首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Viruses have developed various strategies to protect infected cells from apoptosis. HIV-1 infected macrophages are long-lived and considered reservoirs for HIV-1. One significant deciding factor between cell survival and cell death is glucose metabolism. We hypothesized that HIV-1 protects infected macrophages from apoptosis in part by modulating the host glycolytic pathway specifically by regulating hexokinase-1 (HK-1) an enzyme that converts glucose to glucose-6-phosphate. Therefore, we analyzed the regulation of HK-1 in HIV-1 infected PBMCs, and in a chronically HIV-1 infected monocyte-like cell line, U1. Our results demonstrate that HIV-1 induces a robust increase in HK-1 expression. Surprisingly, hexokinase enzymatic activity was significantly inhibited in HIV-1 infected PBMCs and in PMA differentiated U1 cells. Interestingly, we observed increased levels of mitochondria-bound HK-1 in PMA induced U1 cells and in the HIV-1 accessory protein, viral protein R (Vpr) transduced U937 cell derived macrophages. Dissociation of HK-1 from mitochondria in U1 cells using a pharmacological agent, clotrimazole (CTZ) induced mitochondrial membrane depolarization and caspase-3/7 mediated apoptosis. Dissociation of HK-1 from mitochondria in Vpr transduced U937 also activated caspase-3/7 activity. These observations indicate that HK-1 plays a non-metabolic role in HIV-1 infected macrophages by binding to mitochondria thereby maintaining mitochondrial integrity. These results suggest that targeting the interaction of HK-1 with the mitochondria to induce apoptosis in persistently infected macrophages may prove beneficial in purging the macrophage HIV reservoir.  相似文献   

2.
HIV-1 Nef is the regulatory protein expressed earliest and most abundantly in the infection cycle. Its expression has been correlated with a plethora of effects detectable either in producer, target, and bystander cells, as well as in the viral particles. Even if the relationship between Nef expression and apoptosis has been already matter of investigation in infected lymphocytes, whose resistance to HIV infection is however limited to few days, this remains to be investigated in cells that in vivo well resist the HIV cytopathic effect. In such an instance, we were interested in establishing whether Nef influences the apoptotic processes in primary human-monocyte-derived macrophages (MDM). High efficiency HIV-1 infection of MDM allowed us to establish that virus-expressed Nef strongly counteracts the HIV-1-induced apoptosis. The Nef mutant analysis suggested that this effect relies on the interaction with different protein partners and cell compartments. We also observed that the Nef protection to the HIV-1-induced apoptosis correlated with the hyper-phosphorylation and consequent inactivation of the pro-apoptotic Bad protein. On the basis of these results, we propose the Nef anti-apoptotic effect as a relevant part of the mechanism of the in vivo establishment of the HIV macrophage reservoirs.  相似文献   

3.
We used live-cell, real-time fluorescence imaging of co-cultures of HIV-1 infected T cells and uninfected target cells to examine the action of mitochondria during cell-to-cell transmission of the virus. We find that mitochondria of HIV infected cells enter uninfected target cells and advance viral spread. We show that human mitochondria serve as viral reservoirs and carriers and that they can move between cells. This was confirmed by our results that purified mitochondria from HIV infected cells are infectious, and that mitochondrial inhibitors block HIV transmission. Viral infection and replication in the target cells were verified by syncytial formation and HIV-1 core protein p24 production. Our results offer new insights into the cellular mechanisms of viral transmission and identify mitochondria as new host targets for viral infection.  相似文献   

4.
Most HIV-infected patients when treated with combination antiretroviral therapy achieve viral loads that are below the current limit of detection of standard assays after a few months. Despite this, virus eradication from the host has not been achieved. Latent, replication-competent HIV-1 can generally be identified in resting memory CD4+ T cells in patients with “undetectable” viral loads. Turnover of these cells is extremely slow but virus can be released from the latent reservoir quickly upon cessation of therapy. In addition, a number of patients experience transient episodes of viremia, or HIV-1 blips, even with suppression of the viral load to below the limit of detection for many years. The mechanisms underlying the slow decay of the latent reservoir and the occurrence of intermittent viral blips have not been fully elucidated. In this study, we address these two issues by developing a mathematical model that explores a hypothesis about latently infected cell activation. We propose that asymmetric division of latently infected cells upon sporadic antigen encounter may both replenish the latent reservoir and generate intermittent viral blips. Interestingly, we show that occasional replenishment of the latent reservoir induced by reactivation of latently infected cells may reconcile the differences between the divergent estimates of the half-life of the latent reservoir in the literature.  相似文献   

5.
6.
Background: HIV-1 and HIV-2 are two related viruses with distinct clinical outcomes, where HIV-1 is more pathogenic and transmissible than HIV-2. The pathogenesis of both infections is influenced by the dysregulation and deterioration of the adaptive immune system. However, their effects on the responsiveness of innate immunity are less well known. Here, we report on toll-like receptor (TLR) stimuli responsiveness in HIV-1 or HIV-2 infections. Methods: Whole blood from 235 individuals living in Guinea-Bissau who were uninfected, infected with HIV-1, infected with HIV-2, and/or infected with HTLV-I, was stimulated with TLR7/8 and TLR9 agonists, R-848 and unmethylated CpG DNA. After TLR7/8 and TLR9 stimuli, the expression levels of IL-12 and IFN-α were related to gender, age, infection status, CD4+ T cell counts, and plasma viral load. Results: Defective TLR9 responsiveness was observed in the advanced disease stage, along with CD4+ T cell loss in both HIV-1 and HIV-2 infections. Moreover, TLR7/8 responsiveness was reduced in HIV-1 infected individuals compared with uninfected controls. Conclusions: Innate immunity responsiveness can be monitored by whole blood stimulation. Both advanced HIV-1 and HIV-2 infections may cause innate immunity dysregulation.  相似文献   

7.
Highly active antiretroviral therapy (HAART) is able to suppress human immunodeficiency virus type 1 (HIV-1) to undetectable levels in the majority of patients, but eradication has not been achieved because latent viral reservoirs persist, particularly in resting CD4+ T lymphocytes. It is generally understood that HIV-1 does not efficiently infect resting CD4+ T cells, and latent infection in those cells may arise when infected CD4+ T lymphoblasts return to resting state. In this study, we found that stimulation by endothelial cells can render resting CD4+ T cells permissible for direct HIV infection, including both productive and latent infection. These stimulated T cells remain largely phenotypically unactivated and show a lower death rate than activated T cells, which promotes the survival of infected cells. The stimulation by endothelial cells does not involve interleukin 7 (IL-7), IL-15, CCL19, or CCL21. Endothelial cells line the lymphatic vessels in the lymphoid tissues and have frequent interactions with T cells in vivo. Our study proposes a new mechanism for infection of resting CD4+ T cells in vivo and a new mechanism for latent infection in resting CD4+ T cells.  相似文献   

8.
Mechanisms underlying HIV-1 latency remain among the most crucial questions that need to be answered to adopt strategies for purging the latent viral reservoirs. Here we show that HIV-1 accessory protein Vpr induces depletion of class I HDACs, including HDAC1, 2, 3, and 8, to overcome latency in macrophages. We found that Vpr binds and depletes chromatin-associated class I HDACs through a VprBP-dependent mechanism, with HDAC3 as the most affected class I HDAC. De novo expression of Vpr in infected macrophages induced depletion of HDAC1 and 3 on the HIV-1 LTR that was associated with hyperacetylation of histones on the HIV-1 LTR. As a result of hyperacetylation of histones on HIV-1 promotor, the virus established an active promotor and this contributed to the acute infection of macrophages. Collectively, HIV-1 Vpr down-regulates class I HDACs on chromatin to counteract latent infections of macrophages.  相似文献   

9.
Modeling HIV persistence, the latent reservoir, and viral blips   总被引:1,自引:0,他引:1  
HIV-1 eradication from infected individuals has not been achieved with the prolonged use of highly active antiretroviral therapy (HAART). The cellular reservoir for HIV-1 in resting memory CD4+ T cells remains a major obstacle to viral elimination. The reservoir does not decay significantly over long periods of time but is able to release replication-competent HIV-1 upon cell activation. Residual ongoing viral replication may likely occur in many patients because low levels of virus can be detected in plasma by sensitive assays and transient episodes of viremia, or HIV-1 blips, are often observed in patients even with successful viral suppression for many years. Here we review our current knowledge of the factors contributing to viral persistence, the latent reservoir, and blips, and mathematical models developed to explore them and their relationships. We show how mathematical modeling has helped improve our understanding of HIV-1 dynamics in patients on HAART and of the quantitative events underlying HIV-1 latency, reservoir stability, low-level viremic persistence, and emergence of intermittent viral blips. We also discuss treatment implications related to these studies.  相似文献   

10.
The ability of the human immunodeficiency virus type 1 (HIV-1) to establish latent infections serves as a major barrier for its cure. This process could occur when its host cells undergo apoptosis, but it is uncertain whether the components of the apoptotic pathways affect viral latency. Using the susceptible Jurkat cell line, we investigated the relationship of apoptosis-associated components with HIV-1 DNA levels using the sensitive real-time PCR assay. Here, we found that the expression of proapoptotic proteins, including Fas ligand (FasL), FADD, and p53, significantly decreased HIV-1 viral DNA in cells. In contrast, the expression of antiapoptotic molecules, such as FLIP, Bcl2, and XIAP, increased the levels of viral DNA. Furthermore, promoting cellular antiapoptotic state via the knockdown of Bax with siRNA and FADD with antisense mRNA or the treatment with the Caspase-3 inhibitor, Z-DEVD, also raised viral DNA. We also simultaneously measured viral RNA from supernatants of these cell cultures and found that HIV-1 latency is inversely proportional to viral replication. Furthermore, we demonstrated that HIV-1-infected cells that underwent the transient expression of FLIP- or XIAP-induced viral latency would then produce an increased level of viral RNA upon the reversal of these antiapoptotic effects via PMA treatment compared to LacZ control cells. Taken together, these data suggest that HIV-1 infection could be adapted to employ or even manipulate the cellular apoptotic pathway to its advantage: when the host cell remains in a pro-apoptotic state, HIV-1 favors active replication, while when the host cell prefers an anti-apoptotic state, the virus establishes viral latency and promotes latent reservoir seeding in a way which would enhance viral replication and cytopathogenesis when the cellular conditions shift to encourage the productive infection phase.  相似文献   

11.
12.
Huang L  Ho P  Yu J  Zhu L  Lee KH  Chen CH 《PloS one》2011,6(10):e26677
Highly active antiretroviral therapy (HAART) has offered a promising approach for controlling HIV-1 replication in infected individuals. However, with HARRT, HIV-1 is suppressed rather than eradicated due to persistence of HIV-1 in latent viral reservoirs. Thus, purging the virus from latent reservoirs is an important strategy toward eradicating HIV-1 infection. In this study, we discovered that the daphnane diterpene gnidimacrin, which was previously reported to have potent anti-cancer cell activity, activated HIV-1 replication and killed persistently-infected cells at picomolar concentrations. In addition to its potential to purge HIV-1 from latently infected cells, gnidimacrin potently inhibited a panel of HIV-1 R5 virus infection of peripheral blood mononuclear cells (PBMCs) at an average concentration lower than 10 pM. In contrast, gnidimacrin only partially inhibited HIV-1 ×4 virus infection of PBMCs. The strong anti-HIV-1 R5 virus activity of gnidimacrin was correlated with its effect on down-regulation of the HIV-1 coreceptor CCR5. The anti-R5 virus activity of gnidimacrin was completely abrogated by a selective protein kinase C beta inhibitor enzastaurin, which suggests that protein kinase C beta plays a key role in the potent anti-HIV-1 activity of gnidimacrin in PBMCs. In summary, these results suggest that gnidimacrin could activate latent HIV-1, specifically kill HIV-1 persistently infected cells, and inhibit R5 viruses at picomolar concentrations.  相似文献   

13.
HIV-1 infection is efficiently controlled by combination anti-retroviral therapy (cART). However, despite preventing disease progression, cART does not eradicate virus infection which persists in a latent form for an individual’s lifetime. The latent reservoir comprises memory CD4+ T lymphocytes, macrophages, and dendritic cells; however, for the most part, the reservoir is generated by virus entry into activated CD4+ T lymphocytes committed to return to a resting state, even though resting CD4+ T lymphocytes can be latently infected as well. The HIV-1 reservoir is not recognized by the immune system, is quite stable, and has the potential to re-seed systemic viremia upon cART interruption. Viral rebound can occur even after a long period of cART interruption. This event is most likely a consequence of the extended half-life of the HIV-1 reservoir, the maintenance of which is not clearly understood. Several recent studies have identified extracellular vesicles (EVs) as a driving force contributing to HIV-1 reservoir preservation. In this review, we discuss recent findings in the field of EV/HIV-1 interplay, and then propose a mechanism through which EVs may contribute to HIV-1 persistence despite cART. Understanding the basis of the HIV-1 reservoir maintenance continues to be a matter of great relevance in view of the limitations of current strategies aimed at HIV-1 eradication.  相似文献   

14.
HIV infection is not cleared by antiretroviral drugs due to the presence of latently infected cells that are not eliminated with current therapies and persist in the blood and organs of infected patients. New compounds to activate these latent reservoirs have been evaluated so that, along with HAART, they can be used to activate latent virus and eliminate the latently infected cells resulting in eradication of viral infection. Here we describe three novel diterpenes isolated from the sap of Euphorbia tirucalli, a tropical shrub. These molecules, identified as ingenols, were modified at carbon 3 and termed ingenol synthetic derivatives (ISD). They activated the HIV-LTR in reporter cell lines and human PBMCs with latent virus in concentrations as low as 10 nM. ISDs were also able to inhibit the replication of HIV-1 subtype B and C in MT-4 cells and human PBMCs at concentrations of EC50 0.02 and 0.09 µM respectively, which are comparable to the EC50 of some antiretroviral currently used in AIDS treatment. Control of viral replication may be caused by downregulation of surface CD4, CCR5 and CXCR4 observed after ISD treatment in vitro. These compounds appear to be less cytotoxic than other diterpenes such as PMA and prostratin, with effective dose versus toxic dose TI>400. Although the mechanisms of action of the three ISDs are primarily attributed to the PKC pathway, downregulation of surface receptors and stimulation of the viral LTR might be differentially modulated by different PKC isoforms.  相似文献   

15.
Cationic polymers are known to have potent activity against bacteria, but their effects on viral activity have been little studied. We investigated the effect of one such polymer, polyethyleneimine (PEI), on HIV-1 infection. Although virus-cell binding was significantly inhibited by PEI, HIV-1 infection in human T-cell lines such as MT-4 and MOLT-4 was accelerated conversely when the drug treatment was carried out, after the virus had attached to the cells or PEI was simultaneously added to the virus and cell culture system. This paradoxical effect of PEI on HIV-1 infection was examined using HIV-1 chronically infected cells (MOLT-4/HIV-1). Dissociation of the glycoprotein gp120 (as revealed by exposure of transmembrane protein gp41) from MOLT-4/HIV-1 cells and the resultant fusion of these cells was shown to be induced by the addition of PEI. Accordingly, it was suggested that the binding inhibition of HIV-1 to CD4-positive cells by PEI was due to the shedding of gp120 from HIV-1 particles, and this PEI rather promoted membrane fusion between the virus and cells leading to the enhancement of HIV-1 infection. Similarly, dissociation of gp120 from MOLT-4/HIV-1 was also induced by sCD4. The effect of these reagents on changes in membrane fluidity was evaluated by polarization (p) measurements, and it was observed that the acceleration of membrane fluidity occurred only in the PEI system. Therefore, it is likely that PEI accelerates HIV-1 infection by facilitating virus entry into the host cells through an increase in membrane fluidity.  相似文献   

16.
The appearance of human immunodeficiency virus type 1 (HIV-1) plasma viremia is associated with progression to symptomatic disease and CD4+ T cell depletion. To locate the source of systemic viremia, this study employed a novel method to trace HIV-1 infection in vivo. We created JRCSFξnef, a pool of infectious HIV-1 (strain JR-CSF) with highly mutated nef gene regions by random mutagenesis PCR and infected this mutated virus pool into both Jurkat-CCR5 cells and hematopoietic stem cell-transplanted humanized mice. Infection resulted in systemic plasma viremia in humanized mice and viral RNA sequencing helped us to identify multiple lymphoid organs such as spleen, lymph nodes, and bone marrow but not peripheral blood cells as the source of systemic viremia. Our data suggest that this method could be useful for the tracing of viral trafficking in vivo.  相似文献   

17.
Exosomes are nano-sized vesicles produced by healthy and virus-infected cells. Exosomes derived from infected cells have been shown to contain viral microRNAs (miRNAs). HIV-1 encodes its own miRNAs that regulate viral and host gene expression. The most abundant HIV-1-derived miRNA, first reported by us and later by others using deep sequencing, is the trans-activation response element (TAR) miRNA. In this study, we demonstrate the presence of TAR RNA in exosomes from cell culture supernatants of HIV-1-infected cells and patient sera. TAR miRNA was not in Ago2 complexes outside the exosomes but enclosed within the exosomes. We detected the host miRNA machinery proteins Dicer and Drosha in exosomes from infected cells. We report that transport of TAR RNA from the nucleus into exosomes is a CRM1 (chromosome region maintenance 1)-dependent active process. Prior exposure of naive cells to exosomes from infected cells increased susceptibility of the recipient cells to HIV-1 infection. Exosomal TAR RNA down-regulated apoptosis by lowering Bim and Cdk9 proteins in recipient cells. We found 104–106 copies/ml TAR RNA in exosomes derived from infected culture supernatants and 103 copies/ml TAR RNA in the serum exosomes of highly active antiretroviral therapy-treated patients or long term nonprogressors. Taken together, our experiments demonstrated that HIV-1-infected cells produced exosomes that are uniquely characterized by their proteomic and RNA profiles that may contribute to disease pathology in AIDS.  相似文献   

18.
Human memory and naive CD4 T cells can mainly be identified by the reciprocal expression of the CD45RO or CD45RA isoforms. In HIV-1 infection, blood CD45RO memory CD4 T cells are preferentially infected and serve as a major viral reservoir. The molecular mechanism dictating this differential susceptibility to HIV-1 remains largely obscure. Here, we report that the different susceptibility of memory and naive T cells to HIV is not determined by restriction factors such as Apobec3G or BST2. However, we observed a phenotypic distinction between human CD45RO and CD45RA resting CD4 T cells in their cortical actin density and actin dynamics. CD45RO CD4 T cells possess a higher cortical actin density and can be distinguished as CD45RO+Actinhigh. In contrast, CD45RA T cells are phenotypically CD45RA+Actinlow. In addition, the cortical actin in CD45RO memory CD4 T cells is more dynamic and can respond to low dosages of chemotactic induction by SDF-1, whereas that of naive cells cannot, despite a similar level of the chemokine receptor CXCR4 present on both cells. We further demonstrate that this difference in the cortical actin contributes to their differential susceptibility to HIV-1; resting memory but not naive T cells are highly responsive to HIV-mediated actin dynamics that promote higher levels of viral entry and early DNA synthesis in resting memory CD4 T cells. Furthermore, transient induction of actin dynamics in resting naive T cells rescues HIV latent infection following CD3/CD28 stimulation. These results suggest a key role of chemotactic actin activity in facilitating HIV-1 latent infection of these T cell subsets.  相似文献   

19.
Abstract Fibronectin (FN) is present in soluble and matrix forms in various body fluids and tissues, and has been shown to bind to several pathogens, including viruses. The interaction of FN with viral proteins of human immunodeficiency virus (HIV-1) was investigated by immunofluorescence technique using a cell line chronically infected with HIV-1 (H9-V). The results of this study showed that FN binds to HIV-1 infected cells. especially at FN concentration of 5 μg/ml. In addition, FN-pentapeptide has shown the ability to bind to HIV-1 infected cells. On the other hand, preincubation with antibodies against FN abolished the binding of FN to HIV-1 infected cells. Finally, FN has shown to bind to HIV-1 glycoproteins, including gp41 and pg120. In contrast, no binding to HIV-1 core proteins, including p15 and p24, was noted. We suggest that FN, in binding HIV-1 particles, may reduce viremia and thus may be involved in the clearance of viral proteins from the cells.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号