首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
DNA gyrase can supercoil DNA circles as small as 174 base pairs.   总被引:9,自引:2,他引:7       下载免费PDF全文
DNA gyrase introduces negative supercoils into closed-circular DNA using the free energy of ATP hydrolysis. Consideration of steric and thermodynamic aspects of the supercoiling reaction indicates that there should be a lower limit to the size of DNA circle which can be supercoiled by gyrase. We have investigated the supercoiling reaction of circles from 116-427 base pairs (bp) in size and have determined that gyrase can supercoil certain relaxed isomers of circles as small as 174 bp, dependent on the final superhelix density of the supercoiled product. Furthermore, this limiting superhelical density (-0.11) is the same as that determined for the supercoiling of plasmid pBR322. We also find that although circles in the range 116-152 bp cannot be supercoiled, they can nevertheless be relaxed by gyrase when positively supercoiled. These data suggest that the conformational changes associated with the supercoiling reaction can be carried out by gyrase in a circle as small as 116 bp. We discuss these results with respect to the thermodynamics of DNA supercoiling and steric aspects of the gyrase mechanism.  相似文献   

3.
4.
F McEachern  L M Fisher 《FEBS letters》1989,253(1-2):67-70
Bacterial DNA supercoiling is controlled by balancing the supercoiling activity of DNA gyrase and the relaxing activity of DNA topoisomerase I. We have characterized the gyrB gene from a top A deletion mutant of Escherichia coli (DM800) that has a compensatory mutation in gyrB, lowering the activity of gyrase 10-fold, and thereby redressing the intracellular level of supercoiling. The mutant gene differs from the wild type in carrying three rather than two direct tandem repeats of a 6 bp sequence encoding Ala-Arg. We suggest this novel mutation affects domain spacing and was generated by an unequal crossing over event, possibly involving gyrase.  相似文献   

5.
The letA (ccdA) and letD (ccdB) genes of F plasmid contribute to stable maintenance of the plasmid in Escherichia coli cells; a product of the latter has a lethal effect on the host cell and that of the former neutralizes functions of the letD. In cells that overproduce the LetD (CcdB) protein, the plasmid DNA is extensively relaxed. Correspondingly, DNA supercoiling activity in a cell-free extract of the overproducing strain decreases to a level of less than 1% of that seen in normal cells. However, the extract does not inhibit DNA gyrase reconstituted from purified subunits, thereby indicating that the intrinsic DNA gyrase is inactivated in the overproducing strain. Upon addition of purified LetA (CcdA) protein to the extract of LetD overproducing cells, the DNA supercoiling activity was fully restored. Using this rejuvenation as an assay, we purified the "inactivated gyrase" and obtained evidence that the LetD protein formed an isolable complex with the A subunit of DNA gyrase. Thus, the LetD and the LetA proteins constitute an opposing pair in modulating the DNA supercoiling activity of gyrase, probably by direct interaction.  相似文献   

6.
Interaction of DNA gyrase A- and B-subunits during the process of DNA supercoiling was studied. For this purpose a E. coli Cour-1 mutant resistant to coumermycin and containing a mutation in the B-subunit of DNA gyrase was isolated and the influence of the DNA gyrase A-subunit specific inhibitor-nalidixic acid-on DNA supercoiling by wild-type and mutant enzymes was investigated. It turned out that the enzyme from the Cour-1 mutant strain was more sensitive to nalidixic acid than the DNA gyrase from the wild-type strain. Hence, the mutation affecting the B-subunit is capable to change A-subunit properties. That makes it possible to draw the conclusion about a close structural interaction of DNA gyrase subunits during DNA supercoiling.  相似文献   

7.
8.
9.
10.
Bacillus subtilis Bs gyrA and gyrB genes specifying the DNA gyrase subunits, and parC and parE genes specifying the DNA topoisomerase IV subunits, have been separately cloned and expressed in Escherichia coli as hexahistidine (his6)-tagged recombinant proteins. Purification of the gyrA and gyrB subunits together resulted in predominantly two bands at molecular weights of 94 and 73kDa; purification of the parC and parE subunits together resulted in predominantly two bands at molecular weights of 93 and 75kDa, as predicted by their respective sequences. The ability of the subunits to complement their partner was tested in an ATP-dependent decatenation/supercoiling assay system. The results demonstrated that the DNA gyrase and the topoisomerase IV subunits produce the expected supercoiled DNA and relaxed DNA products, respectively. Additionally, inhibition of these two enzymes by fluoroquinolones has been shown to be comparable to those of the DNA gyrases and topoisomerases of other bacterial strains. In sum, the biological and enzymatic properties of these products are consistent with their authenticity as DNA gyrase and DNA topoisomerase IV enzymes from B. subtilis.  相似文献   

11.
DNA gyrase on the bacterial chromosome: DNA cleavage induced by oxolinic acid.   总被引:34,自引:0,他引:34  
Treatments in vivo of Escherichia coli with oxolinic acid, a potent inhibitor of DNA gyrase and DNA synthesis, lead to DNA cleavage when extracted chromosomes are incubated with sodium dodecyl sulfate. This DNA breakage has properties similar to those obtained in vitro with DNA gyrase reaction mixtures designed to assay production of supertwists: it is oxolinic acid-dependent, sodium dodecyl sulfate-activated, and at saturating drug concentrations produces double-strand DNA cleavage with a concommitant tight association of protein and DNA. In addition, identical treatments performed on a nalA mutant strain exhibit no DNA cleavage. Thus the DNA cleavage sites probably correspond to chromosomal DNA gyrase sites. Sedimentation measurements of the DNA cleavage products indicate that there are approximately 45 DNA breaks per chromosome. This value is similar to the number of domains of supercoiling found in isolated Escherichia coli chromosomes, suggesting one gyrase site per domain. At low oxolinic acid concentrations single-strand cleavages predominate after sodium dodecyl sulfate treatment, and the inhibition of DNA synthesis parallels the number of sites that obtain a single-strand scission. Double-strand breaks arise from the accumulation of single-strand cleavages in accordance with a model where each cleavage site contains two independent drug targets, one on each DNA strand. Since the nicking-closing subunit of gyrase is the target of oxolinic acid in vitro, we suggest that each gyrase site contains two nicking-closing subunits, one on each DNA strand, and that DNA synthesis requires both to be functional.  相似文献   

12.
Summary To investigate the interaction of subunits A and B of DNA gyrase during DNA supercoiling, a Cour mutant of Escherichia coli was obtained and the effect of nalidixic acid on the supercoiling of DNA by wild-type and mutant enzymes was assayed. The enzyme of the Cour strain proved to be more sensitive to nalidixic acid than the wild-type DNA gyrase. Hence the mutation affecting the B subunit can also change the properties of the A subunit, which fact suggests that the two subunits of DNA gyrase are in contact during DNA supercoiling.  相似文献   

13.
Escherichia coli DNA gyrase is comprised of two subunits, GyrA and GyrB. Previous studies have shown that GyrI, a regulatory factor of DNA gyrase activity, inhibits the supercoiling activity of DNA gyrase and that both overexpression and antisense expression of the gyrI gene suppress cell proliferation. Here we have analyzed the interaction of GyrI with DNA gyrase using two approaches. First, immunoprecipitation experiments revealed that GyrI interacts preferentially with the holoenzyme in an ATP-independent manner, although a weak interaction was also detected between GyrI and the individual GyrA and GyrB subunits. Second, surface plasmon resonance experiments indicated that GyrI binds to the gyrase holoenzyme with higher affinity than to either the GyrA or GyrB subunit alone. Unlike quinolone antibiotics, GyrI was not effective in stabilizing the cleavable complex consisting of gyrase and DNA. Further, we identified an 8-residue synthetic peptide, corresponding to amino acids (89)ITGGQYAV(96) of GyrI, which inhibits gyrase activity in an in vitro supercoiling assay. Surface plasmon resonance analysis of the ITGGQYAV-containing peptide-gyrase interaction indicated a high association constant for this interaction. These results suggest that amino acids 89--96 of GyrI are essential for its interaction with, and inhibition of, DNA gyrase.  相似文献   

14.
DNA topoisomerases catalyze the inter-conversion of different topological forms of DNA. While all type II DNA topoisomerases relax supercoiled DNA, DNA gyrase is the only enyzme that introduces negative supercoils into DNA at the expense of ATP hydrolysis. We present here a biophysical characterization of the nucleotide cycle of DNA gyrase from Bacillus subtilis, both in the absence and presence of DNA. B. subtilis DNA gyrase is highly homologous to its well-studied Escherichia coli counterpart, but exhibits unique mechanistic features. The active heterotetramer of B. subtilis DNA gyrase is formed by mixing the GyrA and GyrB subunits. GyrB undergoes nucleotide-induced dimerization and is an ATP-operated clamp. The intrinsic ATPase activity of gyrase is stimulated tenfold in the presence of plasmid DNA. However, in contrast to the E. coli homolog, the rate-limiting step in the nucleotide cycle of B. subtilis GyrB is ATP hydrolysis, not product dissociation or an associated conformational change. Furthermore, there is no cooperativity between the two DNA and ATP binding sites in B. subtilis DNA gyrase. Nevertheless, the enzyme is as efficient in negative supercoiling as the E. coli DNA gyrase. Our results provide evidence that the evolutionary goal of efficient DNA supercoiling can be realized by similar architecture, but differences in the underlying mechanism. The basic mechanistic features are conserved among DNA gyrases, but the kinetics of individual steps can vary significantly even between closely related enzymes. This suggests that each topoisomerase represents a different solution to the complex reaction sequence in DNA supercoiling.  相似文献   

15.
Incorporation of labeled deoxynucleoside triphosphates into mtDNA by isolated rat liver mitochondria has been shown previously to reflect DNA replication. We have used this system to seek evidence for a mtDNA gyrase. Coumermycin, novobiocin, nalidixic acid, and oxolinic acid are known to be inhibitors of Escherichia coli gyrase, to inhibit E. coli DNA replication, to abolish colicin E1 replication, and to depress the supercoiling of phage lambda DNA, the last two via inhibition of the DNA gyrase. Our results show that these agents inhibit [3H]dATP incorporation into bulk mtDNA at concentrations similar to those used for E. coli. Analysis by sucrose gradient sedimentation confirms the inhibition and shows further that the synthesis of the highly supercoiled form of mtDNA (i.e. 39 S DNA) is depressed relative to other mtDNA forms (i.e. 27 S DNA), suggesting an inhibition of the supercoiling process. Analysis of the DNA by CsCl/propidium diiodide centrifugation shows, in addition, that incubation with coumermycin results in the appearance of a mtDNA form shown to be relaxed mtDNA. The results are consistent with the occurrence of a mtDNA gyrase and its operation in mtDNA replication.  相似文献   

16.
Reverse gyrase is a unique type IA topoisomerase that can introduce positive supercoils into DNA. We have investigated some of the biochemical properties of Archaeoglobus fulgidus reverse gyrase. It can mediate three distinct supercoiling reactions depending on the adenine nucleotide cofactor that is present in the reaction. Besides the ATP-driven positive supercoiling reaction, the enzyme can introduce negative supercoils with a nonhydrolyzable analog, adenylyl imidodiphosphate. In the presence of ADP the plasmid DNA is relaxed almost completely, leaving a very low level of positive supercoiling. Surprisingly, the final supercoiling extent for all three distinct reactions depends on the stoichiometry of enzyme to DNA. This dependence is not due to the difference of reaction rate, suggesting that the amount of enzyme bound to DNA is an important determinant for the final supercoiling state of the reaction product. Reverse gyrase also displays exquisite sensitivity toward temperature. Raising the reaction temperatures from 80 to 85 degrees C, both of which are within the optimal growth temperature of A. fulgidus, greatly increases enzyme activity for all the supercoiling reactions. For the reaction with AMPPNP, the product is a hypernegatively supercoiled DNA. This dramatic enhancement of the reverse gyrase activity is also correlated with the appearance of DNA in a pre-melting state at 85 degrees C, likely due to the presence of extensively unwound regions in the plasmid. The possible mechanistic insights from these findings will be presented here.  相似文献   

17.
Shifting Escherichia coli from aerobic to anaerobic growth caused changes in the ratio of [ATP]/[ADP] and in negative supercoiling of chromosomal and plasmid DNA. Shortly after lowering oxygen tension, both [ATP]/[ADP] and supercoiling transiently decreased. Under conditions of exponential anaerobic growth, both were higher than under aerobic conditions. These correlations may reflect an effect of [ATP]/[ADP] on DNA gyrase, since in vitro [ATP]/[ADP] influences the level of plasmid supercoiling attained when gyrase is either introducing or removing supercoils. When the supercoiling activity of gyrase was perturbed by a mutation in gyrB, a shift to anaerobic conditions resulted in plasmid supercoil relaxation similar to that seen with wild-type. However, the low level of supercoiling in the mutant persisted during a time when supercoiling in wild-type recovered and then exceeded aerobic levels. Thus, changes in oxygen tension can alter DNA supercoiling through an effect on gyrase, and correlations exist between changes in supercoiling and changes in the intracellular ratio of [ATP]/[ADP].  相似文献   

18.
19.
20.
Reverse gyrases are topoisomerases that catalyze ATP-dependent positive supercoiling of circular covalently closed DNA. They consist of an N-terminal helicase-like domain, fused to a C-terminal topoisomerase I-like domain. Most of our knowledge on reverse gyrase-mediated positive DNA supercoiling is based on studies of archaeal enzymes. To identify general and individual properties of reverse gyrases, we set out to characterize the reverse gyrase from a hyperthermophilic eubacterium. Thermotoga maritima reverse gyrase relaxes negatively supercoiled DNA in the presence of ADP or the non-hydrolyzable ATP-analog ADPNP. Nucleotide binding is necessary, but not sufficient for the relaxation reaction. In the presence of ATP, positive supercoils are introduced at temperatures above 50 degrees C. However, ATP hydrolysis is stimulated by DNA already at 37 degrees C, suggesting that reverse gyrase is not frozen at this temperature, but capable of undergoing inter-domain communication. Positive supercoiling by reverse gyrase is strictly coupled to ATP hydrolysis. At the physiological temperature of 75 degrees C, reverse gyrase binds and hydrolyzes ATPgammaS. Surprisingly, ATPgammaS hydrolysis is stimulated by DNA, and efficiently promotes positive DNA supercoiling, demonstrating that inter-domain communication during positive supercoiling is fully functional with both ATP and ATPgammaS. These findings support a model for communication between helicase-like and topoisomerase domains in reverse gyrase, in which an ATP and DNA-induced closure of the cleft in the helicase-like domain initiates a cycle of conformational changes that leads to positive DNA supercoiling.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号