首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
The effect of McN-A-343 and oxotremorine on acetylcholine (ACh) release and choline (Ch) transport was studied in corticocerebral synaptosomes of the guinea pig. The synaptosomes were preloaded with [3H]Ch after treatment with the irreversible cholinesterase inhibitor, diisopropyl fluorophosphate, and then tested for their ability to release isotope-labeled ACh and Ch in the presence and absence of these agents. The kinetics of release were determined at the resting state (basal release) and in the presence of 50 mM K+. Under either condition, McN-A-343 enhanced the release of isotope-labeled ACh, whereas oxotremorine inhibited the K(+)-evoked release but had no effect on the basal release. The enhancing effect of McN-A-343 on basal ACh release was fully blocked by the selective M1 muscarinic antagonist, pirenzepine (100 nM). In contrast to its enhancing effect on ACh release, McN-A-343 potently inhibited Ch efflux as well as Ch influx. These effects were not blocked by atropine, a nonselective muscarinic antagonist. Oxotremorine had no effect on Ch transport. Binding studies showed that McN-A-343 was 3.6-fold more potent in displacing radiolabeled quinuclidinyl benzilate from cerebral cortex muscarinic receptors (mostly M1 subtype) than from cerebellar receptors (mostly M2 subtype), whereas oxotremorine was 2.6-fold more potent in the cerebellum. The displacements of radio-labeled pirenzepine and cis-dioxolane confirmed the M1 subtype preference of McN-A-343 and the M2 subtype preference of oxotremorine.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

2.
The effects of nicotine on 5-hydroxytryptamine (5-HT) release from serotonergic nerve endings in rat dorsal hippocampal slices were studied. Nicotine (50-500 microM:) caused a concentration-dependent increase in 5-HT release. This effect was antagonised by mecamylamine (0.5 microM:), indicating an action at nicotinic receptors. Nicotine-evoked 5-HT release was not affected by tetrodotoxin (3 microM:), cadmium chloride (0.1 mM:), or the absence of Ca(2+) or Na(+) in the superfusion medium. Unexpectedly, higher concentrations of mecamylamine alone (1-50 microM:) increased 5-HT release. This suggested the presence of inhibitory input to 5-HT neurones and that these inhibitory neurones possess tonically active nicotinic receptors. The effect of mecamylamine (50 microM:) on 5-HT release was reduced by the muscarinic M(1) receptor agonist, McN-A-343 (100 microM:), but pirenzepine (0.005-1 microM:), which blocks M(1) receptors, alone increased 5-HT release. Hippocampal serotonergic neurones are known to possess both excitatory nicotinic receptors and inhibitory M(1) receptors. Although there may be several explanations for our results, one possible explanation is that nicotine stimulates 5-HT release by activating nicotinic heteroreceptors on 5-HT terminals. Mecamylamine (0.5 microM:) antagonises this effect, but higher concentrations increase 5-HT release indirectly by blocking the action of endogenous acetylcholine on nicotinic receptors situated on cholinergic neurones that provide muscarinic inhibitory input to 5-HT neurones.  相似文献   

3.
R Hammer  A Giachetti 《Life sciences》1982,31(26):2991-2998
The heterogeneity of muscarinic receptors was examined in sympathetic ganglia and atria by “in vitro” binding techniques and functional studies. As tools we have used the classical antagonist atropine, the selective antagonist pirenzepine and the unique muscarinic agonist McN-A-343. In binding studies atropine showed similar affinities to muscarinic sites in ganglionic and atrial membranes with dissociation constants of 1.1 and 3.2 nM, respectively. In contrast, pirenzepine displayed a distinctly different binding profile. In atria it bound to an homogenous population of low affinity sites (diss. const. 620 nM) while in ganglia it revealed the presence of two sites: a major population of high affinity sites (diss. const. 11 nM) and a minor one of lower affinity (diss. const. 280 nM). The functional correlate of the receptor properties in the two tissues was studied in the pithed rat by measuring A) the increase of arterial pressure evoked by McN-A-343 through selective activation of muscarinic receptors in ganglia and B) the bradycardia elicited by acetylcholine release in the heart through vagal stimulation. Mirroring the “in vitro” binding data atropine inhibited both muscarinic responses in the same narrow range of doses (2–30 μg/kg i.v.) whereas pirenzepine showed similar potency to atropine in inhibiting ganglionic stimulation (ED50 4.1 μg/kg i.v.) but was almost two orders of magnitude weaker in blocking vagal bradycardia (ED50 172 μg/kg i.v.). These data suggest that McN-A-343 and pirenzepine act selectively on a common muscarinic receptor subtype, a finding which agrees with the view that muscarinic receptors are heterogenous and that excitatory ganglionic receptors (Ml) are distinguishable from those (M2) present in effector organs like smooth muscle and heart.  相似文献   

4.
1. The effects of cholinergic drugs on catecholamine (CA) secretion from adrenal chromaffin tissue of the toad were studied. 2. CA secretion was induced by ACh or nicotine, but not by muscarine. 3. Hexamethonium inhibited the CA release evoked by ACh or nicotine, while d-tubocurarine only affected the nicotinic response. Atropine did not prevent the secretory response. 4. Muscarine abolished the secretion induced by the agonists, this effect being prevented by atropine or gallamine, but not by pirenzepine. 5. In conclusion, CA secretion in the toad is stimulated by activation of nicotinic receptors. Inhibitory muscarinic receptors are present, most likely of type M2, which may play a regulatory function.  相似文献   

5.
Cardioselective profile of AF-DX 116, a muscarine M2 receptor antagonist   总被引:26,自引:0,他引:26  
AF-DX 116 (see chemical name below) is a competitive antagonist of muscarine receptors in peripheral organs. In contrast to pirenzepine, its behaviour in functional experiments indicates selectivity for the M2 muscarinic subtype. In pithed rats AF-DX 116 inhibits vagally-induced bradycardia, an M2 response, (ED50 32 micrograms/kg i.v.) in preference to the M1-mediated pressor response to McN-A-343 (ED50 211 micrograms/kg i.v.). AF-DX 116 further discriminates among M2 receptors, showing a high affinity for the cardiac muscarine receptors. In isolated preparations, AF-DX 116 has a tenfold higher affinity for the muscarine receptors of the heart (pA2 7.33) than for those in smooth muscles (pA2 6.39-6.44). The same profile appears from animal studies, where the compound is a more potent antagonist of either endogenously or exogenously activated cardiac muscarine responses as compared to vascular, smooth muscle or secretory responses. In general, the ratios of potencies (ED50) observed in cardiac vs. other muscarine mediated functions ranged between 30 and 50. Atropine showed no discrimination, inhibiting all muscarine responses in the same range of doses. In the conscious dog intravenous AF-DX 116 increased basal heart rate, and completely reversed the reflex bradycardia induced by clonidine. Tachycardia was dose-related (ED50 79 micrograms/kg i.v.), and occurred independently of background sympathetic tone. AF-DX 116 clearly distinguishes between M1- and M2-mediated responses; it also emphasizes the long-recognized heterogeneity among the peripheral M2 subtypes. AF-DX 116, for its pronounced cardioselectivity, may have a therapeutic potential in the treatment of sinus bradycardia.  相似文献   

6.
This study was conducted to investigate the subtypes of muscarinic receptors involved in the action of cholinergic agents on prostacyclin synthesis in the rabbit aorta. Prostacyclin production measured as 6-keto-PGF1 alpha was assessed after exposing the aortic rings to different cholinergic agents. Acetylcholine (ACh) (M1 and M2 agonist) (1-10 microM) and arecaidine proparagyl ester (APE) (M2 selective agonist) (1-10 microM) enhanced 6-keto-PGF1 alpha output in a concentration-dependent manner. A selective M1 receptor agonist, McN-A-343, at 1 microM-1 mM did not alter 6-keto-PGF1 alpha output. ACh- and APE induced increases in 6-keto-PGF1 alpha output were attenuated by the M1/M2 antagonist atropine (0.1 microM), M2 alpha antagonist (AF-DX 116), (0.1-1.0 microM), and by selective M2 beta antagonist, hexahydro-sila-difendiol (HHSiD) (0.1-1.0 microM), but not by the M1 antagonist pirenzepine (1.0 microM). 6-Keto-PGF1 alpha output elicited by ACh- or APE was not altered by the adrenergic receptor antagonists phentolamine and propranolol or by the nicotinic receptor blocker hexamethonium. Similarly, the arachidonic acid- or norepinephrine induced 6-keto-PGF1 alpha accumulation was not altered by these muscarinic receptor antagonists. Indomethacin, a cyclooxygenase inhibitor, prevented arachidonic acid, ACh- or APE induced 6-keto-PGF1 alpha output. Removal of the endothelium abolished the production of 6-keto-PGF1 alpha elicited by ACh, APE, bradykinin, and calcium ionophore A 23187, but not that induced by angiotensin II, K+ or norepinephrine. These data suggest that vascular prostaglandin generation elicited by cholinergic agonists is mediated via activation of M2 alpha and M2 beta but not M1 muscarinic receptors, which are most likely located on the endothelium.  相似文献   

7.
The antimuscarinic properties of pirenzepine and N-methylatropine were evaluated in two intact preparations by measuring A) the inhibition of increase in mean arterial pressure evoked by McN-A-343 in pithed rats through activation of ganglionic muscarinic receptors and B) the inhibition of fall in arterial pressure evoked by methacholine in anaesthetized rats through activation of vascular muscarinic receptors. To characterize the antimuscarinic potencies of pirenzepine and N-methylatropine, for both antagonists doses were calculated that produce a 10-fold shift to the right of the dose-response curves for A) the pressor response to McN-A-343 (i.v. administration) in pithed rats (D10-p.r.) and B) for the depressor effect to methacholine (i.v. administration) in anaesthetized rats (D10-an.r.), respectively. Whereas N-methylatropine was virtually equieffective in blocking both muscarinic responses (D10-an.r./D10-p.r. approximately equal to 1), pirenzepine, however, was considerably more potent at ganglionic than at vascular muscarinic receptors (D10-an.r./D10-p.r. approximately equal to 16). These data confirm the existence of excitatory ganglionic muscarinic receptors with high affinity for pirenzepine (M1) and provide evidence for the presence of M2 receptors - receptors which show a low sensitivity to pirenzepine - on vascular smooth muscle cells. To further characterize the anticholinergic properties of pirenzepine, its effect on the pressor response to DMPP, a nicotinic ganglionic stimulant, was investigated in pithed rats. A high dose of pirenzepine (1.13 mumol/kg), given i.v., did not affect nicotinic ganglionic transmission.  相似文献   

8.
Effects of the inorganic calcium channel blockers zinc, manganese, cadmium, and nickel on secretion of catecholamines from the perfused adrenal gland of the rat were investigated. Secretion of catecholamines evoked by splanchnic nerve stimulation (1 and 10 Hz) was not affected by nickel (100 microM), partially blocked (50%) by cadmium (100 microM), and almost completely blocked (90%) by zinc (1 mM) or manganese (2 mM). A combination of nickel and cadmium inhibited nerve stimulation-evoked secretion by 80-90%. Catecholamine secretion evoked by direct stimulation of chromaffin cells by acetylcholine (50 micrograms), nicotine (5 microM), muscarine (50 micrograms), and K+ (17.5 mM) was not blocked by either cadmium, nickel, or their combination. However, zinc and manganese almost abolished nicotine- and K(+)-evoked secretion of catecholamines. None of the above agents had any effect on the secretion evoked by muscarine. Acetylcholine-evoked secretion of catecholamines was only partially reduced (50%) by zinc and manganese. We draw the following conclusions from the above findings: (a) cadmium plus nickel selectively blocks the calcium channels of splanchnic neurons but has no effect on calcium channels of the chromaffin cells; (b) zinc and manganese do not discriminate between calcium channels of neurons and calcium channels of chromaffin cells; (c) partial inhibition of acetylcholine-evoked secretion by inorganic calcium channel blockers is consistent with the idea that activation of nicotinic receptors increases Ca2+ influx, and activation of muscarinic receptors mobilizes intracellularly bound Ca2+, which is not affected by calcium channel blockers.  相似文献   

9.
This study investigates the effects of different muscarinic receptor agonists on extracellular glutamate and aspartate concentrations in the rat neostriatum. In vivo intracerebral perfusions were undertaken in the conscious rat using a concentric push-pull cannulae system. Amino acid concentrations in samples were determined by HPLC with fluorometric detection. The intrastriatal perfusion of arecoline, a M1-M2 muscarinic receptor agonist, produced a significant decrease in extracellular [ASP] (45% of decrease) but not in extracellular [GLU]. These effects were blocked by scopolamine, a M1-M2 muscarinic receptor antagonist. McN-A-343, a M1 muscarinic receptor agonist, but not the M2 muscarinic receptor agonist, oxotremorine, produced a significant decrease in extracellular [ASP] (40% of decrease) but not in extracellular [GLU]. The effects of McN-A-343 on extracellular [ASP] were blocked by pirenzepine, a M1 muscarinic receptor antagonist. These results suggest that the decrease in extracellular [ASP] could be mediated, at least in part, by M1 muscarinic receptor activation in the rat neostriatum.  相似文献   

10.
1. The effects of cholinergic drugs on catecholamine (CA) secretion from adrenal chromaffin tissue of the toad were studied.2. CA secretion was induced by ACh or nicotine, but not by muscarine.3. Hexamethonium inhibited the CA release evoked by ACh or nicotine, while d-tubocurarine only affected the nicotinic response. Atropine did not prevent the secretory response.4. Muscarine abolished the secretion induced by the agonists, this effect being prevented by atropine or gallamine, but not by pirenzepine.5. In conclusion, CA secretion in the toad is stimulated by activation of nicotinic receptors. Inhibitory muscarinic receptors are present, most likely of type M2, which may play a regulatory function.  相似文献   

11.
The present study was undertaken to examine the effects of different muscarinic receptor agonists on glutamate and GABA concentrations in the medial prefrontal cortex of the rat. In vivo perfusions were made in the conscious rat using a concentric push-pull cannulae system. Amino acid concentrations in samples were determined by HPLC with fluorometric detection. The intracortical perfusion of arecoline, a M1-M2 muscarinic receptor agonist, produced a significant increase in extracellular [GLU] and [GABA]. McN-A-343, a M1 muscarinic receptor agonist, but not the M2 muscarinic receptor agonist, oxotremorine, produced a significant increase in extracellular [GLU] and [GABA]. The effects of McN-A-343 on extracellular [GLU] and [GABA] were blocked by pirenzepine, a M1 muscarinic receptor antagonist. These results suggest that M1 muscarinic receptor stimulation increases the extracellular concentrations of GLU and GABA in the medial prefrontal cortex of the rat.  相似文献   

12.
Among muscarinic agonists, the compound McN-A-343, originally proposed as selective stimulant of M1 cholinergic site, was subsequently questioned as a useful pharmacological tool in the classification of muscarinic receptors. In this work, evidence is presented for a dual response of McN-A-343 on longitudinal muscle-myenteric plexus preparation. On electrically-stimulated preparation, this agonist exhibited a pirenzepine-sensitive inhibition of the twitch contractions due to the involvement of neural M1-muscarinic receptor. On the other hand, a direct myogenic contractile action on the unstimulated tissue was observed using McN-A-343 in the same range of concentrations. This latter response, on the basis of the effects of muscarinic and non-muscarinic antagonists tested, seems to involve effectorial muscarinic sites with an unusual mechanism.  相似文献   

13.
We have recently shown that vasoactive intestinal polypeptide (VIP) is as potent as acetylcholine in inducing the secretion of catecholamines from the rat adrenal medulla. In the present study we have investigated the molecular mechanism involved in the exocytotic secretion of catecholamines by VIP and the effects of VIP on Ca45 uptake and phosphoinositide breakdown and compared them with those of the classical cholinergic agonists. We now show that omission of Ca2+ from the perfusion medium had almost no effect on VIP-induced secretion; however, addition of 1 mM EGTA to calcium-free medium abolished the secretion. Stimulation with VIP did not result in a net increase in Ca45 uptake and it was not modified by a protein kinase C activator, phorbol ester. All these effects of VIP were comparable to those of muscarine. VIP (0.3 to 10 microM) and muscarine (30 to 100 microM) produced time-and concentration-dependent increase (up to 700%) in the production of [3H]inositol phosphates. The production of [3H]inositol phosphates by VIP and muscarine occurred in calcium-free and EGTA medium. The effect of VIP on [3H]IP, [3H]IP2, and [3H]IP3 production was reduced by (1 to 30 microM) VIP antagonist (an analogue of growth hormone-releasing factor, Ac-Tyr1hGRF) and 1 to 20 microM naloxone. Although nicotine produced a brisk secretory response, there was no change in [3H]inositol phosphates. We conclude that inositol 1,4,5-trisphosphate generated upon activation of VIP and muscarine receptors is linked to exocytotic secretion of adrenal medullary hormones through release of internal Ca2+ ions.  相似文献   

14.
R M Santos  E Rojas 《FEBS letters》1989,249(2):411-417
Acetylcholine (1-10 microM) depolarized the membrane and stimulated glucose-induced bursts of electrical activity in mouse pancreatic B-cells. The acetylcholine effects were mimicked by muscarine while nicotine had no effect on membrane potential. Pirenzepine, an antagonist of the classical M1-type muscarinic receptors, but not gallamine (1-100 microM), an antagonist of the classical M2-type receptors, antagonized the acetylcholine action on glucose-induced electrical activity (IC50 = 0.25 microM). Bethanechol, an agonist of the classical M2-type muscarinic receptors, was approximately 100 times less effective than acetylcholine in stimulating the electrical activity. In addition, acetylcholine (1 microM) induced a marked increase (25%) in input resistance to the B-cell membrane. The results indicate that acetylcholine exerted its effects on the B-cell membrane by inhibiting K+ conductance via activation of a muscarinic receptor subtype distinct from the classical M2-type receptor.  相似文献   

15.
Intrathecal (IT) administration of pilocarpine to mice produces a vigorous and dose-related reciprocal hindlimb scratching (RHS) response (ED50 = 0.6 microgram) that is potently blocked by simultaneous IT administration of atropine (ID50 = 0.002 microgram). We now report that RHS is (1) also elicited by the more selective M1 agonist McN-A-343-11 (ED50 = 11.6 micrograms), (2) blocked by the selective M1 antagonist pirenzepine (ID50 = 0.001 microgram), and (3) is not blocked by the selective M2 antagonist AF-DX 116 BS at a dose up to 100 times the ID50 dose of pirenzepine. These results extend our earlier findings and suggest that the RHS elicited in mice by IT injection of muscarinic agonists is mediated through pirenzepine-sensitive (presumably M1) receptors and that RHS may be a convenient in vivo centrally mediated M1 endpoint.  相似文献   

16.
Acetylcholine (ACh), a major neurotransmitter from the autonomic nervous system, regulates the cholinergic stimulation of insulin secretion, through interactions with muscarinic receptors. The present study has characterised the individual involvement of muscarinic receptor subtypes in ACh-induced insulin secretion, using clonal beta cells and selective muscarinic receptor antagonists. BRIN BD11 cells clearly expressed mRNA encoding m1--m4 whereas m5 was not detected by RT-PCR. Insulin release was measured from BRIN BD11 cells treated with ACh in the presence of muscarinic receptor antagonists at concentrations ranging from 3 nM to 1 microM. 300 nM of muscarinic toxin-3 (M4 antagonist) and 1 microM of methoctramine (M2 antagonist) increased ACh (100 microM) stimulated insulin secretion by 168% and 50% respectively (ANOVA, P<0.05). The antagonists alone had no effect on insulin secretion. In contrast, 300 nM of pirenzepine (M1 antagonist) and 30 nM of hexahydro-sila-difenidol p-fluorohydrochloride (M3 antagonist) inhibited ACh stimulation by 91% and 84% respectively (ANOVA, P<0.01). It is concluded that ACh acts on different receptor subtypes producing both a stimulatory and an inhibitory action on insulin release.  相似文献   

17.
The possibility that differences in beta-adrenergic sensitivity among canine trachealis muscles contracted with different contractile agonists are related to differences in the receptor-occupancy characteristics of the contractile agonists was investigated. Relaxation to isoproterenol was compared in muscles contracted with the muscarinic agonists McN-A-343 and acetylcholine (ACh). The apparent dissociation constant (pKB) values for the M1-antagonist, pirenzepine, against ACh (6.96 +/- 0.18) and McN-A-343 (6.84 +/- 0.08) were similar. The pKB values for the M3-antagonist 4-diphenylacetoxy-N-methylpiperidine methiodide (4-DAMP) against ACh (8.76 +/- 0.13) and McN-A-343 (8.71 +/- 0.10) were also similar, suggesting that these agonists were activating the same subtype of muscarinic receptor, probably M3. However, the contractile response to ACh was associated with a greater receptor reserve than that for McN-A-343. Isoproterenol relaxed muscles contracted with McN-A-343 much more effectively than those contracted with an equieffective concentration of ACh. The results suggest that the relative resistance of ACh-induced contractions to relaxation by isoproterenol may not be an inherent quality of muscarinic receptor stimulation. The large receptor reserve available to ACh may act to buffer the contractile response from the inhibitory effects of beta-adrenergic stimulation. Alternatively, ACh may be able to initiate subcellular mechanisms that are unavailable to agonists of lower efficacy.  相似文献   

18.
The subtype of muscarinic receptor which mediates cAMP attenuation is not established. Therefore, several selective muscarinic antagonists were used to characterize the subtype of muscarinic receptor coupled to the inhibition of hormone-stimulated cAMP accumulation using NG108-15 neuroblastoma x glioma hybrid cells. These cells were prelabeled with [2-3H]-adenine, washed, and resuspended in a culture medium containing the phosphodiesterase inhibitor 3-isobutyl-1-methylxanthine (0.5 mM). The labeled cells were preincubated with the different antagonists 12-15 min. before they were challenged with agonists. The formation of [3H]-cAMP was activated by PGE1 (1 microM) or forskolin (1 microM). In all cases, [3H]-cAMP formed was separated and measured. Carbachol (100 microM) and McN-A343 (10 mM) were used as standard muscarinic agonists. These studies gave the following results: a) McN-A343 (10 mM), an M1 receptor agonist, was only a partial agonist causing 40% inhibition of cAMP accumulation indicating that this effect was not mediated by an M1 receptor; b) The M1-selective antagonist, pirenzepine, exhibited low affinity (pA2 6.2) further suggesting that an M1 receptor was not coupled to the attenuation of cAMP accumulation; c) Two selective M2 antagonists (AF-DX 116 and methoctramine) and M3 antagonist (HHSiD) were used to further characterize these muscarinic receptors. The order of all antagonists based on their affinities (pA2 values) could be arranged in the following order: atropine (9.0) > methoctramine (7.6) > HHSiD (6.9) > AF-DX 116 (6.6) > pirenzepine (6.2). HHSiD exhibits the same degree of affinity to M2 receptors of other tissues as it does to those of NG cells.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

19.
Effect of some selective muscarinic receptor agonists and antagonists was investigated on learning acquisition in an active-avoidance paradigm in rats which records an anticipatory conditioned avoidance apart from the classical conditioned avoidance response. The muscarinic M1 agonists, arecholine, pilocarpine and McN-A-343, facilitated learning acquisition, which was attenuated by the selective M1 antagonist, pirenzepine. On the other hand, M2 receptor agonist, carbachol, and physostigmine, induced a dose-related dual response, with lower doses retarding and higher doses facilitating the learning acquisition. The former effect was attenuated by gallamine, a muscarinic M2 antagonist, while the latter response was inhibited by pirenzepine, indicating that these putative M2 receptor agonist lose their receptor specificity on dose increment. The selective M2 receptor antagonists, gallamine and AF-DX 116, facilitated learning acquisition, which was inhibited by pirenzepine and the acetylcholine synthesis inhibitor hemicholinium. The results support the cholinergic hypothesis of learning and memory and indicate that M1 receptor agonists and M2 receptor antagonists are likely to prove beneficial in memory deficits. The data also indicates that the clinical dose of some drugs, like physostigmine, needs to be carefully established for optimum therapeutic benefit.  相似文献   

20.
Muscarinic receptor stimulation increased the accumulation of 3H-inositol phosphates in PC12 cells whose phospholipids had been prelabeled with [3H]inositol. Muscarine also inhibited the increase in cyclic AMP (cAMP) accumulation caused by 5'-N-ethylcarboxamide adenosine or by vasoactive intestinal peptide. This effect of muscarine was apparently due to the inhibition of adenylate cyclase rather than to a stimulation of a cAMP specific phosphodiesterase. The muscarinic receptor antagonist pirenzepine inhibited both the stimulation of inositol-phospholipid metabolism and the inhibition of cAMP production with Ki values of 0.34 microM and 0.36 microM, respectively. PC12 cells contained a single class of N-[3H]methylscopolamine ([3H]NMS) binding sites. Competition studies with muscarine (KD, 15 microM) and pirenzepine (Ki, 0.12 microM) revealed no evidence for multiple muscarinic receptors. The Ki of pirenzepine for the inhibition of [3H]NMS binding and the inhibition of muscarinic actions is consistent with the possibility that this is not an M1 receptor. Muscarine inhibited cAMP accumulation in cells made deficient in protein kinase C; therefore, this protein kinase is probably not involved in mediating the inhibitory effect of muscarine. The phorbol ester 12-O-tetradecanoylphorbol 13-acetate also inhibited cAMP accumulation in PC12 cells but the mechanism of this effect differed from that of muscarine. Bradykinin caused a large increase in the accumulation of 3H-inositol phosphates and [3H]diacylglycerol relative to muscarine but did not inhibit cAMP production. Oxotremorine inhibited cAMP accumulation but it did not stimulate inositol-phospholipid metabolism.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号