首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 437 毫秒
1.
The hairpin ribozyme acts as a reversible, site-specific endoribonuclease that ligates much more rapidly than it cleaves cognate substrate. While the reaction pathway for ligation is the reversal of cleavage, little is known about the atomic and electrostatic details of the two processes. Here, we report the functional consequences of molecular substitutions of A9 and A10, two highly conserved nucleobases located adjacent to the hairpin ribozyme active site, using G, C, U, 2-aminopurine, 2,6-diaminopurine, purine, and inosine. Cleavage and ligation kinetics were analyzed, tertiary folding was monitored by hydroxyl radical footprinting, and interdomain docking was studied by native gel electrophoresis. We determined that nucleobase substitutions that exhibit significant levels of interference with tertiary folding and interdomain docking have relatively large inhibitory effects on ligation rates while showing little inhibition of cleavage. Indeed, one variant, A10G, showed a fivefold enhancement of cleavage rate and no detectable ligation, and we suggest that this property may be uniquely well suited to intracellular targeted RNA cleavage applications. Results support a model in which formation of a kinetically stable tertiary structure is essential for ligation of the hairpin ribozyme, but is not necessary for cleavage.  相似文献   

2.
Most researchers who intend to suppress a particular gene are interested primarily in the application of ribozyme technology rather than its mechanistic details. This article provides some background information and describes a straightforward strategy to generate and test a special design of a ribozyme: the asymmetric hammerhead ribozyme. This version of a hammerhead ribozyme carries at its 5' end the catalytic domain and at its 3' end a relatively long antisense flank that is complementary to the target RNA. Asymmetric hammerhead ribozymes can be constructed via polymerase chain reaction amplification, and rules are provided on how to select the DNA oligonucleotides required for this reaction. In addition to details on construction, we describe how to test asymmetric hammerhead ribozymes for association with the target RNA in vitro, so that RNA constructs can be selected and optimized for fast hybridization with their target RNA. This test can allow one to minimize association problems caused by the secondary structure of the target RNA. Additionally, we describe the in vitro cleavage assay and the determination of the cleavage rate constant. Testing for efficient cleavage is also a prerequisite for reliable and successful application of the technology. A carefully selected RNA will be more promising when eventually used for target suppression in living cells.  相似文献   

3.
A new mode of allosteric regulation of nucleic acid enzymes is described and shown to operate effectively with hammerhead ribozymes. In the "TRAP" design (for targeted ribozyme-attenuated probe), a 3' terminal "attenuator" anneals to conserved bases in the catalytic core to form the "off" state of the ribozyme. Binding of RNA or DNA to an antisense sequence linking the ribozyme and attenuator frees the core to fold into an active conformation, even though the antisense sequence itself does not interfere with the ribozyme. TRAP hammerheads based on the previously characterized HH8 ribozyme were shown to be activated more than 250-fold upon addition of the sense strand. RNA oligonucleotides were more effective activators than DNA oligos, consistent with the known relative helix stabilities (RNA-RNA > RNA-DNA). Oligonucleotides that directly paired with the attenuator gave up to 1760-fold activation. The magnitude of the activation was greater when the oligo was added prior to folding than if it was added during the cleavage reaction. The TRAP design requires no prior knowledge of (deoxy)ribozyme structure beyond identification of the essential core. Thus, this approach should be readily generalizable to other systems for biomedicine, sensor technology, and additional applications.  相似文献   

4.
The trnK intron of plants encodes the matK open reading frame (ORF), which has been used extensively as a phylogenetic marker for classification of plants. Here we examined the evolution of the trnK intron itself as a model for group II intron evolution in plants. Representative trnK intron sequences were compiled from species spanning algae to angiosperms, and four introns were newly sequenced. Phylogenetic analyses showed that the matK ORFs belong to the ML (mitochondrial-like) subclass of group II intron ORFs, indicating that they were derived from a mobile group II intron of the class. RNA structures of the introns were folded and analyzed, which revealed progressive RNA structural deviations and degenerations throughout plant evolution. The data support a model in which plant organellar group II introns were derived from bacterial-like introns that had "standard" RNA structures and were competent for self-splicing and mobility and that subsequently the ribozyme structures degenerated to ultimately become dependent upon host-splicing factors. We propose that the patterns of RNA structure evolution seen for the trnK intron will apply to the other group II introns in plants.  相似文献   

5.
A multitarget approach is needed for effective gene silencing that combines more than one antiviral strategy. With this in mind, we designed a wild-type (wt) and selectively disabled chimeric mutant (mt) constructs that consisted of small hairpin siRNA joined by a short intracellular cleavable linker to a known hammerhead ribozyme, both targeted against the full-length X RNA of hepatitis B. These chimeric RNAs possessed the ability to cleave the target RNA under in vitro conditions and were efficiently processed at the cleavable site. When this wt chimeric RNA construct was introduced into a liver-specific mammalian cell line, HepG2, along with the HBx substrate encoding DNA, very significant (approximately 70%) intracellular downregulation in the levels of target RNA was observed. When the siRNA portion of this chimeric construct was mutated, keeping the ribozyme (Rz) region unchanged, it caused only approximately 25% intracellular reduction. On the contrary, when only the Rz was made catalytically inactive, about 55% reduction in the target RNA was observed. Construct possessing mt Rz and mt siRNA caused only 10% reduction. This wt chimeric construct also resulted in almost complete knockdown of intracellular HBx protein production, and the mt versions were less effective. The intracellular reduction of target RNA with either wt or mt constructs also interfered with the known functions of HBx protein with varying efficiencies. Thus, in this proof of concept study we show that the levels of the target RNA were reduced potently by the wt chimeric siRNA-Rz construct, which could be modulated with mt versions of the same.  相似文献   

6.
In recent decades studies on RNA structure and function have gained significance due to discoveries on diversified functions of RNA. A common element for RNA secondary structure formed by series of non-Watson/Watson Crick base pairs, internal loops and pseudoknots have been the highlighting feature of recent structural determination of RNAs. The recent crystal structure of group-I introns has demonstrated that these might constitute RNA structural motifs in ribozymes, playing a crucial role in their enzymatic activity. To understand the functional significance of these non-canonical base pairs in catalytic RNA, we analysed the sequences of group-I introns from nuclear genes. The results suggest that they might form the building blocks of folded RNA motifs which are crucial to the catalytic activity of the ribozyme. The conservation of these, as observed from divergent organisms, argues for the presence of non-canonical base pairs as an important requisite for the structure and enzymatic property of ribozymes by enabling them to carry out functions such as replication, polymerase activity etc. in primordial conditions in the absence of proteins.  相似文献   

7.
HCMV UL97 mRNA序列特异性M1GS的构建及其体外切割活性研究   总被引:4,自引:0,他引:4  
HCMV UL97基因编码一种蛋白激酶,该酶参与调控病毒DNA的复制和衣壳的形成,且序列异常保守,可作为抗HCMV治疗的重要靶位。基于HCMV UL97 mRNA T3位点附近的序列,设计一段与该位点互补的引导序列(Guide Sequence,GS),并将其与大肠杆菌核酶P催化亚基(M1 RNA)的3’末端共价连接,构建了一种序列特异性的M1GS(M1-T3)。体外实验证实,所构建的M1-T3可与UL97 mRNA的T3位点特异性结合并产生有效的切割作用。进一步研究M1-T3的结构与其对底物片段靶向切割活性的关系,结果发现在M1 RNA与GS之间增加一段88核苷酸桥连序列的M1-T3(即M1-T3’),其靶向切割活性大大增强。此外,去除M1-T3 3’末端的CCA序列,其靶向切割活性将基本丧失。上述结果表明,这段桥连序列和3’末端的CCA序列是M1-T3重要的结构元件。这不仅有助于阐明M1GS与其底物的相互作用机制,同时也为进一步评价M1-T3在体内对UL97基因表达及病毒复制的抑制活性奠定了基础。  相似文献   

8.
Transforming growth factor-beta (TGF-beta) has been reported to be involved in the pathogenesis of cardiovascular proliferative diseases such as hypertensive vascular disease, atherosclerosis, and arterial restenosis after angioplasty. We designed a 38-base DNA-RNA chimeric hammerhead ribozyme to cleave human TGF-beta1 mRNA as a gene therapy for human arterial proliferative diseases. In the presence of MgCl(2), synthetic ribozyme to human TGF-beta1 mRNA cleaved the synthetic target RNA into two RNA fragments of predicted size. A control mismatch ribozyme, with one different base in the catalytic loop region, was inactive. DNA-RNA chimeric ribozyme (0. 01-1.0 microM) significantly inhibited angiotensin II (Ang II)-stimulated DNA synthesis in a dose-dependent manner in human vascular smooth muscle cells (VSMC). The mismatch ribozyme did not affect Ang II-stimulated DNA synthesis in the cells. DNA-RNA chimeric ribozyme (1.0 microM) inhibited the proliferation of human VSMC in the presence of Ang II. DNA-RNA chimeric ribozyme (1.0 microM) significantly inhibited Ang II-stimulated TGF-beta1 mRNA and protein expression in human VSMC. These results indicate that the designed DNA-RNA chimeric hammerhead ribozyme targeted to human TGF-beta1 mRNA can effectively and potentially inhibit growth of human VSMC by cleaving the TGF-beta1 mRNA. This finding suggests that this ribozyme will be useful in the gene therapy of arterial proliferative diseases.  相似文献   

9.
10.
11.
12.
The ability to rapidly identify small molecules that interact with RNA would have significant clinical and research applications. Low-molecular-weight molecules that bind to RNA have the potential to be used as drugs. Therefore, technologies facilitating the rapid and reliable identification of such activities become increasingly important. We have applied a fluorescence-based assay to screen for modulators of hammerhead ribozyme (HHR) catalysis from a small library of antibiotic compounds. Several unknown potent inhibitors of the hammerhead cleavage reaction were identified and further characterized. Tuberactinomycin A, for which positive cooperativity of inhibition in vitro was found, also reduced ribozyme cleavage in vivo. The assay is applicable to the screening of mixtures of compounds, as inhibitory activities were detected within a collection of 2,000 extracts from different actinomycete strains. This approach allows the rapid, reliable, and convenient identification and characterization of ribozyme modulators leading to insights difficult to obtain by classical methodology.  相似文献   

13.
Construction of a novel artificial-ribozyme-releasing plasmid   总被引:5,自引:0,他引:5  
  相似文献   

14.
目的:枯草杆菌的包装RNA分子pRNA是新型纳米分子载体,将其同锤头型核酶Ribozyme重组可以构建结构稳定、能进入细胞、主动识别结合和剪切基因RNA的pRNA-Ribozyme.由于目前100 nt以上的RNA分子采用化学合成制备较为困难,实验采用基因重组构建并体外转录制备170 nt的pRNA-Ribozyme....  相似文献   

15.
为了寻找HPV11型引起的生殖系统感染的治疗途径和探讨HPV的致病机理,本实验以HPV11病毒质粒为模板,扩增出HPVll型E2区644bp片段,采用pGEM-T-Easy Vector为载体,构建pTV-644克隆载体,经筛选得到克隆株,提取质粒测序鉴定。采用上海生化所陈农安教授编制的锤头状Ribozyme设计软件进行计算机分析,选择Ribozyme对靶基因的最佳剪切位点,及进行基因同源性分析和生物学功能分析,选择出针对HPVllE2靶基因的RZ2777,在最适条件下进行体外剪切反应,发现人工合成和体外转录得到的Ribozyme分子均能在相应位点准确切割靶RNA分子,选择合适的反应条件切割效率达到60%以上,Km和Kcat值分别为0.63μmol/L、0.12μmol/L,RibozymeL两端的5′-cis-ribozyme和3′-cis-ribozyme自我剪切释放并未影响切割活性,但靶RNA侧翼序列影响了Ribozyme的剪切活性。实验研究表明,Ribozyme可能成为治疗HPVll型引起的尖锐湿疣的有效手段,并有望在分子水平上开辟出基因治疗HPVll病毒感染的另一新天地。  相似文献   

16.
Constitutive activity of kinases is known to be crucial for a tumor to maintain its malignant phenotype, a phenomenon which is often referred to as oncogene addiction. The in-depth analysis of aberrant signaling pathways by the analysis of protein phosphorylation has become feasible through recent advances in proteomics technology. In this article we will review developments in the field of phosphoproteomics and its application in cancer research. The most widely used technologies for the generic enrichment of phosphopeptides are discussed as well as targeted approaches for the analysis of a specific subset of phosphopeptides. Validation experiments of phosphorylation sites using targeted mass spectrometry are also explained. Finally, we will highlight applications of phosphoproteomic technology in cancer research using cell lines and tissue.  相似文献   

17.
18.
19.
Immobilized metal affinity chromatography (IMAC) is widely used for protein purification, e.g., in the isolation of proteins bearing the well-known hexahistidine affinity tag. We report that IMAC matrixes can also adsorb single-stranded nucleic acids through metal ion interactions with aromatic base nitrogens and propose that metal affinity technologies may find widespread application in nucleic acid technology. Oligonucleotide duplexes, plasmid, and genomic DNA show low IMAC binding affinity, while RNA and single-stranded oligonucleotides bind strongly to matrixes such as Cu(II) iminodiacetic acid (IDA) agarose. The affinity of yeast RNA for IDA-chelated metal ions decreases in the following order: Cu(II), Ni(II), Zn(II), and Co(II). Adsorption isotherms for 20-mer oligonucleotide homopolymers show that purines are strongly favored over pyrimidines and that double-stranded duplexes are not bound. IMAC columns have been used to purify plasmid DNA from E. coli alkaline lysates, to purify a ribozyme, to remove primers and imperfect products from PCR reactions, and to separate 20-mer oligonucleotide duplexes containing centered single-base mismatches. Potential further applications include SNP scoring, hybridization assays, and the isolation of polyadenylated messenger RNA.  相似文献   

20.
The Hepatitis Delta Virus (HDV) ribozyme self-cleaving activity in 20 M formamide solutions is unique. Does this catalytic activity result from the conservation of its tertiary structure in 20 M formamide? We followed the ribozyme structure in formamide solutions by monitoring the amount of bound Ethidium Bromide (EB). We were able to measure the quantity of dye bound using time-resolved fluorescence spectroscopy, as an estimate of the ribozyme double helical content. This method, calibrated by using oligonucleotides with defined tertiary structure and denaturing solvents, parallels NMR and UV measurements as a function of temperature. Measurements with the HDV ribozyme lead to three conclusions: (a) both the precursor and product RNAs are structured to 24 M (95% w/w) formamide or 4 M H2O solutions which is equivalent to 4 M H2O; (b) the HDV ribozyme is the only RNA sequence investigated in this study that retains so much structure in formamide; and (c) DNA analogs of formamide resistant HDV ribozyme sequences lose their structure at less than 15 M formamide. Thus, the structural integrity of the HDV ribozyme is an intrinsic property of the RNA molecule and its sequence.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号