首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 468 毫秒
1.
Abstract.  Understanding the effects of low winter temperatures on mortality is essential in the development of a full understanding of the long-term population dynamics of any insect. The present study aims to examine the survival of pupae and larvae of the blow fly, Lucilia sericata , at overwintering temperatures. Groups of pupae and diapausing and nondiapausing third-stage larvae of L. sericata are maintained in cooled incubators at either 3 °C and 6 °C. Groups are removed from the incubators at 3–4-day intervals and transferred either to−8 °C or to 25 °C. After 1 h in the freezer, the larvae and pupae exposed to this cold-shock are also transferred to 25 °C. Larvae and pupae are then allowed to continue development and the number of adults emerging from each group is counted. The results demonstrate that survival decreases linearly with the period of exposure at both 3 °C and 6 °C. Mortality is higher at 3 °C than at 6 °C and, in groups that receive the cold shock, cold-shock reduces emergence by over 50%. However, there is no consistent tendency for diapausing larvae to survive prolonged cold or cold shock better than other life-cycle stages. The results suggest that the facultative development of an overwintering diapause stage in L. sericata does not appear to be an adaptation to enhance cold tolerance or resistance to cold shock. It is concluded that the survival of overwintering L. sericata is likely to be relatively less affected by low temperatures than it is by, for example, biotic factors, particularly given the buffered soil environment and short time-scales over which periods of cold act.  相似文献   

2.
Abstract The apple leaf miner Phyllonorycter ringoniella (Matsumura) (Lepidoptera: Gracillariidae) overwinters as a diapausing pupa. The diapause rate reaches 100% in early October. Diapause intensity decreases gradually from early October and diapause terminates in early February. The fresh body weight of diapausing pupae is 1.6 times that of non-diapausing pupae. The main cryoprotectant in P. ringoniella pupae is trehalose. Three stages are distinguishable as indicated by the correlations between diapause intensity, levels of cold hardiness and the trehalose content: diapause induction occurred in October, diapause development from November to December, and post-diapause quiescence from January to April. During diapause induction, the pupae accumulate low levels of trehalose and do not survive exposure to −15 °C. During diapause development, the pupae gradually accumulate more trehalose and show some ability to survive exposure to −15 °C, but not to −20 °C. During post-diapause quiescence, the pupae accumulate relatively more trehalose and cold hardiness fully develops, but decreases quickly in April. The trehalose content in pupae sampled in December is unaffected by acclimation temperatures in the range 0–30 °C, but decreases in pupae sampled in March after acclimation at temperatures from 5 to 15 °C. These results suggest that overwintering pupae of P. ringoniella have the ability to accumulate trehalose and develop a high level of cold hardiness during diapause development.  相似文献   

3.
Abstract The effect of temperature on rate of development and survival of the immature stages of a subtropical population of the black jezebel, Delias nigrina , was studied under laboratory conditions at a range of constant temperatures. Mean developmental times from first-instar larva to adult varied from 29 days at 27°C to 52 days at 19°C; the development threshold temperature and thermal constant were estimated to be 9°C and 494 degree-days, respectively. Larval developmental rates reached physiological maximum at the higher temperatures tested (25−27°C). Pupal development, by contrast, was not affected in the same way as larvae by higher temperature. Survival of the immature stages varied inversely with temperature: survival was highest at 19°C and significantly reduced at 27°C. Mortality at the higher temperature was attributable mainly to final-instar larvae and pupae. These findings indicate that, compared with other tropical pierids that have been studied, D. nigrina has: (i) a comparatively low temperature threshold; (ii) a slow rate of development; and (iii) a poor tolerance to moderately high temperatures. Physiologically, these features are more characteristic of a temperate butterfly than a tropical one. This physiological response appears to be reflected by the temperate nature of the genus as a whole, which may be related to its period of origin and evolution during past climatic events.  相似文献   

4.
温度对黑纹粉蝶越冬蛹滞育后发育的影响   总被引:1,自引:0,他引:1  
为了探讨温度对黑纹粉蝶Pieris melete越冬蛹滞育后发育的影响, 系统调查了越冬蛹滞育解除后在不同恒温下的发育历期及其在自然条件下春后的羽化情况。结果表明: 黑纹粉蝶雄虫和雌虫越冬蛹滞育后发育的阈值温度分别为7.1±1.5℃ 和7.4±0.4℃, 滞育后发育的有效积温分别为133.4±3.3日·度和155.7±5.3日·度。根据连续7年黑纹粉蝶越冬蛹在田间的羽化情况, 结合当年春季滞育后发育阈值以上的温度, 推算出田间50%个体成虫羽化时雄虫和雌虫获得的有效积温分别为142.2±12.2日·度和149.2±13.8日·度, 与滞育后发育的理论有效积温接近。据此, 利用该理论上的发育阈值温度和有效积温, 参照当年2-4月的气温, 可预测田间越冬蛹50%个体成虫羽化的时间。  相似文献   

5.
The egg and nymphal development, fecundity and survival of the green mirid, Creontiades dilutus were examined at a range of temperatures and a modified day-degree model fitted to the data. Day degree (DD) requirements for egg and nymphal development, and threshold temperatures were calculated from the fitted lines. Female fecundity and longevity, egg and nymphal development, and survival of C. dilutus were significantly influenced by temperature. Eggs and nymphs failed to complete development at temperatures below 17 and at 38°C. Females also failed to produce any eggs at 11 and 38°C. The optimum temperature range for female fecundity was found to be 26–32°C. The optimum temperature for the development of eggs was calculated from the model as 30.5°C and for nymphs as 31.5°C. The threshold temperature for development was 15.8°C for egg and 15.1°C for nymph; 69.4 and 156.7 DD were required for completing the egg and the nymphal development, respectively. At the optimum temperature, it was estimated that development from egg to adult took 15 days. Survival was highest at 26°C for eggs and at 30–32°C for nymphs.  相似文献   

6.
1 Larvae of Thaumetopoea pityocampa (Lepidoptera: Notodontidae) develop throughout the winter, although their feeding activity and survival can be impaired by adverse climatic factors. The present study investigated the survival at low temperature of larvae originating from a population with range expansion in an alpine valley in Northern Italy.
2 The supercooling point of individually analysed larvae averaged at −7 °C. This value insufficiently described the cold hardiness of the larvae; 39% of the tested larvae were alive when returned to room temperature immediately after freezing. When larval colonies inside their nest were exposed to −17 °C for 1 h after gradual temperature decrease, survival was 70.4%.
3 Rearing of larvae in the laboratory at different day/night temperatures indicated an effect of cumulative chill injury on larvae. A logistic regression explained the relationship between negative thermal sum (h°C below 0 °C) received in the laboratory experiment and larval survival. A similar relationship was demonstrated between negative thermal sum and survival of larval colonies in the field.
4 In the laboratory experiment, some tested larvae were able to survive for up to 8 weeks without feeding depending on rearing temperature. As expected, feeding occurred only when larvae were reared at temperatures of 9 °C day/0 °C night.
5 We classify the larvae of T. pityocampa as being moderate freezing tolerant. The winter behaviour allows this species to track climate warming by a rapid expansion into those areas that become compatible with the insect's development.  相似文献   

7.
1. Cold water acted differently to delay and lengthen the pupation period for the larvae of two species of the zooplankton predator Chaoborus (Diptera: Chaoboridae). During Chaoborus pupation, the zooplankton community is released from predation, while the dark-coloured Chaoborus pupae are more susceptible to their own predators.
2. Fourth instar larvae of Chaoborus americanus and C. trivittatus , collected from an oligotrophic lake, were reared individually at 5 °C in the dark. Chaoborus americanus was also reared at 9 and 12 °C under spring photoperiod conditions (L : D, 16 : 8 h). Individuals were observed through pupation to emergence (ecdysis) or death.
3.  Chaoborus americanus pupated at 5, 9 and 12 °C with substantial emergence only at 12 °C. In comparison, C. trivittatus emerged at 5 °C. Light was not a necessary cue for pupation and ecdysis, contrary to previous reports. Cold water delayed the onset and lengthened and increased the variability of the duration of pupation.
4. In Shirley Lake, C. americanus pupated in late June–early July while C. trivittatus pupated first in April and again in June–July.
5.  Chaoborus americanus pupae needed a temperature cue to complete ecdysis. The ecdysis temperature threshold helps to explain the difference in pupation timing, and the geographical distribution, of C. americanus and its relatively inflexible life history contrasted with C. trivittatus . Delayed predator pupation in years with low spring temperature can affect the community dynamics of the prey.  相似文献   

8.
The mean duration of post-diapause development of overwintered Dasineura tetensi larvae (in cocoons) was 72.8 (SD=11.4), 45.9 (SD=8.6), 28.7 (SD=6.0), 15.9 (SD=4.3), 10.4 (SD=1.9) and 10.2 (SD=1.8) days at constant temperatures of respectively 10, 12.5, 15, 17.5, 20 and 25 °C in the laboratory. No perceptible development occurred at 5 or 7.5 °C and complete mortality occurred when larvae were held at 30 °C for prolonged periods. The relationship between development rate (r days–1) and temperature (T °C) was sigmoidal between 10 and 25 °C, the logistic equation r=0.0158+0.085/(1+exp(–0.696(T–17.0))) accounting for 98% of the variation. Larvae entered the winter in diapause. Populations of cocoons were greatest in the surface soil in the centre of bushes adjacent to the crown, 69, 15, 9 and 6% of cocoons occurring in the top 0–1, 1–2, 2–3 and 3–4 cm of the soil, respectively. The time of termination of diapause in the field varied greatly between individuals and from season to season but a significant proportion (>40%) had broken diapause by the end of January in each of the three seasons studied. Diapause was not terminated in the laboratory by chilling over-wintered larvae in cocoons at –2.5, 2.5 or 10 °C for up to 28 days nor when held in a L16:D8 photoperiod. A computer-based phenological forecasting model was constructed using the development rate values (using the INSIM software developed at The Agricultural University, Wageningen, The Netherlands). The model accumulated daily development amounts calculated from daily maximum and minimum air temperatures from 1 February, the end of the coldest period of the year on average and before significant post-diapause development occurred. The model uses boxcar trains to simulate dispersion. The model predicted the time of first emergence of D. tetensi adults in spring at HRI-East Malling generally to within 6 days of the observed time of emergence, and to within 11 days at worst. There was poorer agreement between observed and predicted times of emergence when daily maximum and minimum soil temperatures (depth ca. 3 cm) were used. The use of the model to time insecticidal sprays in relation to the flowering time of blackcurrant is discussed.  相似文献   

9.
Abstract 1. Under natural conditions in Kyoto, Japan, the reproductive activities of Nicrophorus quadripunctatus Kraatz (Coleoptera: Silphidae) decreased in summer and the species showed a bimodal life cycle.
2. In the laboratory, most adult pairs raised at 20 °C under a LD 12:12 h regime reproduced when provided with a piece of chicken. In adults raised at 20 °C under a LD 16:8 h regime, however, both reproductive behaviour and ovarian development were reduced. It is concluded that these adults entered a reproductive summer diapause.
3. High temperature (25 °C) also suppressed the reproductive behaviour even under a favourable LD 12:12 h regime. In the field, therefore, adults reduce their reproductive activity in summer because of diapause induced by long-day photoperiods and direct inhibition of reproduction by high temperatures.
4. When the temperature was changed from 20 °C to 25 °C immediately after hatching of larvae, they reached the wandering stage in 95% of adult pairs. When the temperature was changed from 20 °C to 25 °C immediately after oviposition, however, no larvae hatched in 85% of pairs. Egg mortality was significantly higher at 25 °C than at 20 and 22.5 °C; no eggs hatched at 27.5 °C. The physiological mechanisms for reducing reproduction probably prevent the beetles from inefficient oviposition in summer.  相似文献   

10.
Abstract:  The endoparasitoid Thripobius semiluteus Bouček was recently introduced to Italy from Israel for the biological control of Heliothrips haemorrhoidalis (Bouché). In this study, some aspects of the biology of T. semiluteus were determined in the laboratory. Developmental time (egg to adult), potential fecundity, realized fecundity, progeny, daily rate of deposition of eggs and several demographic growth parameters were evaluated. Studies of the longevity of fed and starved adults at seven temperatures (3, 10, 15, 20, 23, 25 and 30 ± 1°C) showed that fed T. semiluteus lived longest at 15°C (36.45 days) and shortest at 3°C (1.45 days). Longevity was reduced significantly at higher and lower temperatures than 15°C and when honey was not provided. Development time was measured at six temperatures. Pupae did not complete development at 10°C. The lower theoretical temperature threshold was 9.0°C; the optimum developmental temperature and the upper lethal threshold were 28.0°C and 34.1°C respectively. The most rapid development was found at 30°C, but waSPS suffered significantly higher mortality at this temperature than at other temperatures. Ovigeny index showed that T. semiluteus is synovigenic, with a mean realized fecundity of 78.8 eggs per female. The mean progeny was 68.2 adults per female on fed adults.  相似文献   

11.
We investigated the influence of temperature and infestation sequence on interspecific competition between two fruit flies: an invasive ( Bactrocera invadens Drew, Tsuruta & White, ( B ) and a native ( Ceratitis cosyra Walker , C ) (both Diptera: Tephritidae) species. Mango fruits [ Mangifera indica L. (Anacardiaceae)] were co-infested with larvae at different constant temperatures (15, 20, 25, and 30 °C) and relative humidity of 50 ± 8%, using different infestation sequences at each temperature ( BC together; BC/CB 1, 2, and 3 days apart). There were significant effects of competition in most experimental treatments, resulting in reduced larval survival, pupal mass, and adult emergence for both species. At most of the infestation/temperature combinations, C. cosyra was clearly the inferior competitor. The only exception was at 20 °C when the outcome depended on the sequence of infestation: no C . cosyra survived when the sequence was BC , but more C . cosyra than B . invadens survived when it was CB . At 15 °C, all C. cosyra larvae died, while the development of B. invadens was prolonged and adult emergence reduced. We conclude that resource pre-emption and fluctuations in temperature in mango agroecosystems help to explain observed shifts in dominance between B. invadens and C. cosyra on mango in many parts of Africa. The small window of competitive superiority for C. cosyra at 20 °C and CB infestation sequence, together with other factors such as fecundity and alternative hosts, may allow for co-existence in some environments.  相似文献   

12.
The effects of temperature on the development and survival of Shijimiaeoides divinus barine were examined in the laboratory in 2008. The eggs and larvae were reared at temperatures of 15, 17.5, 20, 25, 30 and 35°C with a long-day photoperiod of 16 h light : 8 h dark (16L : 8D). The highest hatchability of eggs was 88.0% at 20°C, but hatchability at high temperatures of 30 and 35°C was 30 and 0%, respectively. The lowest and highest survival rates from the first to third instar were 18.8% at 15°C and 76.9% at 20°C. Few deaths were observed after the fourth instar. The shortest developmental periods of the eggs and larvae were 4.0 and 15.8 days at 30°C, and the durations of the egg and larval stages increased significantly as the temperature decreased. The developmental zero and thermal constants were 9.6°C and 82.6 degree–days for the egg stage, and 10.7°C and 306.8 degree–days for the larval stage. The developmental period of the natural population of S. divinus barine in Azumino City, Nagano Prefecture was calculated using the developmental zero, thermal constants and Azumino City temperature data.  相似文献   

13.
Abstract:  Diapause was induced in a Central European population of Ips typographus grown at 20°C when the day length decreased below 16 h [50% diapause incidence occurred in the 14.7:9.3 h L:D (light:dark) regime]. The non-diapausing adults fed on days 2–6 and 10–14 after the ecdysis and swarmed after the second feeding bout with chorionated eggs in the ovaries and sperm in the spermiducts. Neither gonads nor the flight muscles matured and no swarming occurred in the diapausing adults. The development from egg to adult took about 34 days in both 18:6 h (no diapause) and 12:12 h L:D (diapause) regimes, but it was extended by up to 30% without diapause induction when only larvae or pupae were exposed to L:D 12:12 h. Diapause was induced in insects reared at L:D 12:12 h through the last larval and the pupal instars and/or in the adult stage. Temperature ≥ 23°C prevented diapause induction at L:D 12:12 h but diapause occurred at L:D 14:10 h associated with 26:6°C thermoperiod. The effect of thermoperiods on the developmental rate requires further research. Exposure of the non-diapausing adults to 5°C for several days blocked feeding and evoked a diapause-like state, whereas diapausing adults fed and their gonads slowly developed at this temperature. Diapausing adults exposed in forest to low night temperatures and transferred in October to 20°C readily reproduced at 18:6, but not 12:12 h L:D photoperiods. After 2-months at 5°C and darkness, they became insensitive to the photoperiod, matured and most of them also swarmed at 20°C in the 12:12 h L:D regime. In a Scandinavian population, diapause occurred at 18:6 h L:D and was terminated either by exposure to 5°C or by very long photoperiod (L:D 20:4 h) combined with high temperature (23°C).  相似文献   

14.
Abstract
No immature stages of Culex annulirostris were found during field sampling in 1979–1980 when the average water temperature was < 17 °C; they reappeared when the average water temperature was 19 °C and reached the peak density (mean 107 immatures/cylinder) at 26.5 °C.
The effect of 6 temperatures (15–40°C) on egg hatching, development and survival of the immature stages of Cx annulirostris in the laboratory showed that at 15 and 40°C, eggs failed to hatch and larvae died in the first instars. The optimum temperatures for egg hatching and the survival of immature stages were 25 and 30°C. At these temperatures, 85 and 82% respectively of egg rafts hatched, the mean number of larvae per raft was 258 ± 9.8 and 260 ± 11.4 with immature survival of 83.5 and 79.0% respectively. Mean time to hatch at 20–35°C ranged from 1.2 d (35°C) to 2.9 d (20 °C). Developmental times from first instar to adult ranged from 7.1 d (35 °C) to 25.2 d (20 °C). The threshold for development of the immatures was 15.6 ± 2.5°C and the thermal constant was 142.9 ± 26.5 day—degrees (incubation temperatures 20–35°C). At less suitable temperatures of 20 and 35 °C, hatching (57.5 and 45%), number larvae per raft (mean 139.8 ± 9.8 and 102.6 ± 14.2) and survival were low.  相似文献   

15.
This paper shows that, within Central Europe, parasitism of the European corn borer (ECB) by the tachinid parasitoid, Lydella thompsoni (LT) increased from 0.47 to 1.49% in south-western Poland (51°03'N), to 4.31–21.95% in eastern Slovakia (48°20'N). The synchrony between the parasitoid LT and its primary host, the ECB, was studied in Central Europe under conditions where the host is univoltine, but the parasitoid is bivoltine. A cumulated total of more than 400 LT was field-collected from overwintering ECB larvae. The parasitoid hibernated as larva inside the host. Pupation started in the second half of the following March and 50% of pupation was surpassed in the first half of April. The first parasitoid adults emerged at the end of April and the majority at the beginning of May. Development threshold temperatures for 50% pupation was determined to be 2.7°C, and for 50% adult emergence 5.0°C; the respective thermal constants were 178.8–179.8 and 237.7–251.8 Celsius degree-days. Emerged adults did not parasitize overwintered ECB larvae in spring, hence there must be an alternate host for the first generation of LT in areas of univoltine life cycle of the ECB. Parasitization of the ECB larvae by LT continued until the end of July. The first parasitoid adults from this second generation emerged in the second half of August. By the end of the season, nearly one-third of LT adults had emerged. The rest of this generation apparently overwintered in the larval stage.  相似文献   

16.
1. From 1966 to 1995, dates were recorded when adult alder-flies, Sialis lutaria L., were first seen (30-year range: 23 April – 25 May), 50% of the maximum density occurred (4 May – 4 June), and maximum density occurred (11 May – 17 June) along 200 m of Windermere shore. These emergence dates occurred at similar temperatures, estimated by mean values for both the emergence date and the week prior to emergence. The latter was the least variable at 10.1 °C (95% CL ± 0.37) for start of emergence, 11.2 °C (± 0.49) for 50% maximum density, 14.2 °C (± 0.51) for maximum density.
2. Final-instar larvae pupated in damp soil just above the water line. As laboratory temperatures were increased slowly from an initial 5 °C, the cumulative number of larvae leaving the water to pupate increased. A quadratic equation described this relationship from a threshold temperature of 7.2 °C to completion at 14.0 °C (50% point, 9.3 °C). The relationship between successful pupations and constant temperatures in the laboratory was well described by a quadratic equation with an optimum 14.9 °C (over 90% success) and no success outside the range 7–23 °C. A negative power-function described the relationship between days required for pupation and temperature, ranging from c . 28 days at 8.2 °C to c . 4 days at 22.1 °C.
3. Dates for larvae leaving the lake to pupate were back-calculated from dates for adult emergence, using the power-function for pupation time. Mean temperatures for estimated dates on which larvae left the lake to pupate were less variable than those for adult emergence, being 7.5 °C (± 0.20) for the start of pupation, 9.4 °C (± 0.16) for 50% maximum density, 13.7 °C (± 0.16) for maximum density. These values are similar to those obtained in the laboratory and can be used to predict pupation and adult emergence for different temperature regimes.  相似文献   

17.
Abstract 1 We conducted a laboratory experiment to quantify the stage‐specific effects of temperature on development time and survival of Otiorhynchus sulcatus (Fabricius) (Coleoptera: Curculionidae), a serious economic pest of horticultural crops. Quantification of the relationship between stage development and temperature is required to predict seasonal occurrence of particular life stages and to optimize the timing of monitoring and control tactics. 2 Temperature‐dependent survival rate was quantified using an extreme value function and showed a skewed bell shape, due to the vulnerability of the insect to high temperature in all stages. 3 The development times of O. sulcatus decreased with increasing temperature up to 27 °C for eggs and 24 °C for larvae and pupae. The nonlinear relationship between development rate and temperature was described using the Logan model, and enabled us to estimate the optimum temperature for development. 4 The inherent variation of development time was estimated from the cumulative frequency of stage emergence, which was modelled using the cumulative Weibull function. 5 The stage emergence model, which simulated the transition from one stage to the next in relation to temperature and cohort age, was constructed by incorporating stage‐specific survival and development rate submodels with the Weibull model of stage frequency. 6 Our results show a difference in optimal temperature regime among developmental stages of O. sulcatus.  相似文献   

18.
Abstract:  The development of the solitary endoparasitoid Meteorus gyrator was compared in the six larval stages of its host, the tomato moth Lacanobia oleracea , and at five constant temperatures. The host instar at the time of parasitism had a marked effect on the larval developmental period of the parasitoid, such that larvae derived from eggs oviposited in first instar hosts took approximately 18 days to egress, whilst those derived from eggs oviposited in sixth instar hosts took <10 days. The weight of cocoons was greatest when oviposition was into final instar hosts, where female cocoons averaged 12.8 mg, and lowest in those derived from eggs oviposited into first instars (9.2 mg). The parasitoid's larval development rate in third instar hosts increased with temperature increments in a linear fashion up to 25°C , after which development times were only marginally increased. At 10°C, the mean larval development time was approximately 90 days and pupal development 35–40 days, whilst at 25°C development times were 10–11 days for larvae and 6–7 days for the pupae. In the majority of cases, overall development times were marginally longer (<1 day) in females than in males.  相似文献   

19.
短时高温对桃小食心虫生长发育与繁殖的影响   总被引:8,自引:0,他引:8  
【目的】桃小食心虫Carposina sasakii是我国北方落叶果树的重要害虫。本研究旨在探索短时高温对桃小食心虫生长发育和繁殖的影响。【方法】在室内23±1℃、 相对湿度80%±7%和15L∶9D条件下, 测定了桃小食心虫卵、 幼虫、 蛹、 成虫在经历35, 38和41℃高温处理1~4 h后各阶段的发育历期、 存活率和产卵量。【结果】 短时高温对卵的孵化率无明显影响; 经41℃处理后, 初蛀果幼虫(1日龄)的发育历期明显延长, 且存活率显著降低, 3日龄以上的幼虫受到的影响不明显; 11日龄蛹的羽化率在38℃和41℃处理中明显降低, 畸形率也显著升高; 经38℃和41℃处理的成虫存活率降低, 寿命缩短, 产卵量也减少。【结论】短时高温处理对桃小食心虫卵的影响较小, 而对成虫的影响较大。这些结果有助于深入了解该虫在高温季节种群数量变动机制。  相似文献   

20.
SUMMARY. 1. Soyedina carolinensis Claassen, a leaf shredding stonefly, was reared in a series of three laboratory experiments from early instar to adult on different species of deciduous leaves and at various constant and fluctuating temperature regimes.
2. Experiment 1, which involved rearing larvae on fourteen different leaf diets at ambient stream temperatures, showed that diet significantly affected larval growth and adult size but did not affect overall developmental time.
3. Experiment 2, which involved rearing larvae on five different leaf diets at each of three fluctuating temperature regimes (viz ambient White Clay Creek (WCC), ambient WCC+3°C, and ambient WCC+6°C), showed that: (i) adding 6°C to the normal temperature regime of WCC was lethal to 99% of the larvae regardless of diet; and (ii) warming WCC by 3°C did not affect developmental time but did significantly reduce adult size relative to adults reared at WCC temperatures on certain diets.
4. Experiment 3, which involved rearing larvae on five different leaf diets at each of five constant temperatures (viz 5, 10, 15, 20, 25°C), showed that: (i) temperature significantly affected the mortality, growth, and development time of larvae whereas diet only affected larval growth and mortality; (ii) temperatures at or near 10°C yielded maximum larval growth and survival for most diets; (iii) at 5°C, larval mortality was high and growth was low resulting in a few small adults for most diets; (iv) larval mortality was at or near 100% at 15°C regardless of diet; and (v) no larvae survived at 20 and 25°C.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号