首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 531 毫秒
1.
The fluorescence probe 1-anilinonaphthalene-8-sulfonate (ANS) has been used to characterize the anion transport properties of normal hepatocytes and hepatoma tissue culture cells. Incubation of hepatocytes in the presence of ANS (20 micron) resulted in a 35-fold enhancement of fluorescence and a 50 nm blue shift. The time course of this process is biphasic. A rapid initial fluorescence enhancement suggests ANS binding to the plasma membrane, and a slower component reflects the uptake of ANS into intracellular compartments. Analysis of ANS uptake showed this latter process to be saturable, with a Km of 10 micron, to be temperature dependent and to occur only in viable cells. The above observations suggest a carrier-mediated anion transport mechanism. Incubation of hepatoma tissue culture cells with ANS (20 micron) gave a fluorescence emission spectrum similar to that obtained from purified plasma membranes. The kinetics of this interaction only exhibited a rapid initial binding of ANS. The second slow component was now absent, suggesting that ANS transport by the malignant cell system was greatly reduced. Transport of ANS could, however, be stimulated in the presence of the local anesthetic tetracaine. The observed transport was now saturable, temperature dependent, and as in normal hepatocytes, required viable cells, again indicating a carrier-mediated transport system. These studies suggest a significant alteration in membrane function in hepatoma tissue culture cells resulting in a major defect in anion transport.  相似文献   

2.
1. The membrane perturbations induced by the interaction of the fluorescent probe 1-anilino-8-naphthalene sulfonate (ANS) with human red blood cells were studied. 2. ANS below 0.5 mM inhibits partially (20% maximum) the ouabain-insensitive Na+ and K+ influx and efflux. Above 0.5 mM ANS increases both Na+ and K+ leak fluxes. The increased cation leaks are larger for Na+ than K+. 3. The (Na+ +K+)-ATPase and ouabain-sensitive Na+ and K+ fluxes are inhibited by ANS. Ouabain-insensitive, Mg2+-dependent ATPase activity of ghosts is stimulated by [ANS] less than 0.3 mM and inhibited by [ANS] greater than 0.3 mM. 4. ANS also inhibits the Na+-dependent, ouabain-insensitive K+ influx that is inhibited by ethacrynic acid and furosemide. 5. Red cells become crenated with [ANS] less than 1 mM and sphere at [ANS] greater than 1 mM. In the former conditions hypotonic hemolysis is decreased whereas the latter increase osmotic fragility. 6. It is suggested that ANS expands the membrane asymmetrically by binding preferentially to the external membrane surface. 7. It is concluded that ANS is a general inhibitor of ion transport, particularly of those processes thought to involve facilitated-diffusion mechanisms. The increased cation leaks observed at high ANS concentrations may be related to prehemolytic membrane disruption. 8. The membrane perturbations caused by ANS are compared to those caused by other reversible inhibitors of anion exchange in red blood cells. Their possible modes of action are discussed.  相似文献   

3.
V N Uverski? 《Tsitologiia》1999,41(2):183-189
Changes in ANS fluorescence decay parameters induced by the interaction of the probe with proteins have been investigated. The existence of at least two different modes of interactions between the ANS and protein was established. The interactions of the first type are connected with binding of an ANS molecule with the surface of a protein molecule. In this case ANS molecules are well acceptable for a solvent. The interactions of the second type are characteristic of the protein-embedded ANS molecules. The decay time values of the second type complexes change considerably (> 1.5-fold) during the protein molecule transformation into the molten globule-like conformation. The molecular model explaining such a behaviour is suggested.  相似文献   

4.
Primary monolayer cultures of adult rat hepatocytes were used to study the temporal interaction of epidermal growth factor (EGF) and insulin in their stimulation of DNA synthesis. The hepatocytes were cultured both under defined conditions and with serum. EGF and insulin interacted synergistically. The entry into S phase (G1 exit) followed first-order kinetics both in untreated and hormone-stimulated cells. Addition of EGF and insulin at the time of plating did not alter the lag period before the DNA synthesis started (25-26 h), but the rate constant for the S phase entry increased five- to sixfold. Experiments where the time of hormone addition was varied indicated that insulin exerted its strongest effect at the time of plating, whereas the cells became more responsive to EGF after being cultured for up to 40-50 h. The responsiveness to EGF at these later stages required an early exposure of the hepatocytes to insulin. When the administration of EGF to insulin-pretreated hepatocytes was postponed for 44 h after plating in serum-free medium, the cellular sensitivity was increased as compared to EGF treatment at 0 h (a one-log shift of the dose-effect curve), the rate of S phase entry was more rapid, and the lag period for the onset of the EGF effect (i.e., shift of rate constant) was shortened (6-7 h vs. 26 h).  相似文献   

5.
To determine whether equilibrium binding between albumin and hepatocytes involves a cell surface receptor for albumin, we incubated freshly isolated rat hepatocytes with 125I-albumin and determined the amount of albumin associated with the cells as a function of the total albumin concentration. The resulting two-phase binding curve showed the rat albumin-hepatocyte interaction to consist of a saturable binding interaction with a dissociation constant of 1.1 microM and 2 X 10(6) sites/cell in addition to a weak, nonsaturable binding interaction. However, the saturable binding of albumin to hepatocytes did not appear to result from the presence of an albumin receptor on the cell surface; the interaction was the same for different species of albumin, for chemically modified albumins, and for fragments of albumin representing mutually exclusive domains of the molecule. The saturable binding was, instead, found to involve a subpopulation of albumin with an enhanced affinity for the cell surface. We show that this subpopulation of albumin is generated upon contact with either solid surfaces or cell surfaces and can be transferred from one surface to another. We propose that the two-phase Scatchard binding curve and the "albumin receptor effect" reflect two populations of albumin that bind to the cell surface with different affinities rather than one population of albumin that binds to two classes of binding sites.  相似文献   

6.
Additon of pyocin R1, a bacteriocin of Pseudomonas aeruginosa, to sensitive cells caused a fluorescence increase of 8-anilino-1-naphthalenesulfonate (ANS) in the cell suspension. The reaction was rapid, starting with a short time lag after adsorption of pyocin onto the cells and finishing within several minutes. The fluorescence response was attributed to the interaction of the cell body and ANS, not to that of the medium outside the cells and ANS. The maximal amplitude of fluorescence after pyocin addition was dependent on temperature, and the relation appeared to be biphasic. Similarly, Arrhenius plots of the initial rate of fluorescence change were biphasic. The transition of slopes in both cases occurred in the temperature range between 18 and 19 degrees. These results suggest that ANS interacts with lipids in the cell envelope and that pyocin causes a structural change of the cell envelope leading to increased fluorescence of ANS.  相似文献   

7.
The fluorescent probe l-anilinonaphthalene-8-sulfonate (ANS) has been used to investigate the properties of plasma membranes derived from normal hepatocytes and from hepatoma tissue culture (HTC) cells as well as used to study the effects of Ca2+ and procaine on these membrane systems. The interaction of ANS with hepatocyte plasma membranes (50 nmol/mg protein; KD = 120,μM) resulted in a marked enhancement of fluorescence and a 20-nm blue shift. Both Ca2+ and procaine further increased the fluorescence intensity. Binding studies showed no alteration in the number of ANS binding sites but a significant decrease in KD (40–50 μm). Procaine was also shown to completely displace Ca2+ from the membrane. The interaction of ANS with HTC cell plasma membranes again resulted in an enhancement in fluorescence intensity but with different binding properties (102 nmol/mg protein; KD = 74 μM) from the hepatocyte system. The addition of Ca+2 resulted in the formation of high and low affinity ANS binding sites as shown by Scatchard plot analysis with KD values of 15 μm and 50 μm. The effect of procaine on ANS fluorescence in the normal and transformed cell membranes was indistinguishable; however, in the latter system procaine only displaced 60% of the bound Ca2+. These studies suggest several structural and binding alterations between plasma membranes derived from hepatocytes and HTC cells.  相似文献   

8.
The addition of the fluorescent dye, ANS, to intact ascites tumor cells results in an enhancement of fluorescence intensity. The increase in fluorescence intensity as a function of time is biphasic which suggests that at least two processes occur. The first associated with the rapid initial rise in fluorescence represents binding to the cell surface while the second or slower phase reflects entrance of ANS into the intracellular phase. The relationship between bound and free ANS in 0.50 mM sulfate medium was used to calculate the apparent dissociation constant of ANS-membrane complex (Kd = 6.53 times 10(-5) M) and the total number of ANS binding sites (4.49 nmoles/mg dry weight). Kinetic analysis of steady state sulfate transport in the presence and absence of ANS suggests that (1) sulfate exchange can be described by Michaelis Menten type kinetics (Km = 2.05 times 10(-3) M), (2) a small fraction of surface associated ANS competitively inhibits sulfate exchange (Ki = 4.28 times 10(-6) M) and (3) the transport system has a higher affinity for ANS than for sulfate. These data are consistent with the hypothesis that inhibition of sulfate exchange is related to the direct, reversible interaction of the negatively charged sulfonate group of ANS with superficial positively charged membrane sites.  相似文献   

9.
Comparative studies on the interaction of 8-anilino-1-naphthalenesulfonate (ANS) with polylysine and polyarginine have been made by equilibrium dialysis and fluorescence or circular dichroism measurements, to investigate the structural characteristics of the polypeptides. The results are summarized as follows: (i) ANS binds to either of the polypeptides primarily by electrostatic interaction while hydrophobic interaction partially facilitates the dye binding; both interactions are stronger in the polyarginine-dye binding than the polylysine-dye binding. (ii) The fluorescence of ANS is more intensified when the dye binds to polyarginine than to polylysine regardless of the value of r (number of bound dye per amino-acid residue) of polypeptide-dye complexes, although the intensification depends on the r value and becomes maximum at r = 0.25–0.35 for both cases. (iii) The binding of ANS to each polypeptide is cooperative at r < 0.4. (iv) The circular dichroism is more efficiently induced in the spectral region of ANS by binding to polyarginine than to polylysine. From these results, it was concluded that, compared to polylysine, polyarginine suffers some structural change by ANS binding into a more compact molecular configuration having some regularity with a lower dielectric environment.  相似文献   

10.
We examined the effects of hypoxia and reoxygenation in isolated, perfused rat livers. Hypoxia induced by a low rate of perfusion led to near anoxia confined to centrilobular regions of the liver lobule. Periportal regions remained normoxic. Within 15 min, anoxic centrilobular hepatocytes developed surface blebs that projected into sinusoids through endothelial fenestrations. Periportal hepatocytes were unaffected. Both scanning and transmission electron microscopy suggested that blebs developed by transformation of preexisting microvilli. Upon reoxygenation by restoration of a high rate of perfusion, blebs disappeared. Other changes included marked shrinkage of hepatocytes, enlargement of sinusoids, and dilation of sinusoidal fenestrations. There was also an abrupt increase in the release of lactate dehydrogenase and protein after reoxygenation, and cytoplasmic fragments corresponding in size and shape to blebs were recovered by filtration of the effluent perfusate. We also studied phalloidin and cytochalasin D, agents that disrupt the cytoskeleton. Both substances at micromolar concentrations caused rapid and profound alterations of cell surface topography. We conclude that hepatic tissue is quite vulnerable to hypoxic injury. The morphological expression of hypoxic injury seems mediated by changes in the cortical cytoskeleton. Reoxygenation causes disappearance of blebs and paradoxically causes disruption of cellular volume control and release of blebs as cytoplasmic fragments. Such cytoplasmic shedding provides a mechanism for selective release of hepatic enzymes by injured liver tissue.  相似文献   

11.
Summary Atomic force microscopy (AFM) images of living cells in physiological solution were used to monitor the different stages involved in the interaction between Escherichia coli and the antimicrobial peptide PGLa. Damage on bacterial membranes was observed in the past using standard electron microscopy; stiffness measurements and images scanned in physiological solution demonstrate the advantage of AFM for such studies. From force versus separation curve measurements it is possible to determine the variation of the cellular stiffness. PGLa action on components of the cell structure like the outer membrane, the bacterial pili, the peptidoglycan wall and the inner membrane was determined by the comparison of AFM images of bacteria before and after PGLa addition. The interaction of Escherichia coli with PGLa in the culture medium has two stages. The first is characterized by the loss of surface stiffness and the formation of micelles probably originating from the disruption of the outer membrane and the loss of the bacteria’s ability to adhere to the substrates. In the second stage there is further damage, which resulted in total cell rupture. AFM images of bacteria in air and surface roughness measurements were also used to estimate peptide damage.  相似文献   

12.
The kinetics of cellular depositon from a stagnant solution to a surface are studied, taking into account the combined effect of an interaction field between the cells and the surface and of an external field. Since the forces involved in the adhesion of cells to a surface are short ranged, the cells are conveyed to the vicinity of the surface only by the external field. The equations developed are general, in the sense that they are independent of any particular form of the potential energy function, provided that it presents an appreciable potential barrier between the cells and the deposition surface. The characteristic shape of the curve representing the decay of the fraction of cells in solution with time is shown to be affected by the value ofPt *, consisting of the probability per unit time,P, for the escape over the potential barrier, and the sedimentation time,t *. A simple inspection procedure of this curve can disclose the relative significance of the external field and of the potential barrier in the overall kinetics of deposition. In addition, such an inspection can reveal the existence of alterations in the cellular adhesiveness with increasing coverage of the deposition surface. By matching the equation obtained to experimental results, the cellular adhesiveness, in term ofP, and the sedimentation rate (in the case of very slow sedimentation) can be evaluated.  相似文献   

13.
Human matrix metalloproteinase 7 (MMP-7) is the smallest matrix metalloproteinase. It plays important roles in tumour invasion and metastasis. 8-Anilinonaphthalene 1-sulphonate (ANS) is a fluorescent probe widely used for the analysis of proteins. It emits large fluorescence energy when its anilinonaphthalene group binds with hydrophobic regions of protein. In this study, we analysed the interaction of ANS and MMP-7. At pH 4.5-9.5, ANS inhibited MMP-7 activity in the hydrolysis of (7-methoxycoumarin-4-yl)acetyl-L-Pro-L-Leu-Gly-L-Leu-[N(3)-(2,4-dinitrophenyl)-L-2,3-diaminopropionyl]-L-Ala-L-Arg-NH(2). The inhibition was a non-competitive manner and depended on the time for pre-incubation of ANS and MMP-7. At pH 4.5-9.5, the fluorescence of ANS was not changed by the addition of MMP-7. At pH 3.5, MMP-7 lacked activity, and the fluorescence of ANS was increased by the addition of MMP-7. These results suggest that at pH 4.5-9.5, the sulphonic group of ANS binds with MMP-7 through electrostatic interaction, whereas at pH 3.5, the anilinonaphthalene group of ANS binds with MMP-7 through hydrophobic interaction.  相似文献   

14.
The binding of the apolar fluorescent dye 8-anilinonaphthalene-1-sulfonate (ANS) toNaja naja atra phospholipase A2 (PLA2) as well as the enhancement of ANS fluorescence of the PLA2-ANS complex decreased with increasing pH in a pH range from 3 to 9. These pH-dependent curves can be well interpreted as the perturbation of an ionizable group with pK value of 5.8, which was assigned as His-47 in the active site of PLA2. The ionizable group with pK 5.8 was no longer observed after methylation of His-47, supporting the idea that thepH dependence of ANS binding arose from an electrostatic interaction between His-47 and the bound ANS. Removal of the N-terminal octapeptide of PLA2 caused a precipitous drop in the capability of PLA2 for binding with ANS and enhancing ANS fluorescence, reflecting that the integrity of the N-terminal region was essential for maintaining the hydrophobic character of the ANS-binding site. However, the nonpolarity of the ANS-binding site in the N-terminus-removed derivative was still partially retained at lowpH, but was completely lost at highpH. Evidently, the N-terminal region plays a more crucial role in ANS binding at highpH than at lowpH. These results indicate that hydrophobic interaction as well as electrostatic interaction are involved in the binding of ANS to PLA2, and that the relative contributions of both interactions in ANS fluorescence enhancement may be different under differentpH.  相似文献   

15.
16.
Pyrenebutyrate-conjugated αs1-casein was prepared and the complex formation between αs1- and κ-casein polymers was investigated by fluorescence polarization. The complex formation was also investigated by a microcalorimetric technique. The positive enthalpy and entropy changes and endothermic nature suggested the hydrophobic interaction between αs1- and κ-casein polymers.

The degree of polarization of κ-casein polymer decreased with the addition of 1-anilino-8-naphthalenesulfonate (ANS), while that of αs1-casein polymer and αs1-κ-casein complex was invariant. Moreover the reaction of κ-casein polymer and ANS was exothermic. These facts suggested that the intermolecular hydrophobic regions in κ-casein polymer were disrupted by the adsorption of ANS. The rotational relaxation time of pyrenebutyrate conjugated complex between cyanoethyl-κ-casein and αs1-casein polymer was smaller than that of cyanoethyl-κ-casein alone. From these results, it was postulated that the dissociation of κ-casein polymer by the complex formation with αs1-casein polymer might be caused by the disruption of the intermolecular hydrophobic bonds in κ-casein polymer.  相似文献   

17.
With regard to the protein content, as analysed cytophotometrically, of hepatocytes from rats kept under a 12L 12D photoperiod (photophase 7:00-19:00), the following facts have been established: 1) Hepatocytes of different classes of ploidy all demonstrate, more or less equally, daily variations in protein content and also its reduction after 24-h fasting. 2) With computer analysis of data obtained at eight time points during a period of 24 h, a sinusoidal curve of the protein content of individual mononuclear tetraploid hepatocytes throughout the day could be demonstrated with a maximum at 6:20 and a minimum at 18:20. 3) Animals, fed with meals via a dispensing machine from 23:00 to 24:00 only, show a similar sinusoidal curve but with higher amplitude, and a virtually identical mean value as those fed ad libitum. The maximum was found at 10:40, revealing a time lag of 12 h after food intake, the minimum at 22:40. 4) Trained animals deprived of food during the standardized feeding time revealed a moderate reduction of their hepatocyte protein content in the first 6 h, then a 6-h period with a steep fall followed by a slower reduction. After 24 h, the mean hepatocyte protein mass had decreased to 72% of that at the commencement of fasting at 23:00.  相似文献   

18.
The role of cytoskeletal elements in volume regulation was studied in trout hepatocytes by investigating changes in F-actin distribution during anisotonic exposure and assessing the impact of cytoskeleton disruption on volume regulatory responses. Hypotonic challenge caused a significant decrease in the ratio of cortical to cytoplasmic F-actin, whereas this ratio was unaffected in hypertonic saline. Disruption of microfilaments with cytochalasin B (CB) or cytochalasin D significantly slowed volume recovery following hypo- and hypertonic exposure in both attached and suspended cells. The decrease of net proton release and the intracellular acidification elicited by hypotonicity were unaltered by CB, whereas the increase of proton release in hypertonic saline was dramatically reduced. Because amiloride almost completely blocked the hypertonic increase of proton release and cytoskeleton disruption diminished the associated increase of intracellular pH (pH(i)), we suggest that F-actin disruption affected Na(+)/H(+) exchanger activity. In line with this, pH(i) recovery after an ammonium prepulse was significantly inhibited in CB-treated cells. The increase of cytosolic Na(+) under hypertonic conditions was not diminished but, rather, enhanced by F-actin disruption, presumably due to inhibited Na(+)-K(+)-ATPase activity and stimulated Na(+) channel activity. The elevation of cytosolic Ca(2+) in hypertonic medium was significantly reduced by CB. Altogether, our results indicate that the F-actin network is of crucial importance in the cellular responses to anisotonic conditions, possibly via interaction with the activity of ion transporters and with signalling cascades responsible for their activation. Disruption of microtubules with colchicine had no effect on any of the parameters investigated.  相似文献   

19.
The ultrastructure of the cellular contacts and bile canaliculi was examined in cultured neonatal (day 5) rat hepatocytes to elucidate the development of cellular polarity. A new scanning electron microscopic technique for cultured hepatocytes allowed a view of cell-cell attachment and the entire cell surface, including the underside on plastic dishes. At 3 h after plating, neonatal hepatocytes were shown to be round, with loss of the preferential localization of cell organelles. After 6 h of culture, the cells had become oblong; they were aggregated in groups of several cells and the cellular contacts were not as rigid or as straight as those in adult hepatocytes. Transmission electron microscopy showed the biliary functional polarity to be like that in vivo. On the undersurfaces of adjacent neonatal heptocytes a hemicanalicular structure lined with microvilli was found, which probably corresponds to the ultrastructure of bile canaliculi in vivo. However, no canaliculi or orifices of bile channels were found in adult hepatocytes. These results suggest that in neonatal rat hepatocyts the formation of tight rigid cellular contacts was suppressed. Modulation of cell membranes appeared on the undersurfaces of neonatal hepatocytes in early culture stages. The difference in the development of cellular polality could be caused by the proliferating activity of neonatal hepatocytes.  相似文献   

20.
V N Uverski? 《Tsitologiia》1999,41(2):173-182
The dependence of spectral properties of Mg2+ and NH4+ salt of 8-anilino-1-naphthalenesulfonic acid (Mg-(ANS)2 and NH4-ANS, respectively) on the dye concentration and solvent composition was investigated by means of steady-state and time-resolved fluorescence spectroscopy. We have shown that the increase in ANS concentrations leads to changes in the shape of absorption and fluorescence spectra of the dye, accompanied by the decrease in its fluorescence decay time values. Such changes, observed in aqueous and organic solvents for both salts of ANS, reflect the existence of self-association of the dye molecules. The decrease in fluorescence intensity induced by self-association of the probe molecules is too small to explain a weak fluorescence of ANS in water. At the same time, it expounds the difference between the decay times of protein-embedded ANS molecules upon interaction of this probe with native and molten globule proteins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号