首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A direct electrochemical DNA biosensor based on zero current potentiometry was fabricated by immobilization of ssDNA onto gold nanoparticles (AuNPs) coated pencil graphite electrode (PGE). One ssDNA/AuNPs/PGE was connected in series between clips of working and counter electrodes of a potentiostat, and then immersed into the solution together with a reference electrode, establishing a novel DNA biosensor for specific DNA detection. The variation of zero current potential difference (ΔE(zcp)) before and after hybridization of the self-assembled probe DNA with the target DNA was used as a signal to characterize and quantify the target DNA sequence. The whole DNA biosensor fabrication process was characterized by cyclic voltammetry and electrochemical impedance spectroscopy with the use of ferricyanide as an electrochemical redox indicator. Under the optimized conditions, ΔE(zcp) was linear with the concentrations of the complementary target DNA in the range from 10nM to 1μM, with a detection limit of 6.9nM. The DNA biosensor showed a good reproducibility and selectivity. Prepared DNA biosensor is facile and sensitive, and it eliminates the need of using exogenous reagents to monitor the oligonucleotides hybridization.  相似文献   

2.

Colloidal gold nanoparticles (AuNPs) have been extensively investigated as amplification tags to improve the sensitivity of surface plasmon resonance (SPR) biosensors. When using the so-called AuNP-enhanced SPR technique for DNA detection, the density of single-stranded DNA (ssDNA) on both the AuNPs and planar gold substrates is of crucial importance. Thus, in this work, we carried out a systematical study about the influence of surface ssDNA density onto the hybridization behavior of various DNA-modified AuNPs (DNA-AuNPs) with surface-attached DNA probes by using surface plasmon resonance spectroscopy. The lateral densities of the ssDNA on both the AuNPs and planar gold substrates were controlled by using different lengths of oligo-adenine sequence (OAS) as anchoring group. Besides SPR measurements, the amount of the captured DNA-AuNPs after the hybridization was further identified via atomic force microscope (AFM). SPR and AFM results clearly indicated that a higher ssDNA density on either the AuNPs or the gold substrates would give rise to better hybridization efficiency. Moreover, SPR data showed that the captured DNA-AuNPs could not be removed from SPR sensor surfaces using various dehybridization solutions regardless of surface ssDNA density. Consequently, it is apparent that the hybridization behavior of DNA-AuNPs was different from that of solution-phase ssDNA. Based on these data, we hypothesized that both multiple recognitions and limited accessibility might account for the hybridization of DNA-AuNPs with surface-attached ssDNA probes.

  相似文献   

3.
Gold nanoparticles (AuNPs) were used as colorimetric probe and fluorescence quencher for affinity analysis of DNA aptamers toward their target mucin 1 (MUC1) peptide. Single-stranded DNA (ssDNA) aptamer-coated AuNPs showed increased stability (i.e., more resistant to aggregation induced by NaCl) in the presence of their target peptide due to the increase in steric protection conferred by the ssDNA-peptide complexes formed on the AuNPs. Based on changes in the UV-vis extinction spectrum of AuNPs (a measure of AuNPs aggregation) and fluorescence restoration of CY5-ssDNA upon ssDNA-peptide complex formation, the formation of the complexes and ssDNA sequence-dependent dissociation constant (K(d)) were determined. Besides the UV-vis and fluorescence measurements, the hydrodynamic diameters, zeta potential measurements, and transmission electron microscopy (TEM) images of AuNPs after various coatings supported the assay principle. The methodology presented herein provides a rapid and sensitive alternative solution for the identification of high affinity binders from systematic evolution of ligands by exponential enrichment (SELEX).  相似文献   

4.
A sensitive and simple signal-on electrochemical assay for detection of Dam methyltransferase (MTase) activity based on DNA-functionalized gold nanoparticles (AuNPs) amplification coupled with enzyme-linkage reactions is presented. This new assay takes advantage of the steric hindrance of AuNPs and the electrostatic repulsion between the negative-charge phosphate backbones of DNA modified on the AuNPs and redox probe [Fe(CN)(6)](3-/4-). In this method, the self-assembled ssDNA on the electrode is hybridized with its complement ssDNA modified on AuNPs to form dsDNA AuNPs bioconjugates containing specific recognition sequence of Dam MTase and methylation-sensitive restriction endonuclease Dpn I. Then, the AuNPs approach to the electrode and result in blockage of electronic transmission. It is eT OFF state. In the presence of Dam MTase and Dpn I, the specific sequence is methylated and cleavaged, which in turn release the DNA modified AuNPs from the electrode surface allowing free exchange of electrons. It generates a measurable electrochemical signal (eT ON). Differential pulse voltammetry (DPV) is employed to detect the recover current, which is related to the concentration of the Dam MTase. This method is simple, sensitive, nonradioactive and without use of gel-electrophoresis, PCR or chromatographic separation. Under optimized conditions, a linear response to concentration of Dam MTase range from 0.2U/mL to 10 U/mL and a detection limit of 0.12 U/mL are obtained. Furthermore, our new assay is a promising method to detect Dam MTase in the Luria-Bertani (LB) medium, as well as to screen inhibitors or drugs for Dam MTase.  相似文献   

5.
We have developed a simple and renewable electrochemical biosensor based on carbon paste electrode (CPE) for the detection of DNA synthesis and hybridization. CPE was modified with gold nanoparticles (AuNPs), which are helpful for immobilization of thiolated bioreceptors. AuNPs were characterized by scanning electron microscopy (SEM). Self-assembled monolayers (SAMs) of thiolated single-stranded DNA (SH–ssDNA) of the amelogenin gene was formed on CPE. The immobilization of the probe and its hybridization with the target DNA was optimized using different experimental conditions. The modified electrode was characterized by electrochemical impedance spectroscopy (EIS) and cyclic voltammetry (CV). The electrochemical response of ssDNA hybridization and DNA synthesis was measured using differential pulse voltammetry (DPV) with methylene blue (MB) as an electroactive indicator. The new biosensor can distinguish between complementary and non-complementary strands of amelogenin ssDNA. Genomic DNA was extracted from blood and was detected based on changes in the MB reduction signal. These results demonstrated that the new biosensor could be used for sex determination. The proposed biosensor in this study could be used for detection and discrimination of polymerase chain reaction (PCR) products of amelogenin DNA.  相似文献   

6.
Present work demonstrates the simple, chemical free, fast, and energy efficient method to produce reduced graphene oxide (r-GO) solution at RT using visible light irradiation with plasmonic nanoparticles. The plasmonic nanoparticle is used to improve the reduction efficiency of GO. It only takes 30 min at RT by illuminating the solutions with Xe-lamp, the r-GO solutions can be obtained by completely removing gold nanoparticles through simple centrifugation step. The spherical gold nanoparticles (AuNPs) as compared to the other nanostructures is the most suitable plasmonic nanostructure for r-GO preparation. The reduced graphene oxide prepared using visible light and AuNPs was equally qualitative as chemically reduced graphene oxide, which was supported by various analytical techniques such as UV-Vis spectroscopy, Raman spectroscopy, powder XRD and XPS. The reduced graphene oxide prepared with visible light shows excellent quenching properties over the fluorescent molecules modified on ssDNA and excellent fluorescence recovery for target DNA detection. The r-GO prepared by recycled AuNPs is found to be of same quality with that of chemically reduced r-GO. The use of visible light with plasmonic nanoparticle demonstrates the good alternative method for r-GO synthesis.  相似文献   

7.
A new procedure for fabricating deoxyribonucleic acid (DNA) electrochemical biosensor was developed based on covalent immobilization of target single-stranded DNA (ssDNA) on Au electrode that had been functionalized by direct coupling of sol-gel and self-assembled technologies. Two siloxanes, 3-mercaptopropyltrimethoxysiloxane (MPTMS) and 3-glycidoxypropyltrimethoxysiloxane (GPTMS) were used as precursors to prepare functionally self-assembly sol-gel film on Au electrode. The thiol group of MPTMS allowed assembly of MPTMS sol-gel on gold electrode surface. Through co-condensation between silanols, GPTMS sol-gel with epoxide groups interconnected into MPTMS sol-gel and enabled covalent immobilization of target NH(2)-ssDNA through epoxide/amine coupling reaction. The concentration of MPTMS and GPTMS influenced the performance of the resulting biosensor due to competitive sol-gel process. The linear range of the developed biosensor for determination of complementary ssDNA was from 2.51 x 10(-9) to 5.02 x 10(-7)M with a detection limit of 8.57 x 10(-10)M. The fabricated biosensor possessed good selectivity and could be regenerated. The covalent immobilization of target ssDNA on self-assembled sol-gel matrix could serve as a versatile platform for DNA immobilization and fabrication of biosensors.  相似文献   

8.
Salmonella enterica serovar Enteritidis is one of the most frequently reported causes of foodborne illness. It is a major threat to the food safety chain and public health. A highly amplified bio-barcode DNA assay for the rapid detection of the insertion element (Iel) gene of Salmonella Enteritidis is reported in this paper. The biosensor transducer is composed of two nanoparticles: gold nanoparticles (Au-NPs) and magnetic nanoparticles (MNPs). The Au-NPs are coated with the target-specific DNA probe which can recognize the target gene, and fluorescein-labeled barcode DNA in a 1:100 probe-to-barcode ratio. The MNPs are coated with the 2nd target-specific DNA probe. After mixing the nanoparticles with the 1st target DNA, the sandwich structure (MNPs-2nd DNA probe/Target DNA/1st DNA probe-Au-NPs-barcode DNA) is formed. A magnetic field is applied to separate the sandwich from the unreacted materials. Then the bio-barcode DNA is released from the Au-NPs. Because the Au-NPs have a large number of barcode DNA per DNA probe binding event, there is substantial amplification. The released barcode DNA is measured by fluorescence. Using this technique, the detection limit of this bio-barcode DNA assay is as low as 2.15 x 10(-16)mol (or 1 ng/mL).  相似文献   

9.
A fluorescence resonance energy transfer (FRET) method was developed for double-stranded deoxyribonucleic acid (dsDNA) detection in living cells using the RecA-GFP (green fluorescent protein) fusion protein filament. In brief, the thiol-modified single-stranded DNA (ssDNA) was attached to gold nanoparticles (AuNPs); on the contrary, the prepared RecA-GFP fusion protein interacted with ssDNA. Due to the FRET between AuNPs and RecA-GFP, fluorescence of RecA-GFP fusion protein was quenched. In the presence of homologous dsDNA, homologous recombination occurred to release RecA-GFP fusion protein. Thus, the fluorescence of RecA-GFP was recovered. The dsDNA concentration was detected using fluorescence intensity of RecA-GFP. Under optimal conditions, this method could detect dsDNA activity as low as 0.015 optical density (OD) Escherichia coli cells, with a wide linear range from 0.05 to 0.9 OD cells, and the regression equation was ΔF = 342.7c + 78.9, with a linear relationship coefficient of 0.9920. Therefore, it provided a promising approach for the selective detection of dsDNA in living cells for early clinical diagnosis of genetic diseases.  相似文献   

10.
【背景】金纳米颗粒(AuNPs)凭借其稳定性、抗氧化性能和生物相容性在许多领域有广泛应用。目前关于微生物合成金纳米颗粒的研究较少。【目的】对微生物合成金纳米颗粒的可能性以及影响因素进行探究,有利于揭示具体的合成机制,发现AuNPs的特性以及合成位置与菌丝和影响因素的关系。【方法】以绿色木霉菌(Trichoderma viride)菌株(GIM3.141)为菌种资源,通过目视检测法、紫外可见分光光度计、X射线衍射和透射电镜等手段分析合成AuNPs的特征。探讨细胞内生物合成金纳米颗粒(AuNPs)的可能性,研究生物量、初始金离子浓度、溶液pH等因素对细胞内合成AuNPs的影响。【结果】X射线衍射分析表明AuNPs以金纳米晶体形态存在。透射电镜分析表明AuNPs主要位于细胞壁膜间隙,一小部分附着在细胞壁上。紫外可见分光光度计分析表明,金纳米颗粒粒径随着生物量添加量和溶液pH的升高而变小,随着初始金离子浓度的升高而变大。【结论】非致病性真菌绿色木霉菌可以在细胞内合成AuNPs,其中包括伪球形、三角形、四边形和六边形等多种形状,粒径范围从几纳米到三百纳米,为大规模、低成本、无污染地生物合成纳米颗粒工艺提供了菌种资源。  相似文献   

11.
Long F  Wu S  He M  Tong T  Shi H 《Biosensors & bioelectronics》2011,26(5):2390-2395
Ultrasensitive DNA detection was achieved using a new biosensing platform based on quantum dots (QDs) and total internal reflection fluorescence, which featured an exceptional detection limit of 3.2 amol of bound target DNA. The reusable sensor surface was produced by covalently immobilizing streptavidin onto a self-assembled alkanethiol monolayer of fiber optic probe through a heterobifunctional reagent. Streptavidin served as a versatile binding element for biotinylated single-strand DNA (ssDNA). The ssDNA-coated fiber probe was evaluated as a nucleic acid biosensor through a DNA-DNA hybridization assay for a 30-mer ssDNA, which were the segments of the uidA gene of Escherichia coli and labeled by QDs using avidin-biotin interaction. Several negative control tests revealed the absence of significant non-specific binding. It also showed that bound target DNA could easily be eluted from the sensor surface using SDS solution (pH 1.9) without any significant loss of performance after more than 30 assay cycles. A quantitative measurement of DNA binding kinetics was achieved with high accuracy, indicating an association rate of 1.38×10(6) M(-1) s(-1) and a dissociation rate of 4.67×10(-3) s(-1). The proposed biosensing platform provides a simple, cheap, fast, and robust solution for many potential applications including clinical diagnosis, pathology, and genetics.  相似文献   

12.
Despite their large secretome and wide applications in bioprocesses, fungi remain underexplored in metal nanoparticles (MNP) biosynthesis. Previous studies have shown that cell surface proteins of Rhizopus oryzae play a crucial role in biomineralization of Au(III) to produce gold nanoparticles (AuNPs). Therefore, it is hypothesized that purified cell surface protein may produce in vitro AuNPs with narrow size distribution for biomedical and biocatalytic applications. However, different protein extraction methods might affect protein stability and the AuNP biosynthesis process. Herein, we have explored the extraction of cell surface proteins from R. oryzae using common detergents and reducing agent (sodium dodecyl sulfate (SDS) Triton X-100, and 1,4-dithiothreitol (DTT)) and their effect on the size and shape of the biosynthetic AuNPs. The surface proteins extracted with reducing agent (DTT) and non-ionic detergent (Triton X-100) produce spherical AuNPs with a mean particle size of 16 ± 7 nm, and 19 ± 4 nm, respectively, while the AuNPs produced by the surface protein extracted by ionic detergent (SDS) are flower-like AuNPs with broader size distribution of 43 ± 19 nm. This synthetic approach does not require use of any harsh chemicals, multistep preparation and separation process, favouring environmental sustainability. The biosynthetic AuNPs thus formed, are stable in different physiological buffers and hemocompatible, making them suitable for biomedical applications.  相似文献   

13.
The interaction between protein and DNA is usually regulated by a third species, an effector, which can be either a protein or a small molecule. Convenient methods capable of detecting protein-DNA interaction and its regulation are highly desirable research tools. In the current study, we developed a method to directly “visualize” the interaction between a protein-DNA pair and its effector through the coupling with gold nanoparticles (AuNPs). As a proof-of-concept experiment, we constructed a model system based on the interaction between the lac repressor (protein) and operator (DNA) and its interplay with the lac operon inducer isopropyl β-d-1-thiogalactopyranoside (IPTG, which inhibits the interaction between the lac repressor and operator). We coated AuNPs with the lac operator sequences and mixed them with the lac repressor. Because the lac repressor homotetramer contains two DNA binding modules, it bridged the particles and caused them to aggregate. We demonstrated that the assembly of DNA-modified AuNPs correlated with the presence of the corresponding protein and effector in a concentration-dependent manner. This AuNP-based platform has the potential to be generalized in the creation of reporter and detection systems for other interacting protein-DNA pairs and their effectors.  相似文献   

14.
The spike (S) protein of coronavirus, which binds to cellular receptors and mediates membrane fusion for cell entry, is a candidate vaccine target for blocking coronavirus infection. However, some animal studies have suggested that inadequate immunization against severe acute respiratory syndrome coronavirus (SARS-CoV) induces a lung eosinophilic immunopathology upon infection. The present study evaluated two kinds of vaccine adjuvants for use with recombinant S protein: gold nanoparticles (AuNPs), which are expected to function as both an antigen carrier and an adjuvant in immunization; and Toll-like receptor (TLR) agonists, which have previously been shown to be an effective adjuvant in an ultraviolet-inactivated SARS-CoV vaccine. All the mice immunized with more than 0.5 µg S protein without adjuvant escaped from SARS after infection with mouse-adapted SARS-CoV; however, eosinophilic infiltrations were observed in the lungs of almost all the immunized mice. The AuNP-adjuvanted protein induced a strong IgG response but failed to improve vaccine efficacy or to reduce eosinophilic infiltration because of highly allergic inflammatory responses. Whereas similar virus titers were observed in the control animals and the animals immunized with S protein with or without AuNPs, Type 1 interferon and pro-inflammatory responses were moderate in the mice treated with S protein with and without AuNPs. On the other hand, the TLR agonist-adjuvanted vaccine induced highly protective antibodies without eosinophilic infiltrations, as well as Th1/17 cytokine responses. The findings of this study will support the development of vaccines against severe pneumonia-associated coronaviruses.  相似文献   

15.
In the present study, an electrochemical aptasensor for highly sensitive detection of thrombin was developed based on bio-barcode amplification assay. For this proposed aptasensor, capture DNA aptamerI was immobilized on the Au electrode. The functional Au nanoparticles (DNA–AuNPs) are loaded with barcode binding DNA and aptamerII. Through the specific recognition for thrombin, a sandwich format of Au/aptamerI/thrombin/DNA–AuNPs was fabricated. After hybridization with the PbSNPs-labeled barcode DNA, the assembled sensor was obtained. The concentration of thrombin was monitored based on the concentration of lead ions dissolved through differential pulse anodic stripping voltammetric (DPASV). Under optimum conditions, a detection limit of 6.2 × 10−15 mol L−1 (M) thrombin was achieved. In addition, the sensor exhibited excellent selectivity against other proteins.  相似文献   

16.
We demonstrate that protein kinase can be assayed with high sensitivity on peptide-conjugated gold nanoparticles (AuNPs). Phosphorylation of peptides on the AuNP-monolayers was detected by using an anti-phosphotyrosine antibody (alpha-pY) and Cy3-labeled secondary antibody (Cy3-alpha-mIgG) as a probing molecule. When compared to conventional self-assembled monolayers (SAMs), spherical and three-dimensional geometry of AuNPs led to high surface density of peptide substrate and easy accessibility to enzyme, and consequently the resulting AuNP monolayers gave rise to improved detection sensitivity. Blocking of peptide-conjugated AuNPs with a poly(ethylene glycol) (PEG) also contributed to a higher signal-to-background ratio in kinase and its inhibition assays. The use of AuNPs as the platform surface will enable highly sensitive detection of protein kinases in a high-throughput manner.  相似文献   

17.
Gold electrodes modified by nanogold aggregates (nanogold electrode) were obtained by the electrodeposition of gold nanoparticles onto planar gold electrode. The Electrochemical response of single-stranded DNA (ssDNA) probe immobilization and hybridization with target DNA was measured by cyclic voltammograms (CV) using methylene blue (MB) as an electroactive indicator. An improving method using long sequence target DNA, which greatly enhanced the response signal during hybridization, was studied. Nanogold electrodes could largely increase the immobilization amount of ssDNA probe. The hybridization amount of target DNA could be increased several times for the manifold nanogold electrodes. The detection limit of nanogold electrode for the complementary 16-mer oligonucleotide (target DNA1) and long sequence 55-mer oligonucleotide (target DNA2) could reach the concentration of 10(-9) mol/L and 10(-11) mol/L, respectively, which are far more sensitive than that of the planar electrode.  相似文献   

18.
纳米生物复合探针具有多功能复合、多检测路径、易于信号放大、制备简便等多种优越性。基于其优越的光学性质,人们可以利用常规光学设备实现生物检测,甚至可以实现目视检测。现就本实验室在光学纳米生物探针制备和应用的研究进展作一简要综述,所述纳米生物探针类型主要有:基于表面等离子体效应的纳米生物探针、基于量子效应的纳米生物探针和基于比表面效应的纳米生物探针,并介绍如何应用这些探针进行生物传感和生物芯片的构建。  相似文献   

19.
Liu M  Yuan M  Lou X  Mao H  Zheng D  Zou R  Zou N  Tang X  Zhao J 《Biosensors & bioelectronics》2011,26(11):4294-4300
We report here an optical approach that enables highly selective and colorimetric single-base mismatch detection without the need of target modification, precise temperature control or stringent washes. The method is based on the finding that nucleoside monophosphates (dNMPs), which are digested elements of DNA, can better stabilize unmodified gold nanoparticles (AuNPs) than single-stranded DNA (ssDNA) and double-stranded DNA (dsDNA) with the same base-composition and concentration. The method combines the exceptional mismatch discrimination capability of the structure-selective nucleases with the attractive optical property of AuNPs. Taking S1 nuclease as one example, the perfectly matched 16-base synthetic DNA target was distinctively differentiated from those with single-base mutation located at any position of the 16-base synthetic target. Single-base mutations present in targets with varied length up to 80-base, located either in the middle or near to the end of the targets, were all effectively detected. In order to prove that the method can be potentially used for real clinic samples, the single-base mismatch detections with two HBV genomic DNA samples were conducted. To further prove the generality of this method and potentially overcome the limitation on the detectable lengths of the targets of the S1 nuclease-based method, we also demonstrated the use of a duplex-specific nuclease (DSN) for color reversed single-base mismatch detection. The main limitation of the demonstrated methods is that it is limited to detect mutations in purified ssDNA targets. However, the method coupled with various convenient ssDNA generation and purification techniques, has the potential to be used for the future development of detector-free testing kits in single nucleotide polymorphism screenings for disease diagnostics and treatments.  相似文献   

20.
Nucleic acid testing requires skilled personnel and expensive instrumentation. A method for the colorimetric detection of oligonucleotides that combines cellulose microparticles with biomolecular recognition is presented. DNA sequences from Trypanosoma brucei and dengue are used as model targets. Cellulose microparticles (≈20 µm) are bioactived by anchoring anti‐biotin antibodies via fusions that combine a carbohydrate‐binding module (CBM) with the ZZ fragment of protein A. Samples are prepared by incubating DNA probes immobilized on ≈14 nm gold nanoparticles (AuNPs) with biotin‐labeled targets and mixed with bioactive microparticles. The presence of unlabeled targets could also be probed by introducing a second, biotinylated DNA probe. The target:probe‐AuNP hybrids are mixed with and captured by the microparticles, which change color from white to red. Depletion of AuNPs from the liquid is also signaled by a decrease in absorbance at 525 nm. It was possible to detect targets with concentrations as low as 50 n m . In the presence of noncomplementary targets, microparticles remain white and the liquid remains red. The system is able to discriminate targets with a high degree of homology (≈53%). Overall, it is demonstrated that simple systems for the visual detection of nucleic acids can be set up by combining cellulose microparticles with biomolecular recognition agents based on CBMs and AuNPs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号