首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Penicillin resistance in pneumococci is due to the appearance of high molecular-weight penicillin-binding proteins (PBPs) that have reduced affinity for the antibiotic. We have compared the PBX 2x genes (pbpX) of one penicillin-susceptible and five penicillin-resistant clinical isolates of Streptococcus pneumoniae isolated from various parts of the world. All of the resistant isolates contained a low-affinity form of PBP 2x. The 2 kb region of the two penicillin-susceptible isolates differed at only eight nucleotide sites (0.4%) and resulted in one single amino acid difference in PBP 2x. In contrast, the sequences of the PBP 2x genes from the resistant isolates differed overall from those of the susceptible isolates at between 7 and 18% of nucleotide sites and resulted in between 27 and 86 amino acid substitutions in PBP 2x. The altered PBP 2x genes consisted of regions that were similar to those of susceptible strains (less than 3% diverged), alternating with regions that were very different (18-23% diverged). The presence of highly diverged regions within the PBP 2x genes of the resistant isolates contrasts with the uniformity of the sequences of the amylomaltase genes from the same isolates, and with the uniformity of the PBP 2x genes in the two susceptible isolates. It suggests that the altered PBP 2x genes have arisen by localized interspecies recombinational events involving the PBP 2x genes of closely related streptococci, as has been suggested to occur for altered PBP 2b genes (Dowson et al., 1989b). The PBP 2x genes from the resistant isolates could transform the susceptible strain R6 to increased levels of resistance to beta-lactam antibiotics, indicating that the altered forms of PBP 2x in the resistant isolates contribute to their resistance to penicillin.  相似文献   

2.
Streptococcus pneumoniae is a major cause of morbidity and mortality worldwide. The existence of approximately 90 antigenically distinct capsular serotypes has greatly complicated the development of an effective pneumococcal vaccine. Virulence-associated proteins common and conserved among all capsular types now represent the best strategy to combat pneumococcal infections. PiuA and PiaA are the lipoprotein components of two pneumococcal iron ABC transporters and are required for full virulence in mouse models of infection. Here we describe a study of the distribution and genetic diversity of PiuA and PiaA within typical and atypical S. pneumoniae, Streptococcus oralis, and Streptococcus mitis strains. The genes encoding both PiuA and PiaA were present in all typical pneumococci tested, (covering 20 and 27 serotypes, respectively). The piuA gene was highly conserved within the typical pneumococci (0.3% nucleotide divergence), but was also present in "atypical" pneumococci and the closely related species S. mitis and S. oralis, showing up to 10.4% nucleotide divergence and 7.5% amino acid divergence from the typical pneumococcal alleles. Conversely, the piaA gene was found to be specific to typical pneumococci, 100% conserved, and absent from the oral streptococci, including isolates of S. mitis known to possess pneumolysin and autolysin. These are desirable qualities for a vaccine candidate and as a diagnostic tool for S. pneumoniae.  相似文献   

3.
Abstract The region encoding the transpeptidase domain of the penicillin-binding protein 2B (PBP 2B) gene of two penicillin-resistant clinical isolates of Streptococcus oralis was > 99.6% identical in nucleotide sequence to that of a penicillin-resistant serotype 6 isolate of Streptococcus pneumoniae . The downstream 849 base pairs of these genes were identical. Analysis of the data indicates that the PBP gene has probably been transferred from S. pneumoniae into S. oralis , rather than vice versa, and shows that one region of this resistance gene has been distributed horizontally both within S. pneumoniae and into two different viridans group streptococci.  相似文献   

4.
5.
The aim of the study was to evaluate the species distribution, antimicrobial susceptibility and erythromycin-penicillin resistance mechanisms of viridans streptococci (VGS) isolates from blood cultures of adult patients with underlying diseases. Fifty VGS blood culture isolates were screened for their antibiotic susceptibilities against penicillin G, erythromycin and tetracycline by E-test. Clindamycin, cefotaxime, chloramphenicol, levofloxacin, linezolid and vancomycin susceptibility were performed by broth microdilution method. Erythromycin and penicillin resistance genotypes, ermB and mefA/E, pbp1a, pbp2b and pbp2x are amplified using PCR method. The clinical isolates included Streptococcus mitis (n. 19), S.oralis (n. 13), S.sanguinis, S.parasanguinis (n. 6, each), S.salivarius, S.vestibularis (n. 2, each), S.constellatus, S.sobrinus (n. 1, each). The percentage resistance against erythromycin and penicillin was 36% and 30%, respectively. The genotypic carriage rate of erythromycin resistance genes were: 56% ermB, 28% mefE, 8% ermB+mefE. Penicillin-resistant isolates carried pbp2b (33.3%) and pbp2x (20%) genes. Twenty-four VGS isolates were recovered from patients with cancer. S.mitis and S.oralis predominated among patients with cancer who had erythromycin and penicillin resistance isolates. The importance of classical antimicrobial agents like penicillin and erythromycin warrants the continuous surveillance of invasive VGS isolates and can guide better treatment options especially in patients with underlying diseases.  相似文献   

6.
The presence and sequence variation of the murM gene were studied in a large collection (814 strains) of genetically diverse Streptococcus pneumoniae isolates, which included 27 different serogroups and both penicillin-resistant (423 isolates, 67 pulsed-field gel electrophoretic [PFGE] types) and intermediately penicillin-resistant (165 isolates, 66 PFGE types) and penicillin-susceptible (226 isolates, 135 PFGE types) strains. Diversity of the murM sequences was tested by hybridization with mainly two kinds of probes: one derived from the amplification of the nucleotide sequence between nucleotides 201 and 624 in the penicillin-susceptible laboratory strain R36A (murMA probe) and a second probe that amplified the comparable, highly divergent sequence in the penicillin-resistant strain Pen6 (murMB probe). The great majority of the strains (761 of 814), including both penicillin-susceptible and penicillin-resistant isolates, reacted exclusively with the murMA probe. A smaller group of penicillin-resistant strains (48 of 814 isolates) reacted only with the murMB DNA probe, and an additional 5 isolates reacted with both probes. High-pressure liquid chromatography analysis of the peptidoglycan of strains hybridizing with murMB showed that they invariably contained an increased proportion of branched peptides. Complete sequencing of murM from a group of penicillin-resistant isolates allowed the identification of a number of different murMB alleles that differed in the length and exact position of the divergent (Pen6 type) sequences within the particular murM. The close similarity of these divergent sequences in the various murM alleles suggests a possible common heterologous origin.  相似文献   

7.
Mitis group streptococci express variable pilus islet 2 pili   总被引:1,自引:0,他引:1  

Background

Streptococcus oralis, Streptococcus mitis, and Streptococcus sanguinis are members of the Mitis group of streptococci and agents of oral biofilm, dental plaque and infective endocarditis, disease processes that involve bacteria-bacteria and bacteria-host interactions. Their close relative, the human pathogen S. pneumoniae uses pilus-islet 2 (PI-2)-encoded pili to facilitate adhesion to eukaryotic cells.

Methodology/Principal Findings

PI-2 pilus-encoding genetic islets were identified in S. oralis, S. mitis, and S. sanguinis, but were absent from other isolates of these species. The PI-2 islets resembled the genetic organization of the PI-2 islet of S. pneumoniae, but differed in the genes encoding the structural pilus proteins PitA and PitB. Two and three variants of pitA (a pseudogene in S. pneumoniae) and pitB, respectively, were identified that showed ≈20% difference in nucleotide as well as corresponding protein sequence. Species-independent combinations of pitA and pitB variants indicated prior intra- and interspecies horizontal gene transfer events. Polyclonal antisera developed against PitA and PitB of S. oralis type strain ATCC35037 revealed that PI-2 pili in oral streptococci were composed of PitA and PitB. Electronmicrographs showed pilus structures radiating >700 nm from the bacterial surface in the wild type strain, but not in an isogenic PI-2 deletion mutant. Anti-PitB-antiserum only reacted with pili containing the same PitB variant, whereas anti-PitA antiserum was cross-reactive with the other PitA variant. Electronic multilocus sequence analysis revealed that all PI-2-encoding oral streptococci were closely-related and cluster with non-PI-2-encoding S. oralis strains.

Conclusions/Significance

This is the first identification of PI-2 pili in Mitis group oral streptococci. The findings provide a striking example of intra- and interspecies horizontal gene transfer. The PI-2 pilus diversity provides a possible key to link strain-specific bacterial interactions and/or tissue tropisms with pathogenic traits in the Mitis group streptococci.  相似文献   

8.
Genetic Diversity of the Streptococcal Competence (com) Gene Locus   总被引:6,自引:0,他引:6       下载免费PDF全文
The com operon of naturally transformable streptococcal species contains three genes, comC, comD, and comE, involved in the regulation of competence. The comC gene encodes a competence-stimulating peptide (CSP) thought to induce competence in the bacterial population at a critical extracellular concentration. The comD and comE genes are believed to encode the transmembrane histidine kinase and response regulator proteins, respectively, of a two-component regulator, with the comD-encoded protein being a receptor for CSP. Here we report on the genetic variability of comC and comD within Streptococcus pneumoniae isolates. Comparative analysis of sequence variations of comC and comD shows that, despite evidence for horizontal gene transfer at this locus and the lack of transformability of many S. pneumoniae strains in the laboratory, there is a clear correlation between the presence of a particular comC allele and the cognate comD allele. These findings effectively rule out the possibility that the presence of noncognate comC and comD alleles may be responsible for the inability to induce competence in many isolates and indicate the importance of a functional com pathway in these isolates. In addition, we describe a number of novel CSPs from disease-associated strains of S. mitis and S. oralis. The CSPs from these isolates are much more closely related to those from S. pneumoniae than to most CSPs previously reported from S. mitis and S. oralis, suggesting that these particular organisms may be a potential source of DNA in recombination events generating the mosaic structures commonly reported in genes of S. pneumoniae that are under strong selective pressure.  相似文献   

9.
The aim of this study was to investigate the nature of the amino acid motifs found in penicillin-binding proteins (PBP) 2b, 2x, and 1a of penicillin-nonsusceptible Streptococcus pneumoniae isolates from Shenyang, China, and to obtain information regarding the prevalence of alterations within the motifs or in positions flanking the motifs. For 18 clinical isolates comprising 4 penicillin-susceptible S. pneumoniae, 5 penicillin-intermediate S. pneumoniae, and 9 penicillin-resistant S. pneumoniae. the DNA sequences of PBP2b, PBP2x, and PBP1a transpeptidase domains were determined and then genotyped by multilocus sequence typing. Sequence analysis revealed that most penicillin-nonsusceptible S. pneumoniae isolates (penicillin MIC > or = 1.5 microg/mL and cefotaxime MIC > or = 2 microg/mL) shared identical PBP2b, PBP2x, and PBP1a amino acid profiles. Most penicillin-resistant S. pneumoniae isolates were ST320 (4-16-19-15-6-20-1), the double-locus variant of the Taiwan19F-14 clone. This study will serve as a basis for future monitoring of genetic changes associated with the emergence and spread of beta-lactam resistance in Shenyang, China.  相似文献   

10.
Sixteen isolates of penicillin-resistant Streptococcus pneumoniae (penicillin-resistant pneumococci, PRP) serotype 23 with identical antibiograms were examined by pyrolysis mass spectrometry (PYMS) as a possible method of rapid inter-strain comparison. Some of the isolates were from well-documented hospital outbreaks of PRP infection whilst others were sporadic isolates. The results were in good agreement with the epidemiological data and showed that PYMS can distinguish strains within a single serotype of Strep. pneumoniae . Pyrolysis mass spectrometry is an attractive technique for the identification and management of nosocomial infections with penicillin-resistant strains of Strep. pneumoniae .  相似文献   

11.
Genetic plasticity plays a central role in the biology of the human pathogen Streptococcus pneumoniae. This is illustrated by the existence of at least 90 different capsular types (the polysaccharide capsule has an essential antiphagocytic function) as well as by the rapid emergence of penicillin-resistant (PenR) pneumococcal isolates. Natural genetic transformation is believed to be essential for this genetic plasticity; capsular types can be switched by intraspecies transformation, whereas interspecies transformation is responsible for the appearance, in the PenR isolates, of mosaic pbp genes, which encode proteins with reduced affinity for penicillin. Data on the regulation of competence for transformation in S. pneumoniae, on the control of intra- and interspecies genetic exchange and on the shuffling and capture of exogenous sequences during transformation are reviewed. Possible links between transformation and changes in environmental conditions are discussed, and the adaptive 'strategy' deduced for S. pneumoniae is compared with that of Escherichia coli.  相似文献   

12.
The occurrence of highly variable penicillin-binding proteins (PBPs) in penicillin-resistant Streptococcus pneumoniae suggested that transfer of homologous genes from related species may be involved in resistance development. Antiserum and monoclonal antibodies raised against PBPs 1a and 2b from the susceptible S. pneumoniae R6 strain were used to identify related PBPs in 41 S. mitis, S. sanguis I and S. sanguis II strains mostly isolated in South Africa with MIC values ranging from less than 0.15 to 16 mg/ml. Furthermore, the possibility of genetic exchange was examined with 30 penicillin-resistant strains of this collection (MIC greater than 0.06 mg/ml) as donors using S. pneumoniae R6 as recipient in transformation experiments. The majority of S. mitis and S. sanguis II strains but none of the S. sanguis I strains could transform penicillin resistance genes into S. pneumoniae R6. All positive donor strains and all susceptible isolates of S. mitis and S. sanguis II strains contained PBPs which cross-reacted with the anti-PBP 1a and/or anti-PBP 2b antibodies. On the other hand, only five of the 14 S. sanguis I strains contained a PBP that reacted with one of the antibodies. This strongly suggested the presence of genes homologous to the pneumococcal PBP 1a and 2b genes in viridans streptococci, and documents that penicillin resistance determinants can be transformed from viridans streptococci into the pneumococcus.  相似文献   

13.
The penicillin-binding protein 2 genes (penA) of penicillin-resistant Neisseria meningitidis have a mosaic structure that has arisen by the introduction of regions from the penA genes of Neisseria flavescens or Neisseria cinerea. Chromosomal DNA from both N. cinerea and N. flavescens could transform a penicillin-susceptible isolate of N. meningitidis to increased resistance to penicillin. With N. flavescens DNA, transformation to resistance was accompanied by the introduction of the N. flavescens penA gene, providing a laboratory demonstration of the interspecies recombinational events that we believe underlie the development of penicillin resistance in many meningococci in nature. Surprisingly, with N. cinerea DNA, the penicillin-resistant transformants did not obtain the N. cinerea penA gene. However, the region of the penA gene derived from N. cinerea in N. meningitidis K196 contained an extra codon (Asp-345A) which was not found in any of the four N. cinerea isolates that we examined and which is known to result in a decrease in the affinity of PBP 2 in gonococci.  相似文献   

14.
目的探讨耐青霉素肺炎链球菌pbp2b和pbp1 a基因的突变与青霉素耐药的关系,为明了肺炎链球菌的耐药性变异机制,防治其感染提供实验依据。方法从呼吸道感染患儿痰标本中分离肺炎链球菌163株,液体培养基连续稀释法测定其对青霉素的最小抑菌浓度(M IC),套式聚合酶链反应(nPCR)扩增pbp2b和pbp1 a基因,扩增产物直接DNA测序,所测序列与青霉素敏感株(SPN R6)的基因序列进行比较,并分析其氨基酸结构的改变。结果 163株肺炎链球菌中检出青霉素敏感菌75株,中度敏感17株,青霉素耐药菌71株(44%)。耐药菌中58株存在pbp2b突变(81.7%),其中,56株为点突变,2株为CCT插入突变;在27株有pbp2b基因突变的B型和C型耐药菌中,21株出现了不同程度的pbp1 a基因突变。PBP2B氨基酸结构改变以苏氨酸变为丙氨酸、精氨酸变为赖氨酸为主,PBP1A以丙氨酸变为苏氨酸、谷氨酸变为天门冬氨酸为主。结论肺炎链球菌的pbp2b和pbp1 a基因突变与对青霉素的耐药性密切相关,PBP2b突变导致低水平耐药;PBP2b和PBP1A突变导致高水平耐药。  相似文献   

15.
We have detected a cholesterol-dependent cytolysin, which we have named mitilysin, in a small number of Streptococcus mitis isolates. We have sequenced the mitilysin gene from seven isolates of S. mitis. Comparisons with the pneumococcal pneumolysin gene show 15 amino acid substitutions. S. mitis appear to release mitilysin extracellularly. Certain alleles of mitilysin are not recognized by a monoclonal antibody raised to the related toxin pneumolysin. Based on enzyme-linked immunosorbent assay and neutralization assay results, one isolate of S. mitis may produce a further hemolytic toxin in addition to mitilysin. As genetic exchange is known to occur between S. mitis and Streptococcus pneumoniae, this finding may have implications for the development of vaccines or therapies for pneumococcal disease that are based on pneumolysin.  相似文献   

16.
The two-component signal-transducing system CiaRH of Streptococcus pneumoniae plays an important role during the development of beta-lactam resistance in laboratory mutants. We show here that a functional CiaRH system is required for survival under many different lysis-inducing conditions. Mutants with an activated CiaRH system were highly resistant to lysis induced by a wide variety of early and late cell wall inhibitors, such as cycloserine, bacitracin, and vancomycin, and were also less susceptible to these drugs. In contrast, loss-of-function CiaRH mutants were hypersusceptible to these drugs and were apparently unable to maintain a stationary growth phase in normal growth medium and under choline deprivation as well. Moreover, disruption of CiaR in penicillin-resistant mutants with an altered pbp2x gene encoding low-affinity PBP2x resulted in severe growth defects and rapid lysis. This phenotype was observed with pbp2x genes containing point mutations selected in the laboratory and with highly altered mosaic pbp2x genes from penicillin-resistant clinical isolates as well. This documents for the first time that PBP2x mutations required for development of beta-lactam resistance are functionally not neutral and are tolerated only in the presence of the CiaRH system. This might explain why cia mutations have not been observed in penicillin-resistant clinical isolates. The results document that the CiaRH system is required for maintenance of the stationary growth phase and for prevention of autolysis triggered under many different conditions, suggesting a major role for this system in ensuring cell wall integrity.  相似文献   

17.
Compared with most penicillin-susceptible isolates of Streptococcus pneumoniae, penicillin-resistant clinical isolate Hun 663 contains mosaic penicillin-binding protein (PBP) genes encoding PBPs with reduced penicillin affinities, anomalous molecular sizes, and also cell walls of unusual chemical composition. Chromosomal DNA prepared from Hun 663 was used to transform susceptible recipient cells to donor level penicillin resistance, and a resistant transformant was used next as the source of DNA in the construction of a second round of penicillin-resistant transformants. The greatly reduced penicillin affinity of the high-molecular-weight PBPs was retained in all transformants through both genetic crosses. On the other hand, PBP pattern and abnormal cell wall composition, both of which are stable, clone-specific properties of strain Hun 663, were changed: individual transformants showed a variety of new, abnormal PBP patterns. Furthermore, while the composition of cell walls resembled that of the DNA donor in the first-round transformants, it became virtually identical to that of susceptible pneumococci in the second-round transformants. The findings indicate that genetic elements encoding the low affinity of PBPs and the penicillin resistance of the bacteria are separable from determinants that are responsible for the abnormal cell wall composition that often accompanies penicillin resistance in clinical strains of pneumococci.  相似文献   

18.
Penicillin-resistant strains of Streptococcus pneumoniae possess forms of penicillin-binding proteins (PBPs) that have a low affinity for penicillin compared to those from penicillin-sensitive strains. PBP genes from penicillin-resistant isolates are very variable and have a mosaic structure composed of blocks of nucleotides that are similar to those found in PBP genes from penicillin-sensitive isolates and blocks that differ by up to 21%. These chromosomally encoded mosaic genes have presumably arisen following transformation and homologous recombination with PBP genes from a number of closely related species. This study shows that PBP2B genes from many penicillin-resistant isolates of S. pneumoniae contain blocks of nucleotides originating from Streptococcus mitis. In several instances it would appear that this material alone is sufficient to produce a low affinity PBP2B. In other examples PBP2B genes possess blocks of nucleotides from S. mitis and at least one additional unidentified species. Mosaic structure was aiso found in the PBP2B genes of penicillin-sensitive isolates of S. mitis or S. pneumoniae. These mosaics did not confer penicillin resistance but nevertheless reveal something of the extent to which localized recombination occurs in these naturally transformable streptococci.  相似文献   

19.
Bacteria that are competent for natural genetic transformation, such as pneumococci and their commensal relatives Streptococcus mitis and Streptococcus oralis , take up exogenous DNA and incorporate it into their genomes by homologous recombination. Traditionally, it has been assumed that genetic material leaking from dead bacteria constitutes the sole source of external DNA for competent streptococci. Here we describe a mechanism for active acquisition of homologous DNA that dramatically increases the efficiency of gene exchange between and within the streptococcal species mentioned above. This mechanism gives competent streptococci access to a common gene pool that is significantly larger than their own genomes, a property representing a considerable advantage when these bacteria are subjected to external selection pressures, such as vaccination and treatment with antibiotics.  相似文献   

20.
Summary The two pathogenic species of Neisseria, N. meningitidis and N. gonorrhoeae, have evolved resistance to penicillin by alterations in chromosomal genes encoding the high molecular weight penicillin-binding proteins, or PBPs. The PBP 2 gene (penA) has been sequenced from over 20 Neisseria isolates, including susceptible and resistant strains of the two pathogenic species, and five human commensal species. The genes from penicillin-susceptible strains of N. meningitidis and N. gonorrhoeae are very uniform, whereas those from penicillin-resistant strains consist of a mosaic of regions resembling those in susceptible strains of the same species, interspersed with regions resembling those in one, or in some cases, two of the commensal species. The mosaic structure is interpreted as having arisen from the horizontal transfer, by genetic transformation, of blocks of DNA, usually of a few hundred base pairs. The commensal species identified as donors in these interspecies recombinational events (N. flavescens and N. cinerea) are intrinsically more resistant to penicillin than typical isolates of the pathogenic species. Transformation has apparently provided N. meningitidis and N. gonorrhoeae with a mechanism by which they can obtain increased resistance to penicillin by replacing their penA genes (or the relevant parts of them) with the penA genes of related species that fortuitously produce forms of PBP 2 that are less susceptible to inhibition by the antibiotic. The ends of the diverged blocks of DNA in the penA genes of different penicillin-resistant strains are located at the same position more often than would be the case if they represent independent crossovers at random points along the gene. Some of these common crossover points may represent common ancestry, but reasons are given for thinking that some may represent independent events occurring at recombinational hotspots. Offprint requests to: B.G. Spratt  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号