首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary The fine structure of the rat caliceal wall at its attachment to the renal parenchyma is described. Particular attention is paid to the smooth muscle cells and their associated nerves. A single overlapping layer of epithelial cells lines the renal papilla which changes abruptly to a layer of 3–5 cells where the calix gains attachment to the renal substance. In this region there is an associated increase in the underlying connective tissue which contains smooth muscle cells. These cells possess filaments, are surrounded by a basal lamina, and occur scattered among large bundles of collagen fibres. The muscle cells possess numerous branching processes as well as shorter projections which make close contacts with adjacent cells. Large numbers of axons and their associated Schwann cells are also observed in this region. The axons possess swellings, some of which lie within 800 Å of smooth muscle cells, and contain large and small granulated vesicles and agranular vesicles. They are therefore considered to be adrenergic effectors.Further out in the caliceal wall typical spindle-shaped smooth muscle cells are observed lying parallel to one another to form closely packes bundles and are associated with relatively few nerves.The significance of these observations is discussed.  相似文献   

2.
Summary The smooth muscle of rabbit portal vein was studied by electron microscopy with particular emphasis on the mechanical linkage between the muscle cells and on the distribution of connective tissue.The media of this vein is composed of inner circular and outer longitudinal muscle layers which are orientated almost perpendicularly to each other. The muscle of the inner circular layer shows very irregular contours with much branching and anastomosing of the cytoplasmic processes, which often make membrane contacts with neighbouring cells to form an extensive network of cytoplasmic processes. The muscle cells of the outer longitudinal layer are arranged in densely packed bundles and are spindle-shaped, with no branching processes. Opposing dense areas from neighbouring cells, with variable gap distances (30–100 nm) and close membrane contacts (intermediate junctions) with a gap of 11 nm were observed in both circular and longitudinal muscle layers.In the terminal regions of muscle cells in both circular and longitudinal layers a specialized anchoring structure was present which was closely related to extracellular elastic tissue. Muscle cells in the longitudinal layer showed the most elaborate structure, the tapering end of the muscle cell showing a honeycomb-like structure penetrated by columns of connective tissue compounds. The functional implications of these structures are discussed.  相似文献   

3.
小熊猫肾脏和输尿管的组织学研究   总被引:2,自引:0,他引:2  
米志平  杨智  李平 《四川动物》2003,22(4):241-243
小熊猫的肾脏呈蚕豆形,表面光滑不分叶,只有1个肾锥体和1个肾盏,无肾盂。肾脏皮质内可见皮质迷路和髓放线。皮质迷路内有近曲小管、远曲小管和肾小体等结构。髓放线内有近端小管直部和远端小管直部。髓质可分为外髓和内髓两个区域。外髓有较多的集合管断面,少量的远端小管直部和细段,较多的直小血管束。内髓部位有大量的细段和乳头管。各种泌尿小管之间有少量的疏松结缔组织构成的间质,间质内有丰富的毛细血管。输尿管横切面呈圆形或卵圆形,管腔呈不规则的裂隙状。管壁由粘膜、肌肉层和外膜组成。并与大熊猫肾脏和输尿管的组织结构作了比较研究。  相似文献   

4.
Smooth muscle cells (SMCs) are a key component of many visceral organs, including the ureter, yet the molecular pathways that regulate their development from mesenchymal precursors are insufficiently understood. Here, we identified epithelial Wnt7b and Wnt9b as possible ligands of Fzd1-mediated β-catenin (Ctnnb1)-dependent (canonical) Wnt signaling in the adjacent undifferentiated ureteric mesenchyme. Mice with a conditional deletion of Ctnnb1 in the ureteric mesenchyme exhibited hydroureter and hydronephrosis at newborn stages due to functional obstruction of the ureter. Histological analysis revealed that the layer of undifferentiated mesenchymal cells directly adjacent to the ureteric epithelium did not undergo characteristic cell shape changes, exhibited reduced proliferation and failed to differentiate into SMCs. Molecular markers for prospective SMCs were lost, whereas markers of the outer layer of the ureteric mesenchyme fated to become adventitial fibroblasts were expanded to the inner layer. Conditional misexpression of a stabilized form of Ctnnb1 in the prospective ureteric mesenchyme resulted in the formation of a large domain of cells that exhibited histological and molecular features of prospective SMCs and differentiated along this lineage. Our analysis suggests that Wnt signals from the ureteric epithelium pattern the ureteric mesenchyme in a radial fashion by suppressing adventitial fibroblast differentiation and initiating smooth muscle precursor development in the innermost layer of mesenchymal cells.  相似文献   

5.
Muscles in the body wall, intestinal wall, and contractile hemolymphatic vessels (pseudohearts) of an oligochaete anelid (Eisenia foetida) were studied by electron microscopy. The muscle cells in all locations, except for the outer layer of the pseudohearts, are variants of obliquely striated muscle cells. Cells comprising the circular layer of the body wall possess single, peripherally located myofibrils that occupy most of the cytoplasm and surround other cytoplasmic organelles. The nuclei of the cells lie peripherally to the myofibrils. The sarcomeres consist of thin and thick myofilaments that are arranged in parallel arrays. In one plane of view, the filaments appear to be oriented obliquely to Z bands. Thin myofilaments measure 5–6 nm in diameter. Thick myofilaments are fusiform in shape and their width decreases from their centers (40–45 nm) to their tips (23–25 nm). The thin/thick filament ratio in the A bands is 10. The Z bands consist of Z bars alternating with tubules of the sarcoplasmic reticulum. Subsarcolemmal electron-dense plaques are found frequently. The cells forming the longitudinal layer of the body wall musculature are smaller than the cells in the circular layer and their thick filaments are smaller (31–33 nm centrally and 21–23 nm at the tips). Subsarcolemmal plaques are less numerous. The cells forming the heart wall inner layer, the large hemolymphatic vessels, and the intestinal wall are characterized by their large thick myofilaments (50–52 nm centrally and 27–28 nm at the tips) and abundance of mitochondria. The cells forming the outer muscular layer of the pseudohearts are smooth muscle cells. These cells are richer in thick filaments than vertebrate smooth muscle cells. They differ from obliquely striated muscle cells by possessing irregularly distributed electron-dense bodies for filament anchorage rather than sarcomeres and Z bands and by displaying tubules of smooth endoplasmic reticulum among the bundles of myofilaments. © 1995 Wiley-Liss, Inc.  相似文献   

6.
The muscle layer of the canine gallbladder wall and cystic duct was found to be a three-dimensional meshwork of smooth muscle bundles which appear loosely and irregularly arranged on the mucosal aspect and consolidate to form a homogeneous plate-like layer on the serosal aspect. The muscle bundles are tightly woven around interspersed pockets of loose connective tissue in the gallbladder wall and gradually become loosely arranged with more prominent amounts of intervening connective tissue in the cystic duct. The muscle layer is thickest in the gallbladder wall and becomes progressively thinner out into the cystic duct. No anatomic sphincter was observed. Ultrastructural organization revealed individual muscle fibers to be of irregular profile, often branching, widely spaced with intervening collagen fibers, and having few cell-to-cell contacts.  相似文献   

7.
The fine structure of the heart and connective tissue sheath surrounding the stomach of the brachiopod Rhynchonella psittacea has been studied. The stomach wall is lined externally with peritoneal epithelium. Between the bases of the peritoneal epithelial cells and those of the stomach epithelial cells is an extracellular amorphous matrix. The exterior part of the matrix is occupied by smooth muscle cells and the interior part by fibroblasts. The heart wall shows continuity with the peritoneal epithelium covering the stomach wall and consists of three layers: an outer layer of smooth myoepithelial and epithelial cells, an intermediate thick layer of extracellular matrix, and an inner discontinuous layer of fibroblasts. In myoepithelial cells, nucleated heads protruding freely into the coelom and contractile parts embedded in the extracellular matrix can easily be distinguished. These cells contain no sarcoplasmic reticulum or any elements of a T system. The epithelial cells are non-muscular mononucleated cells scattered among the myoepithelial cells and closely associated with these basally. They possess a well-developed rough endoplasmic reticulum. In rare cases, a small amount of myofibrils occurs basally in the epithelial cells. Morphologically the epithelial cells in the myocardium are very similar to the peritoneal epithelial cells covering the stomach wall. Both epithelial and myoepithelial cells are ciliated. No nerve elements have been found in the brachiopod heart. The structure of the brachiopod heart is compared with that of other invertebrates; similarity of cellular composition of the brachiopod heart and stomach cover is considered evidence of origin of the heart cells from the cells of the connective tissue sheath of the stomach. The myogenic role of the peritoneal cells and epithelial cells of the myocardium is suggested. J. Morphol. 234:69–77, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

8.
Summary The wall structure of arteriovenous anastomoses in the rabbit ear was investigated. (1) Clusters of epithelioid smooth muscle cells form 3–4 longitudinally oriented plicae. The channel shows a single, irregularly outlined lumen, and its wall is very thin between adjacent plicae. (2) Endothelial cells covering the plicae protrude into the lumen, thus suggesting active contraction or shortening of the plicae. (3) The tunica adventitia is composed of 4–6 sheaths of flat fibroblasts, which may serve as a barrier to prevent loss of neurotransmitters. Processes of some of the fibroblasts also extend into the tunica media. (4) The tunica media is composed of an outer circular layer of typical smooth muscle cells, and an inner longitudinally running plica of ramified smooth muscle cells. Wide intercellular spaces between these ramified cells are filled with collagen fibrils, microfibrils, amorphous intercellular substances, and fibroblasts. Fibroblasts form close membrane contacts with each other, and with the smooth muscle cells. (5) Fibroblasts and other connective tissue components may function as an elastic support during active motility of the anastomotic channel.  相似文献   

9.
The hamster renal pelvis has been studied by means of low-power light microscopy, scanning electron microscopy and morphometric analyses. The results of this study are highly suggestive that the contact of pelvic urine with the other medulla as well as with the inner medulla may be an important aspect of final urine formation. The outer medulla constituted nearly 50% of the total pelvic surface area, with the inner stripe of the outer medulla more than twice the pelvic surface area of the outer stripe of the outer medulla. The large outer medullary pelvic surface area was accounted for by the elaboration of the upper pelvic walls into peripelvic columns, opercula ("secondary pyramids"), fornices and secondary pouches. A thin simple-squamous to low cuboidal pelvic epithelium separated pelvic urine from outer medullary parenchyma. The inner medulla which constituted about one quarter of the total pelvic surface area was covered by a cuboidal to columnar pelvic epithelium which appeared morphologically similar to the papillary collecting duct epithelium. Tubules and capillaries of the inner medulla did not appear as closely juxtaposed to the pelvic epithelium as did those of the outer medulla. Cortical tissue comprised only 11.7% of the total pelvic surface area and was covered by transitional epithelium similar to that of ureter and bladder. The previously reported impermeability of this epithelium suggests that pelvic urine contact with the cortex is unimportant in final urine formation. The rich layer of smooth muscle under the transitional epithelium probably functions to move urine into and out of the pelvis during pelvic peristalsis, which has been observed in vivo.  相似文献   

10.
Summary We have studied the layers of the muscular coat of the guinea-pig small intestine after enzymatic and chemical removal of extracellular connective tissue. The cells of the longitudinal muscle layer are wider, have rougher surfaces, more finger-like processes and more complex terminations, but fewer intercellular junctions than cells in the circular muscle layer. A special layer of wide, flat cells with a dense innervation exists at the inner margin of the circular muscle layer, facing the submucosa. The ganglia of the myenteric and submucosal plexuses are covered by a smooth basal lamina, a delicate feltwork of collagen fibrils, and innumerable connective tissue cells. The neuronal and glial cell processes at the surface of ganglia form an interlocking mosaic, which is loosely packed in newborn and young animals, but becomes tightly packed in adults. The arrangement of glial cells becomes progressively looser along finer nerve bundles. Single varicose nerve fibres are rarely exposed, but multiaxonal bundles are common. Fibroblast-like cells of characteristic shape and orientation are found in the serosa; around nerve ganglia; in the intermuscular connective tissue layer and in the circular muscle, where they bridge nerve bundles and muscle cells; at the submucosal face of the special, flattened inner circular muscle layer; and in the submucosa. Some of these fibroblast like cells correspond to interstitial cells of Cajal. Other structures readily visualized by scanning electron microscopy are blood and lymphatic vessels and their periendothelial cells. The relationship of cellular elements to connective tissue was studied with three different preparative procedures: (1) freeze-cracked specimens of intact, undigested intestine; (2) stretch preparations of longitudinal muscle with adhering myenteric plexus; (3) sheets of submucosal collagen bundles from which all cellular elements had been removed by prolonged detergent extraction.  相似文献   

11.
Summary An analysis of the ultrastructure of the tube feet of three species of sea urchins (Strongylocentrotus franciscanus, Arbacia lixula and Echinus esculentus) revealed that the smooth muscle, although known to be cholinoceptive, receives no motor innervation.The muscle fibers are attached to a double layer of circular and longitudinal connective tissue which surrounds the muscle layer and contains numerous bundles of collagen fibers. On its outside, the connective tissue cylinder is invested by a basal lamina of the outer epithelium to which numerous nerve terminals are attached. These are part of a nerve plexus which surrounds the connective tissue cylinder. The plexus itself is an extension of a longitudinal nerve that extends the whole length of the tube foot. It is composed of axons, but nerve cell bodies and synapses are conspicuously lacking, suggesting that the axons and terminals derive from cells of the radial nerve. Processes of the epithelial cells penetrate the nerve plexus and attach to the basal lamina. There is no evidence that the epithelial cells function as sensory cells.On the basis of supporting evidence it is suggested that the transmitter released by the nerve terminals diffuses to the muscle cells over a distance of several microns and in doing so affects the mechanical properties of the connective tissue.Supported by the Sonderforschungsbereich 138 of the Deutsche Forschungsgemeinschaft  相似文献   

12.
Myometrial development from the prenatal to adult period was examined in rats and mice 1) by histologic and immunocytochemical methods with anti-actin, -vimentin, and -laminin to assess cytodifferentiation of smooth muscle and fibroblastic cells; and 2) by morphometric procedures to assess quantitatively the expression of cellular orientation in the emerging inner circular myometrial layer. Uterine mesenchymal cells initially were uniformly vimentin-positive, undifferentiated, and randomly oriented during the late fetal period. By the early neonatal period, three mesenchymal layers became recognizable histologically, the middle one of which (prospective circular myometrium) developed distinct circular orientation and differentiated into a layer composed of actin-positive smooth muscle cells. The cells of the inner mesenchymal layer initially exhibited radial orientation. By 10 days postpartum, the outer longitudinal mesenchymal layer differentiated into bundles of smooth muscle cells representing the longitudinal myometrium. The inner mesenchymal layer remained vimentin-positive and differentiated into the randomly ordered endometrial stroma. The cells of the middle and outer mesenchymal layers that were destined to form myometrium initially expressed vimentin throughout and then coexpressed vimentin and actin, but with time vimentin staining disappeared in the maturing smooth muscle cells as they expressed actin.  相似文献   

13.
Summary Tube feet of the sea urchin Strongylocentrotus franciscanus were studied with the scanning electron microscope (SEM). By use of fractured preparations it was possible to obtain views of all components of the layered tube-foot wall.The outer epithelium was found to bear tufts of cilia possibly belonging to sensory cells. The nerve plexus was clearly revealed as being composed of bundles of varicose axons. The basal lamina, which covers the outer and inner surfaces of the connective tissue layer, was found to be a mechanically resistant and elastic membrane. The connective tissue appears as dense bundles of (collagen) fibers. The luminal epithelium (coelothelium) is a single layer of flagellated collar cells.There is no indication that the muscle fibers, which insert on the inner basal lamina of the connective tissue layer are innervated by axons from the basiepithelial nerve plexus.The results agree with previous conclusions concerning tube-foot structure based on transmission electron microscopy, and provide additional information, particularly with regard to the outer and inner epithelia.This investigation was supported by the Sonderforschungsbereich 138 of the Deutsche Forschungsgemeinschaft. The work was carried out at the Friday Harbor Laboratories of the University of Washington. The authors are indebted to the Director, Professor A.O.D. Willows for use of the facilities, and to Drs. Christopher Reed and Tom Schroeder for invaluable instruction and assistance  相似文献   

14.
The notochord and notochordal sheath of 10 adult amphioxus were investigated ultrastructurally and histochemically. The notochord in amphioxus consists of parallel notochordal cells (plates) and each plate consists of parallel thicker and thinner fibrils and numerous profiles of smooth endoplasmic reticulum situated just beneath the cell membrane. Histochemical staining shows that the notochordal plates resemble neither the connective tissue notochordal sheath nor the typical muscular structure myotomes. The notochordal sheath has a complex three-layered organization with the outer, middle and inner layer The outer and middle layer are composed of collagen fibers of different thickness and course, that correspond to collagen type I and collagen type III in vertebrates, respectively, and the inner layer is amorphous, resembles basal lamina, and is closely attached to the notochord by hemidesmosome junctions. These results confirm the presence of collagen fibers and absence of elastic fibers in amphioxus.  相似文献   

15.
The ovipositor of striped bitterling Acheilognathus yamatsutae was subjected to ultrastructure and histochemical analysis during spawning season using light and electron microscopy. Although the ovipositor of A. yamatsutae is a long cylindrical tube with smooth external surface, it was possible to confirm the presence of well-developed fingerprint structure using scanning electron microscopy. Internal aspect analysis of ovipositor revealed formation of 5–8 longitudinal folds. Cross section analysis revealed that the ovipositor is composed of an outer epithelial layer, a mid connective tissue layer, and an inner epithelial layer. The outer epithelial layer contains 7–9 cell layers composed mainly of epithelial and mucous cells. Result of AB–PAS (pH 2.5) and AF–AB reaction showed that mucous cells contained mainly acidic carboxylated mucosubstances. The connective tissue layer was loose and made mainly of collagen fibers and some muscle fibers, along with blood vessels and a small number of chromatophores. The inner epithelial layer, which is a single layer, is composed of columnar epithelia. Observation under transmission electron microscope enabled distinction of the outer epithelial layer into superficial, intermediate and basal layers. Although the types of cells in the superficial tissue layer were diverse, they all shared the development of glycocalyx covered microridges. The majority of epithelial cells in the intermediate layer were cuboidal shaped, while those in the basal layer were columnar. Two types (A and B) of secretory cells were observed in the outer epithelial layer. The connective tissue layer had two types of chromatophores including xantophore and melanophore, in addition to a well-developed nerve fiber bundles. Columnar epithelial cells, mitochondria-rich cells and rodlet cells were observed in the inner epithelial layer. Microvilli were well developed on the free surface of columnar epithelial cells.  相似文献   

16.
Striated muscle fibers and their spatial relationship to smooth muscle cells have been studied in the middle third of human esophagus. Biopsies were obtained from 3 patients during surgery. In both the circular and longitudinal layers, the muscle coat of this transition zone was composed of fascicles of uniform dimension (100-200 microns of diameter); some of these bundles were made up of striated muscle fibers, others were pure bundles of smooth muscle cells and some were of the mixed type. Striated muscle fibers represented three different types, which were considered as intermediate, with certain structural features characteristic of the fast fiber type. Of these, the most frequently-found fibers were most similar to the fast fiber type. Satellite cells were numerous; in mixed fascicles they were gradually replaced by smooth muscle cells. The gap between striated muscle fiber and smooth muscle cells was more than 200 nm wide. It contained the respective basal laminae and a delicate layer of amorphous connective tissue. No specialized junctions were formed between consecutive striated muscle fibers, or between striated muscle fibers and smooth muscle cells. Interstitial cells of Cajal were never situated as close to striated muscle fibers as to smooth muscle cells.  相似文献   

17.
Serially stained uncalcified sections of young dog mandibles were examined to study the structure of the periodontal ligament of the erupting first right molar. The periodontal ligament around tooth crown presents three zones. The first, near the dental follicle, is a tick layer of parallel collagen bundles with numerous flattened fibroblasts. The second, intermediate, contains a blood vessels network, particularly veins and capillaries. The third, outer, is occupied by a continuous layer of osteoclasts and osteoblasts. Also the periodontal ligament around the tooth presents three layers, the outer and the intermediate rich of cells more than the inner. Particularly, the outer layer shows numerous osteoblasts surrounding the developing trabeculae of the alveolar bone and the collagen fiber bundles of the periodontal ligament. These penetrate into the trabeculae and appear similar to the osteoid layer. These results indicate that the alveolar bone increases by ossification of the connective tissue of the periodontal ligament.  相似文献   

18.
The ureter structure was analyzed under light microscope on serial sections in newborn children affected by obstruction of the pyelo-ureteric junction. In the obstructive segments, preceded by ureter portions dilated and provided with close-packed layers of smooth muscle layers, the tunica mucosa was lacking epithelial cover, its lamina propria was thickened, being built by conspicuous bundles of collagen fibers, and the tunica muscularis showed scarce and disrupted groups of muscle cells invaded by connective tissue. Numerous mastocytes were seen in the mucosa and muscularis tunicae. The results suggest that the breaking of the epithelium may be a primary pathogenetic event followed by passage of urine in the subjacent tissues in turn responsible for a diffuse connective reaction, and, therefore for a final fibrosis of the ureter wall. The role of the mastocytes in the etiopathogenesis of the pyelo-ureteric junction obstruction was also discussed.  相似文献   

19.
The dorsal hemal vessel in Parastichopus consists of three distinct layers: An outer flagellated epithelium, an intermediate circular muscle layer and an inner connective tissue layer which nearly fills the lumen. Between the outer and intermediate layer runs strands of nerve fibers. Each coelomic epithelial cell has one flagellum and some microvilli. It contains a number of different vacuoles and a few bundles of tonofilaments. One special type of vacuole which contains well organized myofilaments is described. Each muscle cell contains one myofibril of a non-striated type consisting of thick and thin filaments and no dense bodies. The sarcoplasmic reticulum is poorly developed, but peripheral coupling are frequently found. The muscle cells in the dorsal hemal vessel of Parastichopus are compared with other muscles in echinoderms and muscle types described in other phyla.  相似文献   

20.
Summary The three-dimensional cytoarchitecture and ultrastructure of the smooth muscle cells in the wall of the rat thoracic duct were investigated by scanning and transmission electron microscopy. The muscle layer basically consists of a single layer of circularly arranged cells. The smooth muscle cell is fusiform or ribbon-like in shape, as in veins or venules with a similar or smaller diameter. Connections by spinous processes are observed between adjacent muscle cells along their length. Spot-like membrane contacts frequently occur in areas where facing membranes are closely apposed. These are thought to be gap junctions and may be responsible for electrical coupling and mechanical attachment. Large invaginations arranged regularly in rows on the surface of the smooth muscle cells can be observed. These invaginations are closely associated with a flattened sarcoplasmic reticulum, and caveolae tend to open into the invaginations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号