首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Selenium distribution in the bean plant ( Phaseolus vulgaris L. cv. Contender) was studied using autoradiographs of the whole plant and of sections of organs. A few hours after the incubation of the roots with (75Se) selenate, a major part of the selenate accumulates in the roots, while the fraction conveyed towards the aerial organs is unevenly distributed, resulting in accumulation of 75Se in the young leaves, the buds and the epicotyl. This distribution results from a general translocation of selenium through the xylem. A secondary process of redistribution is then immediately linked to the transport of 75Se labeled products (such as seleno-amino acids) in the phloem from the mature leaves. A similar pattern of translocation of selenium was found in the field bean ( Vicia faba L. cv. Aguadulce) by using aphids that insert their stylets into the sieve tubes. Measurement of the radioactivity of these insects shows that the 75Se content of the phloem sap was reduced to low levels when all the mature leaves were excised. The mature leaves thus serve as relaying organs, redistributing the selenium which is carried in by the movement of water through the xylem.  相似文献   

2.
Modification of external morphology and internal structure of plants is a key feature of their successful survival in extreme habitats. They adapt to arid habitats not only by modifying their leaves, but also show several modifications in their conducting system. Therefore, the present study is aimed to investigate the pattern of secondary growth in Leptadenia pyrotechnica (Forssk.) Decne., (Asclepiadaceae), one such species growing in Kachchh district, an arid region of Gujarat State. A single ring of vascular cambium, responsible for radial growth, divided bidirectionally and formed the secondary xylem centripetally and the phloem centrifugally. After a short period of secondary xylem differentiation, small arcs of cambium began to form secondary phloem centripetally instead of secondary xylem. After a short duration of such secondary phloem formation, these segments of cambium resumed their normal function to produce secondary xylem internally. Thus, the phloem strands became embedded within the secondary xylem and formed interxylary phloem islands. Such a recurrent behavior of the vascular cambium resulted in the formation of several patches of interxylary phloem islands. In thick stems the earlier formed non-conducting interxylary phloem showed heavy accumulation of callose on the sieve plates followed by their crushing in response to the addition of new sieve elements. Development of intraxylary phloem is also observed from the cells situated on the pith margin. As secondary growth progresses further, small arcs of internal cambium get initiated between the protoxylem and intraxylary phloem. In the secondary xylem, some of the vessels are exceptionally thick-walled, which may be associated with dry habitats in order to protect the vessel from collapsing during the dryer part of the year. The inter- and intraxylary phloem may also be an adaptive feature to prevent the sieve elements to become non-conducting during summer when the temperature is much higher.  相似文献   

3.
4.
Analyses of successively collected fractions of phloem exudate of Yucca flaccida, and of Yucca fruits picked at various stages of growth, together with experiments on transpiration from fruits, have led to the following conclusions:
  • 1 During fruit growth potassium, sodium, magnesium, phosphorus compounds, and nitrogenous substances are delivered to the fruit by both the xylem and the phloem. These solutes move also easily in radial direction between the xylem and phloem part of the vascular bundles. Actually they can be regarded as constituents of one stream of nutrients.
  • 2 The overall efficiency of conversion of vascular-fluid dry matter into mature-fruit dry matter is approximately 61 %.
  • 3 During its whole period of growth the fruit transpires an amount of water vapour of at least 6 times its own mature fresh weight.
  • 4 Estimates could be made for the relative contributions of xylem and phloem in the delivery of fruit constituents. 18% of the water imported by the fruit during its growth had a phloem, 82 % a xylem origin; 89% is transpired, 11 % retained as a fruit constituent. At least 94 % of the dry matter, 69% of the potassium, 56% of the magnesium, 26% of the phosphorus, and 7% of the calcium of the average fruit have been delivered by the phloem. The translocation of nitrogenous substances occurs probably partly in a more indirect way with temporary storage in inflorescence parenchyma.
  相似文献   

5.
We investigated the degree to which developing fruit compete directly with leaves for mineral nutrients, e.g. phosphate coming up from the roots. When soybean ( Glycine max (L.) Merrill cv. Anoka) explants cut at mid-late podfill were given a 15-min pulse of 32Pi via the cut stem and then transferred to distilled water, 75% of the 32P accumulated in the leaves and 21% in stem and petiole during the first hour. The amount of 32P entering the seeds was low (1%) initially, but thereafter increased to 30% in 48 h. An accumulation of 32P in the seed coats preceded its entry into the embryos. Disruption (with hot steam) of the phloem between the leaf and the pods after pulse labelling indicated that more than 80% of the 32Pi pulse moved to the leaf before redistribution to the pods. Increasing "sink" size by adjusting the pod load from 1 to 2–3 did not increase the 32P accumulated by the pods proportionally. Conversely, excision of the seeds after pulse labelling did not prevent translocation of 32P out of the leaves. These results suggest that the rate of transport of phosphate to the pods at mid-late podfill is controlled primarily by factors in the leaves. The results are consistent with the observation that the relative size of the sink (pod load) does not regulate leaf senescence.  相似文献   

6.
The quantification of cambial growth over short time periods has been hampered by problems to discern between growth and the swelling and shrinking of a tree stem. This paper presents a model, which separates cambial growth and reversible water‐potential induced diurnal changes from simultaneously measured whole stem and xylem radial variations, from field‐measured Scots pine trees in Finland. The modelled growth, which includes osmotic concentration changes, was compared with (direct) dendrometer measurements and microcore samples. In addition, the relationship of modelled growth and dendrometer measurements to environmental factors was analysed. The results showed that the water‐potential induced changes of tree radius were successfully separated from stem growth. Daily growth predicted by the model exhibited a high correlation with the modelled daily changes of osmotic concentration in phloem, and a temperature dependency in early summer. Late‐summer growth saw higher dependency on water availability and temperature. Evaluation of the model against dendrometer measurements showed that the latter masked a true environmental signal in stem growth due to water‐potential induced changes. The model provides better understanding of radial growth physiology and offers potential to examine growth dynamics and changes due to osmotic concentration, and how the environment affects growth.  相似文献   

7.
8.
Stem anatomy and development of medullary phloem are studied in the dwarf subshrub Cressa cretica L. (Convolvulaceae). The family Convolvulaceae is dominated by vines or woody climbers, which are characterized by the presence of successive cambia, medullary- and included phloem, internal cambium and presence of fibriform vessels. The main stems of the not winding C. cretica shows presence of medullary (internal) phloem, internal cambium and fibriform vessels, whereas successive cambia and included phloem are lacking. However, presence of fibriform vessels is an unique feature which so far has been reported only in climbing members of the family. Medullary phloem develops from peri-medullary cells after the initiation of secondary growth and completely occupies the pith region in fully grown mature plants. In young stems, the cortex is wide and formed of radial files of tightly packed small and large cells without intercellular air spaces. In thick stems, cortical cells become compressed due to the pressure developed by the radial expansion of secondary xylem, a feature actually common to halophytes. The stem diameter increases by the activity of a single ring of vascular cambium. The secondary xylem is composed of vessels (both wide and fibriform), fibres, axial parenchyma cells and uni-seriate rays. The secondary phloem consists of sieve elements, companion cells, axial and ray parenchyma cells. In consequence, Cressa shares anatomical characteristics of both climbing and non-climbing members. The structure of the secondary xylem is correlated with the habit and comparable with that of other climbing members of Convolvulaceae.  相似文献   

9.
10.
Detached wheat shoots (ear with peduncle and flag leaf) were incubated for 4 d in a solution containing 1 mM RbCl and 1 mM SrCl2 as well as 10, 40 or 160 μM NiCl2 and CoCl2. The phloem of some plants was interrupted by steam-girdling the stem below the ear to distinguish between xylem and phloem transport. The phloem-immobile Sr flowed mainly to the leaf lamina and to the glumes via the xylem. The Sr transport was not sensitive to steam-girdling. In contrast, the phloem-mobile Rb accumulated during the incubation time mainly in the stem and the leaf sheath. The Rb transport to the grains was impaired by steam-girdling as well as by elevated Ni and Co concentrations in the incubation solution indicating that Rb was transported via the phloem to the maturing grains and that this transport was affected by the heavy metals. Ni was removed more efficiently from the xylem in the peduncle than Co (but far less efficiently than Rb). It became evident that the two heavy metals can also be transferred from the xylem to the phloem in the stem of wheat and reach the maturing grains via the phloem. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

11.
十齿花次生木质部和次生韧皮部的解剖学研究   总被引:15,自引:0,他引:15  
对十齿花的次生木质部和次生韧皮部结构进行了观察,并与卫矛科其它8属植物的木质部作子下齿花次生木质部和次生韧皮部的主要特点是;木质部导管分子相对较长,其末端倾斜,具梯状穿孔板,由14个横隔组成。纤维和纤维管胞均有横隔。韧皮部筛管分子相对较短,其端壁水平或略倾斜,具单筛板,缺少纤维。  相似文献   

12.
Cytokinins, a group of mobile phytohormones, play an important role in plant growth and development, and their activity is finely controlled by environmental factors in the control of morphogenic and metabolic adaptations. Inorganic nitrogen sources, such as nitrate, are a major factor regulating gene expression of adenosine phosphate-isopentenyltransferase (IPT), a key enzyme of cytokinin biosynthesis. Modulation of IPT and macronutrient transporter gene expression in response to nitrate, sulphate and phosphate, and cytokinin-dependent repression of the transporter genes suggest that cytokinins play a critical role in balancing acquisition and distribution of macronutrients. Biased distribution of trans-zeatin (tZ)-type cytokinins in xylem and N(6)-(Delta(2)-isopentenyl)adenine (iP)-type cytokinins in phloem saps suggest that, in addition to acting as local signals, cytokinins communicate acropetal and systemic long-distance signals, and that structural side chain variations mediate different biological messages. The compartmentalization of tZ- and iP-type cytokinins implies the involvement of a selective transport system. Recent studies have raised the possibility of subsets of the purine permease family as a transporter of cytokinin nucleobases and equilibrative nucleoside transporters (ENT) for cytokinin nucleosides. These biochemical and transgenic data suggest that AtENT6, an Arabidopsis ENT, could also participate in cytokinin nucleoside transport with a preference for iP riboside in vascular tissue.  相似文献   

13.
14.
The anatomy of secondary xylem and secondary phloem in Dipentodon sinicus Dunn a precious and protected plant in China was studied, and compared with the wood anatomy of 8 other genera in Celastraceae. The main characteristics of this genus were described as follows: vessel members length were relatively long with scalariform perforations in oblique end walls, which were formed by 14 (9--28) bars. Intervessel pits possessed scalariform pattern. Libriform fibres and tracheid-fibres were septate. The sieve tube elements of the secondary phloem were relatively shorter, with simple sieve plates in the slightly inclined to almost horizontal end walls. There was no obvious boundary between the functional and non-functional phloem. In the Baileyan sense, the secondary xylem possessed a lower level of specialization, and displayed an obviously primitive and conservative character. In contrast, the secondary phloem possessed a higher level of specialization and displayed advanced characters. Therefore, the phylogenetic evolution between xylem and phloem was not synchronous in this genus. The result provided a novel pattern in the development of xylem and phloem structure which has not been noticed before.  相似文献   

15.
Anoxic conditions should hamper the transport of sugar in the phloem, as this is an active process. The canopy is a carbohydrate source and the roots are carbohydrate sinks. By fumigating the shoot with N2 or flooding the rhizosphere, anoxic conditions in the source or sink, respectively, were induced. Volume flow, velocity, conducting area and stationary water of the phloem were assessed by non‐invasive magnetic resonance imaging (MRI) flowmetry. Carbohydrates and δ13C in leaves, roots and phloem saps were determined. Following flooding, volume flow and conducting area of the phloem declined and sugar concentrations in leaves and in phloem saps slightly increased. Oligosaccharides appeared in phloem saps and after 3 d, carbon transport was reduced to 77%. Additionally, the xylem flow declined and showed finally no daily rhythm. Anoxia of the shoot resulted within minutes in a reduction of volume flow, conductive area and sucrose in the phloem sap decreased. Sugar transport dropped to below 40% by the end of the N2 treatment. However, volume flow and phloem sap sugar tended to recover during the N2 treatment. Both anoxia treatments hampered sugar transport. The flow velocity remained about constant, although phloem sap sugar concentration changed during treatments. Apparently, stored starch was remobilized under anoxia.  相似文献   

16.
The mobility of Cd in potato plants (Solanum tuberosum) was examined using both short‐term radioisotopic labelling with 109Cd and long‐term growth experiments in soil supplemented with Cd, with an emphasis on the pathways through which Cd is taken up by tubers. Split‐pot experiments showed that tubers and their associated stolons and stolon roots contribute only a minor fraction to the overall Cd absorption by the plant. Most of the Cd was absorbed by the basal roots. 109Cd absorbed from the soil was rapidly exported to other parts of the plant, especially the stem, with significant amounts appearing in the tubers within 30 h. Application of 109Cd to leaves showed that Cd can be rapidly distributed via the phloem to all tissues. The results suggest that unlike Ca, Cd has high mobility in plants in both xylem and phloem, and that stems may have an important role in transfer between these two pathways.  相似文献   

17.
Boron mobility in plants   总被引:2,自引:0,他引:2  
Boron (B) is a micronutrient essential for the normal growth of monocots, dicots. conifers, ferns and several diatom species. Boron deficiency causes many anatomical, physiological and biochemical changes, making it difficult to identify a primary role for it: however, evidence does indicate that B is involved at the membrane level. Whatever the role(s). it likely involves the complexation of B with compounds containing cis -hydroxyl groups. Boron deficiency in crops is more widespread than deficiency of any other micronutrient. Nutritional disorders in vegetables include brown heart in rutabaga, turnip and radish roots, and hollow stem in cauliflower and broccoli. The occurrence of these disorders even when B is in ample supply suggests that they are physiological in nature and related to the mobility of B in the plant. The distribution of B is related to the loss of water from shoot organs, suggesting that it is primarily xylem-mobile with limited retranslocation in phloem. However, research has shown that B is present in the phloem, albeit at low concentration, and that it is generally retranslocated in the phloem to satisfy the demands of sink organs that do not readily transpire. Further progress into the mechanism(s) of B retranslocation will be facilitated by insights into the role and metabolism of B in plants.  相似文献   

18.
Stem flattening in Rhynchosia pyramidalis (Fabaceae) is achieved by the development of crescent-shaped successive cambia on two opposite sides of the stem (referred hereafter as distal side). Other lateral sides of the stem (adjacent to supporting host and its opposite side, referred as proximal sides) usually possess single cambium. In the young stems, parenchymatous cells located outside to protophloem of distal side dedifferentiate and develop small segments of cambium. Concomitant to bidirectional differentiation of the secondary xylem and phloem, these newly developed cambial segments also extend in tangential directions. Differential activity of newly developed crescent-shaped cambial segments deposits more secondary xylem at median position as compared to their terminal ends of the stem on distal side; consequently, it pushes the cambial segment outside, thus resulting in crescent-shaped arcs of the cambia only on two opposite sides. After the production of 1–2 mm of secondary xylem, they cease to divide and new segments of cambial arc develop on the same side in a similar fashion. Such repeated behaviour of successive cambia development consequently leads to the formation of tangentially flat stems. The secondary xylem is diffusely porous with indistinct growth rings and is composed of vessels (wide and narrow), fibres, axial ray parenchyma cells, while phloem consisted of sieve elements, companion cells, axial and ray parenchyma. Rays in both xylem and phloem are uni- to multiseriate and heterocellular. The structure of secondary xylem and development of successive cambia is correlated with climbing habit.  相似文献   

19.
In this paper, we present an integrated account of the diurnal variation in the stable isotopes of water (δD and δ18O) and dry matter (δ15N, δ13C, and δ18O) in the long‐distance transport fluids (xylem sap and phloem sap), leaves, pod walls, and seeds of Lupinus angustifolius under field conditions in Western Australia. The δD and δ18O of leaf water showed a pronounced diurnal variation, ranging from early morning minima near 0‰ for both δD and δ18O to early afternoon maxima of 62 and 23‰, respectively. Xylem sap water showed no diurnal variation in isotopic composition and had mean values of ?13·2 and ?2·3‰ for δD and δ18O. Phloem sap water collected from pod tips was intermediate in isotopic composition between xylem sap and leaf water and exhibited only a moderate diurnal fluctuation. Isotopic compositions of pod wall and seed water were intermediate between those of phloem and xylem sap water. A model of average leaf water enrichment in the steady state (Craig & Gordon, pp. 9–130 in Proceedings of a Conference on Stable Isotopes in Oceanographic Studies and Palaeotemperatures, Lischi and Figli, Pisa, Italy, 1965; Dongmann et al., Radiation and Environmental Biophysics 11, 41–52, 1974; Farquhar & Lloyd, pp. 47–70 in Stable Isotopes and Plant Carbon–Water Relations, Academic Press, San Diego, CA, USA, 1993) agreed closely with observed leaf water enrichment in the morning and early afternoon, but poorly during the night. A modified model taking into account non‐steady‐state effects (Farquhar and Cernusak, unpublished) gave better predictions of observed leaf water enrichments over a full diurnal cycle. The δ15N, δ13C, and δ18O of dry matter varied appreciably among components. Dry matter δ15N was highest in xylem sap and lowest in leaves, whereas dry matter δ13C was lowest in leaves and highest in phloem sap and seeds, and dry matter δ18O was lowest in leaves and highest in pod walls. Phloem sap, leaf, and fruit dry matter δ18O varied diurnally, as did phloem sap dry matter δ13C. These results demonstrate the importance of considering the non‐steady‐state when modelling biological fractionation of stable isotopes in the natural environment.  相似文献   

20.
Phloem loading in peach: Symplastic or apoplastic?   总被引:2,自引:0,他引:2  
Sorbitol and sucrose are the two main soluble carbohydrates in mature peach leaves. Both are translocated in the phloem, in peach as in other rosaceous trees. The respective role of these two soluble carbohydrates in the leaf carbon budget, and their phloem loading pathway, remain poorly documented. Though many studies have been carried out on the compartmentation and export of sucrose in sucrose-transporting species, far less is known about sorbitol in species transporting both sucrose and sorbitol. Sorbitol and sucrose concentrations were measured in several tissues and in sap, in 2-month-old peach (Prunus persica L. Batsch) seedlings, i.e. leaf blade, leaf main vein, petiole, xylem sap collected using a pressure bomb, and phloem sap collected by aphid stylets. The sorbitol to sucrose molar ratio depended on the tissue or sap, the highest value (about 7) found in the leaf main vein. Sorbitol concentration in the phloem sap was about 560 mM, whereas that of sucrose was about 140 mM. The lowest sorbitol and sucrose concentrations were observed in xylem sap collected from the shoot. The volume of the leaf apoplast, estimated by infiltration with 3H-inulin, represented about 17% of the leaf blade water content. This volume was used to calculate a global intracellular concentration for each carbohydrate in the leaf blade. Following these simplifying assumptions, the calculated concentration gradient between the leaf's intracellular compartment and phloem sap is nil for sorbitol and could thus allow for the symplastic loading of the phloem of this alditol. However, infiltration of 14C-labelled source leaves with 2 mMp-chloromercuribenzenesulfonic acid (PC-MBS), a potent inhibitor of the sucrose carrier responsible for phloem loading in sucrose-transporting plants, had a significant effect on the exudation of both labelled sucrose and sorbitol from the phloem. Therefore, in peach, which is a putative symplastic loader according to minor vein anatomy and sorbitol concentration gradients, apoplastic loading may predominate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号