首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Twelve lactating Holstein cows in 2nd lactation were allocated randomly, six each, to two feeding treatments: high concentrate (1 kg dairy concentrate to 2 kg milk produced) and low concentrate (1 kg dairy concentrate to 4 kg milk produced) from 7 to 106 days postcalving. Forage and water were provided adalibitum. Milk and butter fat yields and rectal temperatures were examined in relation to 9 weather variables (minimum, maximum and mean temperatures, relative humidity, temperature-humidity index (THI), radiation, wind velocity and mean temperature of the previous day). Averages for milk yield, fat yield and rectal temperature were respectively 20.4 kg, 0.7 kg and 38.9°C for the high concentrate treatment and 18.4 kg, 0.6 kg and 38.6°C for the low concentrate treatment. Weather conditions accounted for 5.6%, 0.8% and 10.8% of the day to day variation in milk yield, fat yield and rectal remperature, respectively, for the high concentrate group and 29.4%, 9.7% and 0.6%, respectively, for the low concentrate group. Only measures of ambient temperature, especially mean temperature, were closely associated with these traits.  相似文献   

2.
Tropical and sub-tropical climates are characterized by high temperature and humidity, during at least part of the year. Consequently, heat stress is common in Holstein cattle and productive and reproductive losses are frequent. Our objectives were as follows: (1) to quantify losses in production and quality of milk due to heat stress; (2) to estimate genetic correlations within and between milk yield (MY) and milk quality traits; and (3) to evaluate the trends of genetic components of tolerance to heat stress in multiple lactations of Brazilian Holstein cows. Thus, nine analyses using two-trait random regression animal models were carried out to estimate variance components and genetic parameters over temperature–humidity index (THI) values for MY and milk quality traits (three lactations: MY×fat percentage (F%), MY×protein percentage (P%) and MY×somatic cell score (SCS)) of Brazilian Holstein cattle. It was demonstrated that the effects of heat stress can be harmful for traits related to milk production and milk quality of Holstein cattle even though most herds were maintained in a modified environment, for example, with fans and sprinklers. For MY, the effect of heat stress was more detrimental in advanced lactations (−0.22 to −0.52 kg/day per increase of 1 THI unit). In general, the mean heritability estimates were higher for lower THI values and longer days in milk for all traits. In contrast, the heritability estimates for SCS increased with increasing THI values in the second and third lactation. For each trait studied, lower genetic correlations (different from unity) were observed between opposite extremes of THI (THI 47 v. THI 80) and in advanced lactations. The genetic correlations between MY and milk quality trait varied across the THI scale and lactations. The genotype×environment interaction due to heat stress was more important for MY and SCS, particularly in advanced lactations, and can affect the genetic relationship between MY and milk quality traits. Selection for higher MY, F% or P% may result in a poor response of the animals to heat stress, as a genetic antagonism was observed between the general production level and specific ability to respond to heat stress for these traits. Genetic trends confirm the adverse responses in the genetic components of heat stress over the years for milk production and quality. Consequently, the selection of Holstein cattle raised in modified environments in both tropical and sub-tropical regions should take into consideration the genetic variation in heat stress.  相似文献   

3.
The dairy industry in regions with moderate climates, such as Central Europe, will be increasingly challenged in the future by climate change. The problem of heat stress will especially affect dairy husbandry in naturally ventilated barns (NVB). The approach of the study was to determine a heat stress threshold of the average daily temperature-humidity index (THI) that results in changes in the daily rumination time (RT) of lactating, high-yielding cows. The data set was composed of a high sample size of 183 cows and long-duration measurements of 21240 daily observations over two years from June 2015 to May 2017, which were collected in an NVB in Groβ Kreutz, Germany. The THI was calculated in 5-min intervals by data from several sensors in different positions inside the barn. Additionally, every cow from the herd of an average of 53 cows in the experimental procedure was wearing a neck collar with a Lely Qwes HR system that provided the RT 24 h a day (12 2-h recordings were summarized). The study showed that heat stress also negatively influenced RT in moderate climates. The heat stress threshold of 52 THI was determined by broken-stick regression and indicated changes of RT of lactating dairy cows in Germany. During the experimental period, the heat stress threshold for RT was reached from April to September for up to 720 h per month. The changes in RT to the heat stress threshold will be affected by cows' characteristics. Therefore, we considered several cow-related factors, such as milk yield (MY), lactation number (LN), lactation stage (days in milk, or DIM) and pregnancy stage (P) to better understand cows’ individual reactions to heat stress. Multiparous, high-yielding cows in later lactation stages are potentially more strongly affected than other cows.  相似文献   

4.
A retrospective study on seasonal variations in the characteristics of cow’s milk and temperature–humidity index (THI) relationship was conducted on bulk milk data collected from 2003 to 2009. The THI relationship study was carried out on 508 613 bulk milk data items recorded in 3328 dairy farms form the Lombardy region, Italy. Temperature and relative humidity data from 40 weather stations were used to calculate THI. Milk characteristics data referred to somatic cell count (SCC), total bacterial count (TBC), fat percentage (FA%) and protein percentage (PR%). Annual, seasonal and monthly variations in milk composition were evaluated on 656 064 data items recorded in 3727 dairy farms. The model highlighted a significant association between the year, season and month, and the parameters analysed (SCC, TBC, FA%, PR%). The summer season emerged as the most critical season. Of the summer months, July presented the most critical conditions for TBC, FA% and PR%, (52 054±183 655, 3.73%±0.35% and 3.30%±0.15%, respectively), and August presented higher values of SCC (369 503±228 377). Each milk record was linked to THI data calculated at the nearest weather station. The analysis demonstrated a positive correlation between THI and SCC and TBC, and indicated a significant change in the slope at 57.3 and 72.8 maximum THI, respectively. The model demonstrated a negative correlation between THI and FA% and PR% and provided breakpoints in the pattern at 50.2 and 65.2 maximum THI, respectively. The results of this study indicate the presence of critical climatic thresholds for bulk tank milk composition in dairy cows. Such indications could facilitate the adoption of heat management strategies, which may ensure the health and production of dairy cows and limit related economic losses.  相似文献   

5.
The severity of heat stress conditions in high-yielding dairy cows is currently underestimated. The present study aimed to determine the heat load threshold of the temperature-humidity index (THI) on physiological parameters of lactating Holstein-Friesian cows under a continental climatic zone in Germany. Physiological parameter measurements, such as respiration rate (RR), measured hourly, and heart rate (HR) and rectal temperature (RT), both measured twice daily, were performed in a total of 139 multiparous cows on three randomly chosen measurement days per week. In addition, the ambient temperature and relative humidity of the barn were recorded every 5 min to calculate the current THI. The physiological parameter data were linked to the THI, and the heat load thresholds were determined using the broken-stick model. The heat load duration effect of each physiological parameter was obtained by regression analysis. Considering the increases in the physiological parameters, our study provided reliable data to determine heat load thresholds for lactating high-yielding dairy cows in a moderate climatic zone. The heat load threshold could be determined for RR in standing cows (THI = 70) and lying cows (THI = 65) and for HR (THI = 72) and RT (THI = 70) in standing cows. The heat load duration also demonstrated a significant effect on the increases in physiological parameters among dairy cows. In particular, the present study enabled a strategy to be devised to initiate heat mitigation in high-yielding dairy cows when they are exposed to THIs above 65.  相似文献   

6.
The erstwhile developed temperature-humidity index (THI) has been popularly used to indicate heat stress in dairy cattle and often in buffaloes. However, scientific literature suggests differences in thermotolerance and physiological responses to heat stress between cattle and buffalo. Therefore, THI range used to indicate degree of heat stress (mild, moderate, and severe) in cattle should be recalibrated for indicating heat stress in buffaloes. The present study was carried out to delineate THI range to indicate onset and severity of heat stress in buffaloes based on physiological, biochemical, and expression profiling of heat shock response (HSR) genes in animals at different THI. The result indicated early onset of heat stress in buffaloes as compared to cattle. Physiological and biochemical parameters indicated onset of mild signs of heat stress in buffaloes at THI 68-69. Significant deviation in these parameters was again observed at THI range 73-76. At THI 77-80, the physiological and biochemical responses of animals were further intensified indicating extreme alteration in homeostasis. The in vivo expression profiling of HSR genes indicated that members of Hsp70 gene family are expressed in a temporal pattern over different THIs, whereas expressions of Hsf genes were evident during intense heat stress. Overall, the study established that amplitude of heat shock response and THI range for indicating severity of thermal stress for buffaloes are not in unison to cattle. The study also suggests skin temperature of the poll region could be used as non-invasive tool for monitoring heat stress in dairy buffaloes.Supplementary InformationThe online version contains supplementary material available at 10.1007/s12192-021-01209-1.  相似文献   

7.
This study was conducted to evaluate the effects of supplemental rumen-protected capsule (RPC) on animal performance, serological indicators, and serum heat shock protein 70 (HSP70) of lactating Holstein cows under heat stress (HS). During summer months, 30 healthy multiparous lactating Holstein cows with a parity number of 3.1 ± 0.44, 70 ± 15 d in milk, an average body weight of 622 ± 62 kg, and an average milk yield of 32.28 ± 0.96 kg/d, were used. The cows were randomly allocated to two groups: a control group and an RPC-supplemented group (0.13373 kg K2SO4, 0.02488 kg vitamin C, 0.021148 kg niacin, and 0.044784 kg gamma-aminobutyric acid per cow). During the 42-d experiment, ambient air temperature and relative humidity inside and outside the barn were recorded hourly every day for the determination of temperature-humidity index (THI). Milk and blood samples were collected every week, and body weight and body condition scoring were measured on day 0. Based on the THI values, the animals had moderate HS. On day 42, the RPC group had lower HSP70, adrenocorticotropic hormone (P = 0.0001), lactate dehydrogenase (P = 0.0338), and IL-6 (P = 0.0724) levels than the control group, with no significant differences in creatine kinase, glucocorticoid, or IL-2 levels. Milk yield, energy-corrected milk, and dry matter intake were higher in RPC than in the control group (P = 0.0196). There were no significant differences in milk fat or daily protein levels between the two groups; however, daily protein and milk fat levels were higher in the RPC group than in the control group (P = 0.0114 and P = 0.0665, respectively). Somatic cell counts were no different between the two groups. In conclusion, RPC may alleviate HS and improve dairy cow performance.  相似文献   

8.
The objectives of this retrospective study were to investigate the relationship between temperature–humidity index (THI) and conception rate (CR) of lactating dairy cows, to estimate a threshold for this relationship, and to identify periods of exposure to heat stress relative to breeding in an area of moderate climate. In addition, we compared three different heat load indices related to CR: mean THI, maximum THI, and number of hours above the mean THI threshold. The THI threshold for the influence of heat stress on CR was 73. It was statistically chosen based on the observed relationship between the mean THI at the day of breeding and the resulting CR. Negative effects of heat stress, however, were already apparent at lower levels of THI, and 1 hour of mean THI of 73 or more decreased the CR significantly. The CR of lactating dairy cows was negatively affected by heat stress both before and after the day of breeding. The greatest negative impact of heat stress on CR was observed 21 to 1 day before breeding. When the mean THI was 73 or more in this period, CR decreased from 31% to 12%. Compared with the average maximum THI and the total number of hours above a threshold of more than or 9 hours, the mean THI was the most sensitive heat load index relating to CR. These results indicate that the CR of dairy cows raised in the moderate climates is highly affected by heat stress.  相似文献   

9.
Milk yield response of dairy cows fed fat along with protein   总被引:1,自引:0,他引:1  
The influence of a fat-coated protein on milk production of Holstein dairy cows was determined using a 4×4 Latin square experiment. Twelve cows were fed a control diet or test diets supplemented with fat, fat plus ruminally undegraded protein (RUP), or a fat-coated protein (Duets™). Cows fed test diets received 0.55 kg of more fat per day than cows in the control treatment. Daily intakes of feed, energy, and protein were the same in all treatments. Cows produced 36.5, 37.3, 37.9, and 39.3 kg of energy-corrected milk per day in control, fat, fat plus RUP, and fat-coated protein treatments, respectively. Cows fed fat-supplemented diets produced an average 1.7 kg more milk daily compared with cows in the control treatment. Feeding RUP along with fat or fat-coated protein provided no further improvement in milk yield compared with fat alone, but partially alleviated the depression in protein content caused by supplemental fat and increased the daily yield of milk protein. In the present experiment, cows fed fat-coated protein produced daily an average 60 g of milk protein more than cows fed fat alone. Since, there was no advantage in milk yield, the decision to include fat-coated protein in dairy rations should be based on its price compared to fat alone and the return in terms of milk protein yield.  相似文献   

10.
High ambient temperatures have severe adverse effects on biological functions of high-yielding dairy cows. The metabolic adaption to heat stress was examined in 14 German Holsteins transition cows assigned to two groups, one heat-stressed (HS) and one pair-fed (PF) at the level of HS. After 6 days of thermoneutrality and ad libitum feeding (P1), cows were challenged for 6 days (P2) by heat stress (temperature humidity index (THI) = 76) or thermoneutral pair-feeding in climatic chambers 3 weeks ante partum and again 3 weeks post-partum. On the sixth day of each period P1 or P2, oxidative metabolism was analyzed for 24 hours in open circuit respiration chambers. Water and feed intake, vital parameters and milk yield were recorded. Daily blood samples were analyzed for glucose, β-hydroxybutyric acid, non-esterified fatty acids, urea, creatinine, methyl histidine, adrenaline and noradrenaline. In general, heat stress caused marked effects on water homeorhesis with impairments of renal function and a strong adrenergic response accompanied with a prevalence of carbohydrate oxidation over fat catabolism. Heat-stressed cows extensively degraded tissue protein as reflected by the increase of plasma urea, creatinine and methyl histidine concentrations. However, the acute metabolic heat stress response in dry cows differed from early-lactating cows as the prepartal adipose tissue was not refractory to lipolytic, adrenergic stimuli, and the rate of amino acid oxidation was lower than in the postpartal stage. Together with the lower endogenous metabolic heat load, metabolic adaption in dry cows is indicative for a higher heat tolerance and the prioritization of the nutritional requirements of the fast-growing near-term fetus. These findings indicate that the development of future nutritional strategies for attenuating impairments of health and performance due to ambient heat requires the consideration of the physiological stage of dairy cows.  相似文献   

11.
The search for criteria that allow the quantification of the level of thermotolerance of an animal is a major challenge in animal production. Different criteria have been proposed to date, mainly the use of routine milk recording and weather information or the collection of physiological measures related with heat stress. This study aimed at quantifying the association between indicators of heat tolerance derived from productive and physiological traits. For this purpose, two physiological traits, rectal temperature (RT) and respiratory rate (RR), and nine productive traits (milk yield, fat, protein and lactose yields and contents, casein and urea contents) were measured from June to September of 2018 in three flocks of Manchega sheep. A total of 462 lactating ewes participated in the study. Air temperature (Ta), relative humidity (RH) and associated temperature and humidity index (THI) were recorded inside the barn and also obtained from the closest weather station from the national meteorological network, and used to produce several measurements of heat load on animals. Based on the results of fits for quadratic and cubic regressions on the alternative heat load measures, the cubic regression on Ta and THI obtained inside the barn at time of recording yielded the best fit for physiological and productive parameters. The use of weather information taken from the official weather station closest to the farm also produced similar estimates and could be considered as a good alternative when on-farm meteorological data are not available. Two-trait random regression models that involved individual intercept and slope of response to heat load were used to obtain correlations between basal levels and heat tolerance within and across traits. Estimated correlations showed that animals with smaller vs larger basal levels of RT and RR tend to be more vs less heat tolerant (correlations up to 0.46) and that slopes of increase for RR and RT under heat stress were highly correlated (0.82). Estimated correlations between tolerance criteria from production vs physiology were up to ?0.5 (between milk yield and RT), indicating that animals that show less increase in body temperature also tend to show a smaller decrease in production under heat stress. However, because of the non-unity correlation between the two types of indicators of heat tolerance, both sources of information, productive and physiological ought to be taken into account to ensure the long-term sustainability of selection programmes aiming at improving productive levels when heat stress is a concerning issue.  相似文献   

12.
《Theriogenology》2016,85(9):1523-1529
Heat stress in hot environments is one of the major factors that can negatively affect milk production, reproduction, and the health of dairy cows. The aim of this study was to evaluate the impact of maternal heat stress at insemination on the subsequent reproductive performance of the pure Holstein (HO), Brown Swiss (BS), and their F1 crossbred (BF) cows, under subtropical Egyptian conditions. The influence of temperature–humidity index (THI) on the pregnancy rate, fetal loss rate, calving traits, and reproductive indices were investigated. Fetal loss rate of pure HO was significantly increased from 17.1% at low THI to 24.9% at greater THI (odds ratio = 2.09; P = 0.032). Furthermore, abortion and stillbirth rates of pure HO were significantly increased from 3.6% and 3.8%, respectively, at low THI to 7.2% and 5.9%, respectively, at greater THI (odds ratio = 2.17 and 2.58; P = 0.037 and 0.031, respectively). In contrast, BS and BF cows can tolerate the heat stress, as there were no differences in the fetal loss, abortion, and calving difficulty rates at the different levels of THI. Pure HO cows had a significant longer calving interval and days open at high THI (449 and 173 days, respectively), compared with low THI (421 and 146 days, respectively). On the contrary, BS and BF cows had no difference in the calving interval at the different levels of THI. Our results indicate that pure BS and BF cows have a better adaptability and competent reproductive performance than pure HO under subtropical conditions.  相似文献   

13.
In Egypt, cow's milk represents 52.11% of the total milk production. Climatic condition is mainly expected to impact the welfare and productive performance of livestock animals. Thus, we aimed to explore the impact of temperature-humidity index (THI) on somatic cell count (SCC), milk production and composition on daily milk test records (33600) of Holstein cows under subtropical Egyptian conditions with different levels of THI. Our results revealed that daily milk yield and composition (fat%, protein %, yielded fat, yielded protein and the percentage of lactose) were higher in low THI (31.91 kg, 3.91%, 3.22%, 418 kg, 349 kg and 4.20%, respectively) when compared with high THI. SCC significantly increased 36% from low to high THI. In addition to, it was increased with advanced parities 231.11% from 2nd to 7th parities. At high THI level, SCC was negatively correlated with total MY (r=−0.12 P<0.05), 305 MY (r=−0.16 P<0.05), protein % (r=−0.15 P<0.01), fat% (r=−0.14 P<0.01) and lactose % (r=−0.26 P<0.01). The current study concluded that dairy cows performance was better in most of the investigated parameters at low THI than those in high THI. Thus, indicating a detrimental effect of THI on both welfare and economic return.  相似文献   

14.
Wood-chip pads represent a low-cost alternative to housing for cattle during the winter. Considering the negative welfare implications associated with housing indoors on concrete, they may also offer welfare benefits to replacement dairy heifers. However, these animals may not be able to withstand winter weather conditions on a grass silage diet. The aim of this experiment was to evaluate behaviour, limb injuries, dirtiness scores, performance and climatic energy demand (CED) of yearling dairy heifers on two levels of nutrition kept outdoors on a wood-chip pad or indoors in cubicles during the winter. Ninety-six 10-month-old heifers were blocked and assigned in groups of eight, to one of the following four treatments in a 2 × 2 factorial design: (a) indoors, silage only; (b) indoors, silage plus concentrate; (c) outdoors, silage only; and (d) outdoors, silage plus concentrate. There were three replicate groups per treatment. All animals were inspected for skin lesions and were weighed and body condition scored (BCS) at the beginning and end of the trial. Instantaneous scan sampling and continuous all-occurrence behaviour sampling were used to collect behaviour data during two 24-h periods. Animals were also dirtiness scored and group feed intakes were recorded during the trial. Significantly more comfort, social and play behaviours were recorded outdoors (P < 0.05) while trips, slips and falls were only recorded indoors (P < 0.001). Groups outdoors had significantly lower limb lesion scores at the end of the experiment (P < 0.05) and fewer groups outdoors were affected by all categories of limb lesions. However, they were consistently dirtier than animals indoors (P < 0.001). Low-nutrition animals had lower feed intakes, smaller BCS changes and lower average daily weight gains than high-nutrition animals (P < 0.01). Heifers outdoors had significantly lower average daily weight gains and BCS changes (P < 0.05) explained by lower feed intakes (P < 0.01). However, outdoor heifers on both the high- and low-nutrition diets and indoor animals on the low-nutrition diet had lower UFL (feed unit for maintenance and lactation (Irish Republic)) intakes (-0.36, -0.35 and -0.22, respectively) than that required to meet the daily live-weight gains they achieved. Heifers indoors on the high-nutrition diet gained 0.98 kg per day but consumed 0.17 UFL more than what would be recommended to achieve a daily weight gain of 1.0 kg. The CED for outdoor heifers was higher than that of indoor heifers (6.18 v. 5.47 MJ/day per m2 body surface area; P < 0.001, s.e.d. 0.044). However, CED did not exceed heat production in any treatment. Although animal performance was reduced outdoors, the wood-chip pad was associated with welfare benefits compared with cubicle housing.  相似文献   

15.
In tropical environments, dairy cattle production is constrained by several factors, including climate. The seasonal loss of milk due to heat stress is a recurring challenge for many dairy producers. The objective of this study was to detect heat stress thresholds, milk yield loss and individual animal variations using random regression models for dairy cattle from test-day milk records. Data were obtained from the Kenya Livestock Breeders Organization for the years 2000–2017 and merged with weather data. The weather parameters were grid-interpolated solar and meteorological data obtained from the National Aeronautics and Space Administration/Prediction Of Worldwide Energy Resources (NASA/POWER). After editing, the records comprised 49 993, 45 251 and 36 136 test-day records for first, second, and third lactations, respectively, for the four main dairy breeds: Friesian (68.0%), Ayrshire (21.1%), Jersey (7.6%) and Guernsey (3.3%). Variance components were estimated using Restricted Maximum Likelihood in ASReml software. Random regression models with third-order Legendre polynomials were fitted to the average and individual lactation curves and the reaction norms. An extended factor analytic variance structure for the random cow effects was used to estimate (co)variances between days in milk and thermal load. The daily average temperature (TA) and temperature humidity index (THI) were identified as the most suitable thermal load indicators for assessing milk yield losses. Considering a one day lag, the estimated heat stress thresholds were about 22 °C and 69 index units for TA and THI, respectively. Almost no differences were observed for estimated residual variances between the thermal load indicators, indicating there was no better model fit by TA or THI. The heat stress thresholds and milk loss patterns are important for management of dairy production systems in the tropics with climatic conditions similar to this study. Data recording should be improved as a tool to monitor the expected impacts of climate change and mitigation measures.  相似文献   

16.
One of the main aims of pasture-based systems of dairy production is to increase the proportion of grazed grass in the diet. This is most easily achieved by increasing the number of grazing days. However, periods of inclement weather conditions can reduce the number of days at pasture. The two objectives of this experiment were: (i) to investigate the effect of restricting pasture access time on animal production, grazing behaviour and dry matter intake (DMI) of spring calving dairy cows in early lactation; and (ii) to establish whether silage supplementation is required when cows return indoors after short grazing periods. In all, 52 Holstein-Friesian spring calving dairy cows were assigned to a four-treatment study from 25 February to 26 March 2008. The four treatments were: full-time access to pasture (22H; control); 4.5-h- pasture access after both milkings (2 × 4.5H); 3-h pasture access after both milkings (2 × 3H); 3-h pasture access after both milkings with silage supplementation by night (2 × 3SH). All treatments were offered 14.4 kg DM/cow per day herbage from swards, with a mean pre-grazing yield of 1739 kg DM/ha above 4 cm, - and were supplemented with 3 kg DM/cow per day of concentrate. The 2 × 3SH treatment was offered an additional 4 kg DM/cow of grass silage by night. Restricting pasture access time (2 × 3H, 2 × 3SH and 2 × 4.5H) had no effect on milk (28.3 kg/cow per day) and solids-corrected milk (27.2 kg/cow per day) yield when compared with the treatment grazing full time. Supplementing animals with grass silage did not increase milk production when compared with all other treatments. Milk protein concentration tended to be lower (P = 0.08; 32.2 g/kg) for the 2 × 3SH animals when compared with the 22H animals (33.7 g/kg). The grass DMI of the 2 × 3SH treatment was significantly lower (-2.3 kg DM/cow per day) than all other treatments (11.9 kg DM/cow per day), yet the total DMI of these animals was highest (16.6 kg DM/cow per day). The 22H cows grazed for 481 min/cow per day, which is significantly longer than all other treatments. The 2 × 3H animals grazed for 98% of the time, whereas the 2 × 3SH grazed for 79% of their time at pasture. Restricting pasture access time did not affect end body weight or body condition score. The results of this study indicate that restricting pasture access time of dairy cows in early lactation does not affect milk production performance. Furthermore, supplementing cows with grass silage does not increase milk production but reduces grazing efficiency.  相似文献   

17.
The objective of this study was to estimate the myostatin (mh) gene's effect on milk, protein and fat yield in a large heterogeneous cow population, of which only a small portion was genotyped. For this purpose, a total of 13 992 889 test-day records derived from 799 778 cows were available. The mh gene effect was estimated via BLUP using a multi-lactation, multi-trait random regression test-day model with an additional fixed regression on mh gene content. As only 1416 animals, (of which 1183 cows had test-day records) were genotyped, more animals of additional breeds with assumed known genotype were added to estimate the genotype (gene content) of the remaining cows more reliably. This was carried out using the conventional pedigree information between genotyped animals and their non-genotyped relatives. Applying this rule, mean estimated gene content over all cows with test-day records was 0.104, showing that most cows were homozygous +/+. In contrast, when gene content estimation was only based on genotyped animals, mean estimated gene content over all cows with test-day records was with 1.349 overestimated. Therefore, the applied method for gene content estimation in large populations needs additional genotype assumptions about additional animals representing genetic diversity when the breed composition in the complete population is heterogeneous and only a few animals from predominantly one breed are genotyped. Concerning allele substitution effects for one copy of the 'mh' gene variant, significant decreases of -76.1 kg milk, -3.6 kg fat and -2.8 kg protein/lactation were obtained on average when gene content estimation was additionally based on animals with assumed known genotype. Based on this result, knowledge of the mh genotypes and their effects has the potential to improve milk performance traits in cattle.  相似文献   

18.
The objective of the present study was to determine the effects of rumen-protected choline (RPC) supplementation on body condition, milk production and milk choline content during the periparturient period. Thirty-two Holstein cows were allocated into two groups (RPC group - with RPC supplementation, and control group - without RPC supplementation) 28 days before the expected calving. Cows were fed the experimental diet from 21 days before expected calving until 60 days of lactation. The daily diet of the RPC group contained 100 g of RPC from 21 days before calving until calving and 200 g RPC after calving for 60 days of lactation, which provided 25 g and 50 g per day choline, respectively. Body condition was scored on days -21, 7, 35 and 60 relative to calving. Milk production was measured at every milking; milk fat, protein and choline content were determined on days 7, 35 and 60 of lactation. Body condition was not affected by RPC supplementation. Milk yield was 4.4 kg higher for the group of cows receiving supplementary choline during the 60 days experimental period and 4% fat-corrected milk production was also increased by 2.5 kg/day. Milk fat content was not altered by treatment, but fat yield was increased by 0.10 kg/day as a consequence of higher milk yield in the RPC-treated group. Milk protein content tended to increase by RPC supplementation and a 0.18 kg/day significant improvement of protein yield was detected. Milk choline content increased in both groups after calving as the lactating period advanced. However, milk choline content and choline yield were significantly higher in the RPC group than in the control group. The improved milk choline and choline yield provide evidence that some of the applied RPC escaped ruminal degradation, was absorbed from the small intestine and improved the choline supply of the cows and contributed to the changes of production variables.  相似文献   

19.
For dairy cattle on pasture in temperate regions, it is largely unknown to what degree hot summer conditions impact energy metabolism, milk yield and milk composition and how effective shade is in reducing these negative effects. During the summer of 2012, a herd of Holstein cows was kept on pasture without access to shade (treatment NS). During the summers of 2011 and 2013, the herd was divided into a group with (treatment S) and a group without (treatment NS) access to shade. Shade was provided by young trees combined with shade cloths (80% reduction in solar radiation). A weather station registered the local climatic conditions on open pasture, from which we calculated daily average Heat Load Index (HLI) values. The effects of HLI and shade on rectal temperature (RT), blood plasma indicators of hyperventilation and metabolic changes due to heat stress, milk yield and milk composition were investigated. RT increased with increasing HLI, but was less for S cows than for NS cows (by 0.02°C and 0.03°C increase per unit increase of HLI, respectively). Hyperchloraemia (an increased blood plasma concentration of Cl), a sign of hyperventilation, increased for NS cows but not for S cows. The plasma concentration of alkaline phosphatase, a regulator of energy metabolism in the liver, decreased with increasing HLI for NS cows only. Access to shade, thus, reduced the effect of HLI on RT, hyperchloraemia and the regulation of metabolism by the liver. As HLI increased, the plasma concentration of cholesterol decreased (indicating increased lipolysis) and the plasma concentration of creatinine increased (indicating increased protein catabolism). These effects did not differ between S and NS cows. For NS cows, after a lag-time of 2 days, the milk yield decreased with increasing HLI. For S cows, the milk yield was unaffected by HLI and its quadratic factor. The milk concentrations of lactose, protein and fat decreased as HLI increased, but only the effect on milk protein content was remediated by shade. In conclusion, access to shade tempered the negative effects of high HLI on RT, hyperchloraemia and a blood plasma indicator of changing energy metabolism (generally) as well as prevented the decrease in milk yield observed in cows without access to shade.  相似文献   

20.
Heat stress at the time of conception affects the subsequent milk production of primiparous Holstein cows; however, it is unknown whether these effects are maintained across multiple lactations. Therefore, the objective of the current study was to examine the relationship between periconceptional heat stress and measurements of milk production and composition in cows retained within a herd for multiple lactations. National Dairy Herd Improvement Association data was obtained from Dairy Records Management Systems. Records included milk production data and milk composition data from over 75,000 and 44,000 Holstein cows, respectively, born between 2000 and 2010 in Florida, Georgia, and Texas. Conception dates were calculated by subtracting 276 d from the recorded birth date. Records for cows conceived within the months of June, July, and August were retained as heat stress conceived (HSC) cows; cows conceived within the months of December, January, and February were retained as thermoneutral conceived (TNC) contemporaries. Adjusted 305-d mature equivalent milk, protein percent and fat percent were evaluated with a mixed model ANOVA using SAS. Milk production was significantly affected by periconceptional heat stress. When a significant difference or tendency for a difference was detected between the HSC and TNC cows, the TNC produced more milk in all but one comparison. The advantage in milk production for the TNC cows over the HSC cows ranged from 82 ± 42 to 399 ± 61 kg per lactation. Alterations in fat and protein percentage were variable and most often detected in first lactations (first > second or third). Overall, the most striking result of this study is the consistency of the relationship between HSC and milk production. The nature of this relationship suggests that heat stress at or around the time of conception impairs cow milk yield throughout her lifetime.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号