the PE of eye/antennal discs. These are the first described Drosophila mutations that act by solely disrupting PE gene expression. The mutants display defects in the ventral adult head and alter peripodial but not DP expression of known dpp targets. However, apoptosis is observed in the underlying DP, suggesting that this peripodial dpp signaling source supports cell survival in the DP.  相似文献   

9.
Some general aspects of the concept of imaginal discs in the Holometabola are reevaluated. Their monolayer character and continuity with the surrounding epidermis are confirmed. Studies on the imaginal discs of the silkworm (Bombyx mori) and data from the literature show that the discs and their peripodial cells produce cuticle during larval life, as well as at metamorphosis. In B. mori it is demonstrated that adult and larval antennae are produced by the same cells or their progeny. The results also suggest that segments of the typically three-segmented larval antenna of Holometabola are not scape, pedicel, and one-segmented flagellum; at least segments 2 and 3 are of flagellar origin. Based on these and some additional facts it is argued that: (1) No larval organs are "replaced" at metamorphosis, but strict "sequential homology" is always maintained. (2) Imaginal discs are not undifferentiated structures destined to form the adult after larval breakdown, cannot be unambiguously defined, and do not represent qualitatively different epidermal structures. Classical imaginal discs (invaginated and present also in pre-final larval instars) arose several times independently and were not present in the larvae of ancestral Holometabola. (3) Since the disc cells are not undifferentiated and "embryonic" (if these words have a defined meaning at all), it is unreasonable to expect that the processes taking place in discs at metamorphosis would differ fundamentally from those occurring in other diploid metamorphosing epidermal cells.  相似文献   

10.
The process of wing disc development and degeneration in the bagworm moth Eumeta variegata was investigated histologically. Morphological differences between two sexes first appear in the penultimate (eighth) larval instar. In the male, wing discs proliferate rapidly in the penultimate larval instar and continue proliferating; a conspicuous peripodial epithelium forms in the last (ninth) larval instar. The hemopoietic organs break down in this stage and disappear completely by the prepupal stage. In the female, in contrast, the wing discs remain as in the previous (seventh) instar, without proliferation of cells inside. No peripodial epithelium forms in the penultimate instar or later. Hemopoietic organs are still attached to the wing discs in the last larval instar and the entire wing discs transform into a plain, thick epidermis in the prepupal period. It is suggested that the hemopoietic organs may prevent the wing discs from developing in E. variegata.  相似文献   

11.
S K Mathi  E Larsen 《Tissue & cell》1988,20(3):461-472
A transmission electron microscopic study of cell division in serially sectioned imaginal discs of early third instar fruitfly larvae revealed that mitotic cells maintain a relationship with the basal surface of the disc through thin cytoplasmic extensions abutting on vesicular material. Two patterns of cell division were discerned. In one, cell divisions were isolated and usually found near the peripodial membrane-disc epithelium junction; in the other, cell divisions were clustered. Observations on cell death and cell division in the peripodial membrane are also reported.  相似文献   

12.
13.
We determined the contribution of the peripodial membrane to chitin synthesis in cultured wing imaginal discs of Spodoptera frugiperda. This was accomplished by examining chitin synthesis in vitro in intact imaginal discs, in the peripodial membrane, and in imaginal discs in which the peripodial membrane had been injured. Chitin synthesis in peripodial membrane-deprived imaginal discs, peripodial membrane injured imaginal discs, and peripodial membrane fragments was assessed by measuring incorporation of [14C]GlcNAc after treatment with 20-hydroxyecdysone in tissue culture. Removing or injuring the peripodial membrane resulted in a marked decrease in ecdysteroid-dependent chitin synthesis in these wing discs compared with intact wing discs. In addition, a break in the ecdysteroid treatment of 4 h reduced chitin synthesis in the wing discs substantially. These biochemical experiments were supplemented with ultrastructural and immunocytochemical approaches. A wheat germ agglutinin colloidal gold complex was used to visualize the presence of chitin synthesized by wing discs including the peripodial membrane. These experiments confirmed the importance of an intact peripodial membrane for optimal production of cuticle by the wing pouch. Our results demonstrate that for opti-ma1 production of chitin in tissue culture, wing discs must be treated with 20-hydroxyecdysone for an uninterrupted period of 48 h, and the peripodial membrane of these imaginal discs must be present and uninjured. © 1995 Wiley-Liss, Inc.
  • 1 This article is a US Government work and, as such, is in the public domain in the United States of America.
  •   相似文献   

    14.
    Summary The early morphogenesis of the eye-antennal disc ofDrosophila in response to 20-hydroxy ecdysone involves the curling of the eye anlagen dorsally over the antenna. During this process, the area of the peripodial membrane is substantially reduced. The peripodial membrane is taut at this stage, and if it is cut the curling of the disc cannot continue, and the eye anlagen returns to its original position within one minute of the operation. In contrast, cutting the columnar epithelium between the eye and antennal anlagen does not disrupt curling, but actually facilitates it. During curling, the cells of the peripodial membrane appear healthy, and exhibit basal extensions. We suggest that the curling of the eye is mediated by the conversion of cuboidal peripodial membrane cells into pseudostratified columnar epithelium at the edges of the peripodial membrane. Subsequently, cells of the peripodial membrane secrete first a pupal cuticle, and then an imaginal cuticle.  相似文献   

    15.
    16.
    Extracellular protease production by Drosophila imaginal discs   总被引:1,自引:0,他引:1  
    We are investigating the role of extracellular proteases in imaginal disc eversion to understand the mechanism that controls cell rearrangements within epithelia. We have identified three cation-dependent neutral proteases released by Drosophila leg discs everting in culture. Serine protease inhibitors block disc eversion and inhibit activity of disc proteases. The pattern of extracellular proteases changes when eversion is blocked with added protease inhibitors. Changes in protease activity occur when released disc proteases are treated with trypsin. Trypsin treatment of intact imaginal discs releases protease and inhibitor activities to the medium, indicating their presence on the cell surface before release. Our results suggest that extracellular proteases are required for imaginal disc morphogenesis and are regulated by more than one mechanism.  相似文献   

    17.
    Using a monoclonal antibody and image-processing procedures, the patterns of expression of the Ultrabithorax (Ubx) gene product have been characterized in Drosophila larvae. As reported previously, the metathoracic imaginal discs stain most intensely with anti-Ubx, with some mesothoracic and no prothoracic expression detectable. In the metathoracic discs, the greatest modulation in anti-Ubx staining is along the proximodistal axis. Ubx is generally expressed at higher levels in the posterior regions of metathoracic discs, although relatively high anterior expression is found in some areas. Expression in the mature wing disc is confined to the squamous peripodial membrane cells; in younger wings, Ubx expression fills the posterior half of the peripodial side of the disc. The mesothoracic leg stains with a pattern that is qualitatively similar (but not identical) to that of the metathoracic leg; Ubx is expressed in some anterior regions of the mesothoracic leg, in parasegment 4. Double staining with anti-Ubx and anti-engrailed reveals that discontinuities in Ubx expression that have been suggested to correspond to compartment borders do not coincide with the compartment boundaries in some cases. In the larval ventral ganglion, Ubx expression is greatest in parasegments 5 and 6, as in the embryonic nervous system.  相似文献   

    18.
    Drosophila imaginal discs (appendage primordia) have proved invaluable for deciphering cellular and molecular mechanisms of animal development. By combining the accessibility of the discs with the genetic tractability of the fruit fly, researchers have discovered key mechanisms of growth control, pattern formation and long-range signaling. One of the principal experimental attractions of discs is their anatomical simplicity - they have long been considered to be cellular monolayers. During larval stages, however, the growing discs are 2-sided sacs composed of a columnar epithelium on one side and a squamous 'peripodial' epithelium on the other. Recent studies suggest important roles for peripodial epithelia in processes previously assumed to be confined to columnar cell monolayers.  相似文献   

    19.
    An apical surface glycoprotein, designated gp125 for its apparent molecular weight of 125,000, appears in Ca2(+)-free, ionic detergent extracts of imaginal discs of Drosophila melanogaster in response to the steroid hormone, 20-hydroxyecdysone (20-HE). Gp125 is not synthesized in response to 20-HE, but results from modification of an existing macromolecule. Treatment of discs or larval epidermis with serine protease (e.g., trypsin) results in hormone-independent production of gp125. Antiserum raised to electrophoretically purified gp125 recognizes, in addition to gp125, two closely related glycoproteins with higher apparent molecular weights, gp200 and gp180. This family of glycoproteins is localized at the apical surface of imaginal disc cells and of the epidermal epithelium in embryos, larvae and prepupae. Ca2+ affects both the solubility and the proteolytic products of this family of glycoproteins. We discuss the possibility that gp125 is generated through the action of a hormonally controlled serine protease in a process that is necessary for disc morphogenesis.  相似文献   

    20.
    Three of the twenty recessive-lethal tumor suppressor genes of Drosophila cause imaginal disc tumors in the homozygously mutated state. One of these is the lethal(2)tumorous imaginal discs (l(2)tid) gene. Histological preparations show the tumorous imaginal disc epithelium to consist of a mosaic of cells in monolayer and cells in clumped arrangement. In contrast, the wild-type imaginal disc epithelium is comprised exclusively of cells in monolayer arrangement. Mutant imaginal disc tissue pieces implanted into ready-to-pupariate wild-type larvae fail to differentiate. Implantation of l(2)tid imaginal disc tissue pieces in vivo into wild-type adult flies revealed a lethal, tumorous growth comparable to that in situ, thus characterizing the l(2)tid imaginal discs as truly malignant. The phenotypes of double mutants between two l(2)tid alleles and tumor suppressor genes, such as lethal(2)giant larvae and lethal(2)brain tumor, and the epithelial overgrowth mutant lethal(2)fat are described and discussed. Finally, we present the genetic, cytogenetic and molecular localization of the l(2)tid gene to the giant chromosome bands 59F4-6.  相似文献   

    设为首页 | 免责声明 | 关于勤云 | 加入收藏

    Copyright©北京勤云科技发展有限公司  京ICP备09084417号