首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
PurposeTo evaluate the utility of the use of iterative cone-beam computed tomography (CBCT) for machine log file-based dose verification during volumetric modulated arc therapy (VMAT) for prostate cancer patients.MethodsAll CBCT acquisition data were used to reconstruct images with the Feldkamp-Davis-Kress algorithm (FDK-CBCT) and the novel iterative algorithm (iCBCT). The Hounsfield unit (HU)-electron density curves for CBCT images were created using the Advanced Electron Density Phantom. The I’mRT and anthropomorphic phantoms were irradiated with VMAT after CBCT registration. Subsequently, fourteen prostate cancer patients received VMAT after CBCT registration. Machine log files and both CBCT images were exported to the PerFRACTION software, and a 3D patient dose was reconstructed. Mean dose for planning target volume (PTV), the bladder, and rectum and the 3D gamma analysis were evaluated.ResultsFor the phantom studies, the variation of HU values was observed at the central position surrounding the bones in FDK-CBCT. There were almost no changes in the difference of doses at the isocenter between measurement and reconstructed dose for planning CT (pCT), FDK-CBCT, and iCBCT. Mean dose differences of PTV, rectum, and bladder between iCBCT and pCT were approximately 2% lower than those between FDK-CBCT and pCT. For the clinical study, average gamma analysis for 2%/2 mm was 98.22% ± 1.07 and 98.81% ± 1.25% in FDK-CBCT and iCBCT, respectively.ConclusionsA similar machine log file-based dose verification accuracy is obtained for FDK-CBCT and iCBCT during VMAT for prostate cancer patients.  相似文献   

2.
PurposeTo evaluate the feasibility of the use of iterative cone-beam computed tomography (CBCT) for dose calculation in the head and neck region.MethodsThis study includes phantom and clinical studies. All acquired CBCT images were reconstructed with Feldkamp–Davis–Kress algorithm-based CBCT (FDK-CBCT) and iterative CBCT (iCBCT) algorithm. The Hounsfield unit (HU) consistency between the head and body phantoms was determined in both reconstruction techniques. Volumetric modulated arc therapy (VMAT) plans were generated for 16 head and neck patients on a planning CT scan, and the doses were recalculated on FDK-CBCT and iCBCT with Anisotropic Analytical Algorithm (AAA) and Acuros XB (AXB). As a comparison of the accuracy of dose calculations, the absolute dosimetric difference and 1%/1 mm gamma passing rate analysis were analyzed.ResultsThe difference in the mean HU values between the head and body phantoms was larger for FDK-CBCT (max value: 449.1 HU) than iCBCT (260.0 HU). The median dosimetric difference from the planning CT were <1.0% for both FDK-CBCT and iCBCT but smaller differences were found with iCBCT (planning target volume D50%: 0.38% (0.15–0.59%) for FDK-CBCT, 0.28% (0.13–0.49%) for iCBCT, AAA; 0.14% (0.04–0.19%) for FDK-CBCT, 0.07% (0.02–0.20%) for iCBCT). The mean gamma passing rate was significantly better in iCBCT than FDK-CBCT (AAA: 98.7% for FDK-CBCT, 99.4% for iCBCT; AXB: 96.8% for FDK_CBCT, 97.5% for iCBCT).ConclusionThe iCBCT-based dose calculation in VMAT for head and neck cancer was accurate compared to FDK-CBCT.  相似文献   

3.
Background and purposeThe use of cone beam computed tomography (CBCT) for performing dose calculations in radiation therapy has been widely investigated as it could provide a quantitative analysis of the dosimetric impact of changes in patients during the treatment. The aim of this review was to classify different techniques adopted to perform CBCT dose calculation and to report their dosimetric accuracy with respect to the metrics used.Methods and materialsA literature search was carried out in PubMed and ScienceDirect databases, based upon the following keywords: “cone beam computed tomography”, “CBCT”, “cone beam CT”, “dose calculation”, “accuracy”. Sixty-nine peer-reviewed relevant articles were included in this review: thirty-one patient studies, fifteen phantom studies and twenty-three patient & phantom studies. Most studies were found to have focused on head and neck, lung and prostate cancers.ResultsThe techniques adopted to perform CBCT dose calculation have been grouped in six categories labelled as (1) pCT calibration, (2) CBCT calibration, (3) HU override, (4) Deformable image registration, (5) Dose deformation, and (6) Combined techniques. Differences between CBCT dose and reference dose were reported both for target volumes and OARs.ConclusionsA comparison among the available techniques for CBCT dose calculations is challenging as many variables are involved. Therefore, a set of reporting standards is recommended to enable meaningful comparisons among different studies. The accuracy of the results was strongly dependent on the image quality, regardless of the methods used, highlighting the need for dose validation and quality assurance standards.  相似文献   

4.
PurposeIn radiotherapy, accurate calculation of patient radiation dose is very important for good clinical outcome. In the presence of metallic implants, the dose calculation accuracy could be compromised by metal artefacts generated in computed tomography (CT) images of patients. This study investigates the influence of metal-induced CT artefacts on MC dose calculations in a pelvic prosthesis phantom.MethodsA pelvic phantom containing unilateral Ti prosthesis was CT-scanned and accurate Hounsfield unit (HU) values were assigned to known materials of the phantom as opposed to HU values produced through the artefact CT images of the phantom. Using the DOSXYZnrc MC code, dose calculations were computed in the phantom model constructed from the original CT images containing the artefacts and artefact-free images made from the exact geometry of the phantom with known materials. The dose calculations were benchmarked against Gafchromic EBT3 film measurements using 15 MeV electron and 10 MV photon beams.ResultsThe average deviations between film and MC dose data decreased from 3 ± 2% to 1 ± 1% and from about 6 ± 2% to 3 ± 1% for the artefact and artefact-free phantom models against film data for the electron and photon fields, respectively.ConclusionsFor the Ti prosthesis phantom, the presence of metal-induced CT artefacts could cause dose inaccuracies of about 3%. Construction of an artefact-free phantom model made from the exact geometry of the phantom with known materials to overcome the effect of artefacts is advantageous compared to using CT data directly of which the exact tissue composition is not well-known.  相似文献   

5.
PurposeTo investigate the performances of two commercial treatment planning systems (TPS) for Volumetric Modulated Arc Therapy (VMAT) optimization regarding prostate cancer. The TPS were compared in terms of dose distributions, treatment delivery parameters and quality control results.Materials and methodsFor ten patients, two VMAT plans were generated: one with Monaco TPS (Elekta) and one with Pinnacle TPS (Philips Medical Systems). The total prescribed dose was 78 Gy delivered in one 360° arc with a Synergy® linear accelerator equipped with a MLCi2®.ResultsVMAT with Monaco provided better homogeneity and conformity indexes but lower mean dose to PTVs than Pinnacle. For the bladder wall (p = 0.019), the femoral heads (p = 0.017), and healthy tissues (p = 0.005), significantly lower mean doses were found using Monaco. For the rectal wall, VMAT with Pinnacle provided a significantly (p = 0.047) lower mean dose, and lower dose into 50% of the volume (p = 0.047) compared to Monaco. Despite a greater number of monitor units (factor 1.5) for Monaco TPS, the total treatment time was equivalent to that of Pinnacle. The treatment delivery parameter analysis showed larger mean MLC area for Pinnacle and lower mean dose rate compared to Monaco. The quality control results gave a high passing rate (>97.4%) for the gamma index for both TPS but Monaco provided slightly better results.ConclusionFor prostate cancer patients, VMAT treatment plans obtained with Monaco and Pinnacle offered clinically acceptable dose distributions. Further investigations are in progress to confirm the performances of the two TPS for irradiating more complex volumes.  相似文献   

6.
AimTo validate the Acuros®XB (AXB) dose calculation algorithm for a 6 MV beam from the Varian TrueBeam treatment units.BackgroundCurrently Anisotropic Analytic Algorithm (AAA) is clinically used on authors’ department but AXB could replace it for VMAT treatments in regions where inhomogeneities and free air are present.Materials and methodsTwo steps are followed in the validation process of a new dose calculation algorithm. The first is to check the accuracy of algorithm for a homogenous phantom and regular fields. Multiple fields of increasing complexity have been acquired using a MapCheck diode array. The accuracy of the algorithm was evaluated using the gamma analysis method. The second is to validate the algorithm in the presence of heterogeneous media. Planar absolute dose was measured with GafChromic®EBT2 film and was compared with the dose calculated by AXB. Gamma analysis was performed between MapCheck measurements and AXB dose calculations, at a range of clinical source-surface distance.ResultsFor SSDs ranging from 80 to 100 cm, the results show a minimum pass rate of 95% between AXB and MapCheck acquisition. For open 6 MV photon beam interacting with a phantom with an air gap, the agreement after the air gap between AXB and GafChromic®EBT2 is less than 1% in the 3 × 3cm2 field and less than 2% in the 10 × 10 cm2 field.ConclusionsAXB has advanced modelling of lateral electron transport that enables a more accurate dose calculation in heterogeneous regions and, compared with AAA, improves accuracy between different density interfaces. This will be of particular benefit for head/neck treatments.  相似文献   

7.
PurposeThe conventional weighted computed tomography dose index (CTDIw) may not be suitable for cone-beam computed tomography (CBCT) dosimetry because a cross-sectional dose distribution is angularly inhomogeneous owing to partial angle irradiations. This study was conducted to develop a new dose metric (f(0)CBw) for CBCT dosimetry to determine a more accurate average dose in the central cross-sectional plane of a cylindrical phantom using Monte Carlo simulations.MethodsFirst, cross-sectional dose distributions of cylindrical polymethyl methacrylate phantoms over a wide range of phantom diameters (8–40 cm) were calculated for various CBCT scan protocols. Then, by obtaining linear least-squares fits of the full datasets of the cross-sectional dose distributions, the optimal radial positions, which represented measurement positions for the average phantom dose, were determined. Finally, the f(0)CBw method was developed by averaging point doses at the optimal radial positions of the phantoms. To demonstrate its validity, the relative differences between the average doses and each dose index value were estimated for the devised f(0)CBw, conventional CTDIw, and Haba’s CTDIw methods, respectively.ResultsThe relative differences between the average doses and each dose index value were within 4.1%, 16.7%, and 11.9% for the devised, conventional CTDIw, and Haba’s CTDIw methods, respectively.ConclusionsThe devised f(0)CBw value was calculated by averaging four “point doses” at 90° intervals and the optimal radial positions of the cylindrical phantom. The devised method can estimate the average dose more accurately than the previously developed CTDIw methods for CBCT dosimetry.  相似文献   

8.
PurposeTo develop and test the suitability and performance of a comprehensive quality assurance (QA) phantom for the Small Animal Radiation Research Platform (SARRP).Methods and materialsA QA phantom was developed for carrying out daily, monthly and annual QA tasks including: imaging, dosimetry and treatment planning system (TPS) performance evaluation of the SARRP. The QA phantom consists of 15 (60 × 60 × 5 mm3) kV-energy tissue equivalent solid water slabs. The phantom can incorporate optically stimulated luminescence dosimeters (OSLD), Mosfet or film. One slab, with inserts and another slab with hole patterns are particularly designed for image QA.ResultsOutput constancy measurement results showed daily variations within 3%. Using the Mosfet in phantom as target, results showed that the difference between TPS calculations and measurements was within 5%. Annual QA results for the Percentage depth dose (PDD) curves, lateral beam profiles, beam flatness and beam profile symmetry were found consistent with results obtained at commissioning. PDD curves obtained using film and OSLDs showed good agreement. Image QA was performed monthly, with image-quality parameters assessed in terms of CBCT image geometric accuracy, CT number accuracy, image spatial resolution, noise and image uniformity.ConclusionsThe results show that the developed QA phantom can be employed as a tool for comprehensive performance evaluation of the SARRP. The study provides a useful reference for development of a comprehensive quality assurance program for the SARRP and other similar small animal irradiators, with proposed tolerances and frequency of required tests.  相似文献   

9.
PurposeTo evaluate eXaSkin, a novel high-density bolus alternative to commercial tissue-equivalent Superflab, for 6MV photon-beam radiotherapy.Materials and methodsWe delivered a 10 × 10 cm2 open field at 90° and head-and-neck clinical plan, generated with the volumetric modulated arc therapy (VMAT) technique, to an anthropomorphic phantom in three scenarios: with no bolus on the phantom’s surface, with Superflab, and with eXaSkin. In each scenario, we measured dose to a central planning target volume (PTV) in the nasopharynx region with an ionization chamber, and we measured dose to the skin, at three different positions within the vicinity of a neck lymph node PTV, with MOSkin™, a semiconductor dosimeter. Measurements were compared against calculations with the treatment planning system (TPS).ResultsFor the static field, MOSkin results underneath the eXaSkin were in agreement with calculations to within 1.22%; for VMAT, to within 5.68%. Underneath Superflab, those values were 3.36% and 11.66%. The inferior agreement can be explained by suboptimal adherence of Superflab to the phantom’s surface as well as difficulties in accurately reproducing its placement between imaging and treatment session. In all scenarios, dose measured at the central target agreed to within 1% with calculations.ConclusionseXaSkin was shown to have superior adaptation to the phantom’s surface, producing minimal air gaps between the skin surface and bolus, allowing for accurate positioning and reproducibility of set-up conditions. eXaSkin with its high density material provides sufficient build-up to achieve full skin dose with less material thickness than Superflab.  相似文献   

10.
PurposeTo study the feasibility of using an iterative reconstruction algorithm to improve previously reconstructed CT images which are judged to be non-diagnostic on clinical review. A novel rapidly converging, iterative algorithm (RSEMD) to reduce noise as compared with standard filtered back-projection algorithm has been developed.Materials and methodsThe RSEMD method was tested on in-silico, Catphan®500, and anthropomorphic 4D XCAT phantoms. The method was applied to noisy CT images previously reconstructed with FBP to determine improvements in SNR and CNR. To test the potential improvement in clinically relevant CT images, 4D XCAT phantom images were used to simulate a small, low contrast lesion placed in the liver.ResultsIn all of the phantom studies the images proved to have higher resolution and lower noise as compared with images reconstructed by conventional FBP. In general, the values of SNR and CNR reached a plateau at around 20 iterations with an improvement factor of about 1.5 for in noisy CT images. Improvements in lesion conspicuity after the application of RSEMD have also been demonstrated. The results obtained with the RSEMD method are in agreement with other iterative algorithms employed either in image space or with hybrid reconstruction algorithms.ConclusionsIn this proof of concept work, a rapidly converging, iterative deconvolution algorithm with a novel resolution subsets-based approach that operates on DICOM CT images has been demonstrated. The RSEMD method can be applied to sub-optimal routine-dose clinical CT images to improve image quality to potentially diagnostically acceptable levels.  相似文献   

11.
PurposeTo compare patient radiation doses in cone beam computed tomography (CBCT) of two mobile systems used for navigation-assisted mini-invasive orthopedic surgery: O-arm®O2 and Surgivisio®.MethodsThe study focused on imaging of the spine. Thermoluminescent dosimeters were used to measure organs and effective doses (ED) during CBCT. An ionization-chamber and a solid-state sensor were used to measure the incident air-kerma (Ki) at the center of the CBCT field-of-view and Ki during 2D-imaging, respectively. The PCXMC software was used to calculate patient ED in 2D and CBCT configurations. The image quality in CBCT was evaluated with the CATPHAN phantom.ResultsThe experimental ED estimate for the low-dose 3D-modes was 2.41 and 0.35 mSv with O-arm®O2 (Low Dose 3D-small-abdomen) and Surgivisio® (3DSU-91 images), respectively. PCXMC results were consistent: 1.54 and 0.30 mSv. Organ doses were 5 to 12 times lower with Surgivisio®. Ki at patient skin were comparable on lateral 2D-imaging (0.5 mGy), but lower with O-arm®O2 on anteroposterior (0.3 versus 0.9 mGy). Both systems show poor low contrast resolution and similar high contrast spatial resolution (7 line-pairs/cm).ConclusionsThis study is the first to evaluate patient ED and organ doses with Surgivisio®. A significant difference in organs doses was observed between the CBCT systems. The study demonstrates that Surgivisio® used on spine delivers approximately five to six times less patient ED, compared to O-arm®O2, in low dose 3D-modes. Doses in 2D-mode preceding CBCT were higher with Surgivisio®, but negligible compared to CBCT doses under the experimental conditions tested.  相似文献   

12.
PurposeTo investigate whether electrocardiogram (ECG)-gated single- and dual-heartbeat computed tomography coronary angiography (CTCA) with automatic exposure control (AEC) yields images with uniform image noise at reduced radiation doses.Materials and methodsUsing an anthropomorphic chest CT phantom we performed prospectively ECG-gated single- and dual-heartbeat CTCA on a second-generation 320-multidetector CT volume scanner. The exposure phase window was set at 75%, 70–80%, 40–80%, and 0–100% and the heart rate at 60 or 80 or corr80 bpm; images were reconstructed with filtered back projection (FBP) or iterative reconstruction (IR, adaptive iterative dose reduction 3D). We applied AEC and set the image noise level to 20 or 25 HU. For each technique we determined the image noise and the radiation dose to the phantom center.ResultsWith half-scan reconstruction at 60 bpm, a 70–80% phase window- and a 20-HU standard deviation (SD) setting, the imagenoise level and -variation along the z axis manifested similar curves with FBP and IR. With half-scan reconstruction, the radiation dose to the phantom center with 70–80% phase window was 18.89 and 12.34 mGy for FBP and 4.61 and 3.10 mGy for IR at an SD setting SD of 20 and 25 HU, respectively. At 80 bpm with two-segment reconstruction the dose was approximately twice that of 60 bpm at both SD settings. However, increasing radiation dose at corr80 bpm was suppressed to 1.39 times compared to 60 bpm.ConclusionAEC at ECG-gated single- and dual-heartbeat CTCA controls the image noise at different radiation dose.  相似文献   

13.
BackgroundThe aim of the study was to evaluate analysis criteria for the identification of the presence of rectal gas during volumetric modulated arc therapy (VMAT) for prostate cancer patients by using electronic portal imaging device (EPID)-based in vivo dosimetry (IVD).Materials and methodsAll measurements were performed by determining the cumulative EPID images in an integrated acquisition mode and analyzed using PerFRACTION commercial software. Systematic setup errors were simulated by moving the anthropomorphic phantom in each translational and rotational direction. The inhomogeneity regions were also simulated by the I’mRT phantom attached to the Quasar phantom. The presence of small and large air cavities (12 and 48 cm3) was controlled by moving the Quasar phantom in several timings during VMAT. Sixteen prostate cancer patients received EPID-based IVD during VMAT.ResultsIn the phantom study, no systematic setup error was detected in the range that can happen in clinical (< 5-mm and < 3 degree). The pass rate of 2% dose difference (DD2%) in small and large air cavities was 98.74% and 79.05%, respectively, in the appearance of the air cavity after irradiation three quarter times. In the clinical study, some fractions caused a sharp decline in the DD2% pass rate. The proportion for DD2% < 90% was 13.4% of all fractions. Rectal gas was confirmed in 11.0% of fractions by acquiring kilo-voltage X-ray images after the treatment.ConclusionsOur results suggest that analysis criteria of 2% dose difference in EPID-based IVD was a suitable method for identification of rectal gas during VMAT for prostate cancer patients.  相似文献   

14.
《IRBM》2014,35(5):255-261
PurposeThis work sought to establish whether the choice of CT scanner calibration curve has a significant effect on dose computation using density correction methods for chest cancer.Material and methodsCIRS®062 phantom was used to calculate the Hounsfield Unit using 80, 120 and 140 kV. Four CT calibration curves were implanted in the Eclipse® TPS. Forty-two irradiation fields for 4 patients with lung cancer were included and analysed. The patients were treated with 3-dimensional radiation therapy. For each patient, 3 treatment plans were generated using exactly the same beam configuration. In plan 1, the dose was calculated using the Modified Batho (MB) method. In plan 2, the dose was calculated using the Batho power law (BPL) method. In plan 3, the dose was calculated using the Equivalent Tissue Air Ratio (ETAR) method. To evaluate the treatment plans computed by the three methods, the monitor units, dose volume histograms, conformity index, homogeneity index, planning target volumes conformity index, geometrical index and 2D gamma index were compared. The statistical analysis was carried out using Wilcoxon signed rank test.ResultsThe three density correction methods in plans 1, 2 and 3 using tested curves produced a difference less than 1% for MUs and DVH. Wilcoxon test showed a statically significant difference for MUs using ETAR method with calibration curves based on 80 and 120 kV. There was no significant difference for the quality indices between plan 1, 2 and 3, (P > 0.05), but a significant difference for the planning target volumes conformity index between plans 1, 2 and 3 (P < 0.05) was observed. The 2D gamma analysis showed that 100% of pixels had gamma  1.ConclusionThe impact of the modification of CT calibration curves on dose is negligible for chest cancer using density correction methods. One calibration curve can be used to take into account the density correction for lung.  相似文献   

15.
PurposeIn radiotherapy, MRI is used for target volume and organs-at-risk delineation for its superior soft-tissue contrast as compared to CT imaging. However, MRI does not provide the electron density of tissue necessary for dose calculation. Several methods of synthetic-CT (sCT) generation from MRI data have been developed for radiotherapy dose calculation. This work reviewed deep learning (DL) sCT generation methods and their associated image and dose evaluation, in the context of MRI-based dose calculation.MethodsWe searched the PubMed and ScienceDirect electronic databases from January 2010 to March 2021. For each paper, several items were screened and compiled in figures and tables.ResultsThis review included 57 studies. The DL methods were either generator-only based (45% of the reviewed studies), or generative adversarial network (GAN) architecture and its variants (55% of the reviewed studies). The brain and pelvis were the most commonly investigated anatomical localizations (39% and 28% of the reviewed studies, respectively), and more rarely, the head-and-neck (H&N) (15%), abdomen (10%), liver (5%) or breast (3%). All the studies performed an image evaluation of sCTs with a diversity of metrics, with only 36 studies performing dosimetric evaluations of sCT.ConclusionsThe median mean absolute errors were around 76 HU for the brain and H&N sCTs and 40 HU for the pelvis sCTs. For the brain, the mean dose difference between the sCT and the reference CT was <2%. For the H&N and pelvis, the mean dose difference was below 1% in most of the studies. Recent GAN architectures have advantages compared to generator-only, but no superiority was found in term of image or dose sCT uncertainties. Key challenges of DL-based sCT generation methods from MRI in radiotherapy is the management of movement for abdominal and thoracic localizations, the standardization of sCT evaluation, and the investigation of multicenter impacts.  相似文献   

16.
Purpose: Nowadays, patient positioning and target localization can be verified by using kilovolt cone beam computed tomography (kV-CBCT). There have been various studies on the absorbed doses and image qualities of different kV-CBCT systems. However, the Varian TrueBeam CBCT (TB CBCT) system has not been investigated so far. We assess the image quality and absorbed dose of TB CBCT through comparison with those of on-board imager (OBI) CBCT.Methods: The image quality was evaluated using two phantoms. A CATPHAN phantom measured the image quality parameters of the American Association of Physicists in Medicine Task Group 142 (AAPM TG-142) report. These factors are the pixel value stability and accuracy, noise, high-contrast resolution, low-contrast resolution, and image uniformity. A H2SO4 phantom was used to evaluate the image uniformity over a larger region than the CATPHAN phantom. In evaluating the absorbed dose, the radial dose profile and the patient organ doses at the prostate and rectum levels were evaluated.Results: The image quality parameters of AAPM TG-142 using TB CBCT are equal to or greater than those of OBI CBCT. In particular, the contrast-to-noise ratio with TB CBCT is 2.5 times higher than that with OBI CBCT. For the test of a large field uniformity, the maximum difference in the Hounsfield unit (HU) values between the centre and peripheral regions is within 30 HU with TB CBCT and 283 HU with OBI CBCT. The maximum absorbed dose with TB CBCT is decreased by 60%.Conclusions: We find that the image quality improved and the absorbed dose decreased with TB CBCT in comparison to those with OBI CBCT. Its image uniformity is also superior over a larger scanning range.  相似文献   

17.
PurposeAt our institute, a transit back-projection algorithm is used clinically to reconstruct in vivo patient and in phantom 3D dose distributions using EPID measurements behind a patient or a polystyrene slab phantom, respectively. In this study, an extension to this algorithm is presented whereby in air EPID measurements are used in combination with CT data to reconstruct ‘virtual’ 3D dose distributions. By combining virtual and in vivo patient verification data for the same treatment, patient-related errors can be separated from machine, planning and model errors.Methods and materialsThe virtual back-projection algorithm is described and verified against the transit algorithm with measurements made behind a slab phantom, against dose measurements made with an ionization chamber and with the OCTAVIUS 4D system, as well as against TPS patient data. Virtual and in vivo patient dose verification results are also compared.ResultsVirtual dose reconstructions agree within 1% with ionization chamber measurements. The average γ-pass rate values (3% global dose/3 mm) in the 3D dose comparison with the OCTAVIUS 4D system and the TPS patient data are 98.5 ± 1.9%(1SD) and 97.1 ± 2.9%(1SD), respectively. For virtual patient dose reconstructions, the differences with the TPS in median dose to the PTV remain within 4%.ConclusionsVirtual patient dose reconstruction makes pre-treatment verification based on deviations of DVH parameters feasible and eliminates the need for phantom positioning and re-planning. Virtual patient dose reconstructions have additional value in the inspection of in vivo deviations, particularly in situations where CBCT data is not available (or not conclusive).  相似文献   

18.
19.
PurposeTo calculate organ doses and estimate the effective dose for justification purposes in patients undergoing orthognathic treatment planning purposes and temporal bone imaging in dental cone beam CT (CBCT) and Multidetector CT (MDCT) scanners.MethodsThe radiation dose to the ICRP reference male voxel phantom was calculated for dedicated orthognathic treatment planning acquisitions via Monte Carlo simulations in two dental CBCT scanners, Promax 3D Max (Planmeca, FI) and NewTom VGi evo (QR s.r.l, IT) and in Somatom Definition Flash (Siemens, DE) MDCT scanner. For temporal bone imaging, radiation doses were calculated via MC simulations for a CBCT protocol in NewTom 5G (QR s.r.l, IT) and with the use of a software tool (CT-expo) for Somatom Force (Siemens, DE). All procedures had been optimized at the acceptance tests of the devices.ResultsFor orthognathic protocols, dental CBCT scanners deliver lower doses compared to MDCT scanners. The estimated effective dose (ED) was 0.32 mSv for a normal resolution operation mode in Promax 3D Max, 0.27 mSv in VGi-evo and 1.18 mSv in the Somatom Definition Flash. For temporal bone protocols, the Somatom Force resulted in an estimated ED of 0.28 mSv while for NewTom 5G the ED was 0.31 and 0.22 mSv for monolateral and bilateral imaging respectively.ConclusionsTwo clinical exams which are carried out with both a CBCT or a MDCT scanner were compared in terms of radiation dose. Dental CBCT scanners deliver lower doses for orthognathic patients whereas for temporal bone procedures the doses were similar.  相似文献   

20.
PurposeThe treatment planning of bilateral breast irradiation (BBI) is a challenging task. The overlapping of tangential fields is usually unavoidable without compromising the target coverage. The purpose of this study was to investigate the technical feasibility and benefits of a single isocentre volumetric modulated arc therapy (VMAT) in BBI.Methods and materialsTwo women with bilateral breast cancer were included in this case study. The first patient (Pat#1) underwent a bilateral breast-conserving surgery and sentinel lymph node biopsy. The second patient (Pat#2) underwent a bilateral ablation and axillary lymph node dissection. Planning target volumes (PTV) and organs at risk were delineated on CT images. VMAT plans were created with four (two for both sides, Pat#1) or two (one for each breast, Pat#2) separate VMAT fields. Subsequently, traditional tangential field plans were generated for each patient and the dosimetric parameters were compared.ResultsThe treatment times of the patients with VMAT were less than 15 min with daily CBCT imaging. When compared to the standard tangential field technique, the VMAT plans improved the PTV dose coverage and dose homogeneity with improved sparing of lungs and heart. With traditional field arrangement, the overlapping of the tangential fields was inevitable without significantly compromising the target coverage, whereas with VMAT the hotspots were avoided. The patients were treated with the VMAT technique and no acute skin toxicity was observed with either of the patients.ConclusionsA single isocentre VMAT technique has been implemented clinically for BBI. With the VMAT techniques, the dose delivery was quick and the hotspots in the field overlapping areas were avoided. The PTV dose coverage was superior in VMAT plans when compared with conventional tangential technique plans.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号