首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The D9S1120 locus exhibits a population-specific allele of 9 repeats (9RA) in all Native American and two Siberian populations currently studied, but it is absent in other worldwide populations. Although this feature has been used in anthropological genetic studies, its impact on the evaluation of the structure and genetic relations among Native American populations has been scarcely assessed. Consequently, the aim of this study was to evaluate the anthropological impact of D9S1120 when it was added to STR population datasets in Mexican Native American groups. We analyzed D9S1120 by PCR and capillary electrophoresis (CE) in 1117 unrelated individuals from 13 native groups from the north and west of Mexico. Additional worldwide populations previously studied with D9S1120 and/or 15 autosomal STRs (Identifier kit) were included for interpopulation analyses. We report statistical results of forensic importance for D9S1120. On average, the modal alleles were the Native American-specific allele 9RA (0.3254) and 16 (0.3362). Genetic distances between Native American and worldwide populations were estimated. When D9S1120 was included in the 15 STR population dataset, we observed improvements for admixture estimation in Mestizo populations and for representing congruent genetic relationships in dendrograms. Analysis of molecular variance (AMOVA) based on D9S1120 confirms that most of the genetic variability in the Mexican population is attributable to their Native American backgrounds, and allows the detection of significant intercontinental differentiation attributed to the exclusive presence of 9RA in America. Our findings demonstrate the contribution of D9S1120 to a better understanding of the genetic relationships and structure among Mexican Native groups.  相似文献   

2.
The genetic characterization of Native Mexicans is important to understand multiethnic based features influencing the medical genetics of present Mexican populations, as well as to the reconstruct the peopling of the Americas. We describe the Y-chromosome genetic diversity of 197 Native Mexicans from 11 populations and 1,044 individuals from 44 Native American populations after combining with publicly available data. We found extensive heterogeneity among Native Mexican populations and ample segregation of Q-M242* (46%) and Q-M3 (54%) haplogroups within Mexico. The northernmost sampled populations falling outside Mesoamerica (Pima and Tarahumara) showed a clear differentiation with respect to the other populations, which is in agreement with previous results from mtDNA lineages. However, our results point toward a complex genetic makeup of Native Mexicans whose maternal and paternal lineages reveal different narratives of their population history, with sex-biased continental contributions and different admixture proportions. At a continental scale, we found that Arctic populations and the northernmost groups from North America cluster together, but we did not find a clear differentiation within Mesoamerica and the rest of the continent, which coupled with the fact that the majority of individuals from Central and South American samples are restricted to the Q-M3 branch, supports the notion that most Native Americans from Mesoamerica southwards are descendants from a single wave of migration. This observation is compatible with the idea that present day Mexico might have constituted an area of transition in the diversification of paternal lineages during the colonization of the Americas.  相似文献   

3.
Mitochondrial DNA (mtDNA) haplogroups were determined by restriction fragment length polymorphism-typing for 66 individuals from four southeastern North American populations, and the HVS I portion of the mtDNA control region was sequenced in 48 of these individuals. Although populations from the same geographic region usually exhibit similar haplogroup frequency distributions (Lorenz and Smith [1996] Am. J. Phys. Anthropol. 101:307-323; Malhi et al. [2001] Hum. Biol. 73:17-55), those from the Southeast instead exhibit haplogroup frequency distributions that differ significantly from one another. Such divergent haplogroup frequency distributions are unexpected for the Muskogean-speaking southeastern populations, which share many sociocultural traits, speak closely related languages, and have experienced extensive admixture both with each other and with other eastern North American populations. Independent origins, genetic isolation from other Native American populations due to matrilocality, differential admixture, or a genetic bottleneck could be responsible for this heterogeneous distribution of haplogroup frequencies. Within a given haplogroup, however, the HVS I sequences from the four Muskogean-speaking populations appear relatively similar to one another, providing evidence for close relationships among them and for reduced diversity within haplogroups in the Southeast. Given additional archaeological, linguistic, and ethnographic evidence, these results suggest that a genetic bottleneck associated with the historical population decline is the most plausible explanation for such patterns of mtDNA variation.  相似文献   

4.
The geographic structure of Y-chromosome variability has been analyzed in native populations of South America, through use of the high-frequency Native American haplogroup defined by the DYS199-T allele and six Y-chromosome-linked microsatellites (DYS19, DYS389A, DYS389B, DYS390, DYS391, and DYS393), analyzed in 236 individuals. The following pattern of within- and among-population variability emerges from the analysis of microsatellite data: (1) the Andean populations exhibit significantly higher levels of within-population variability than do the eastern populations of South America; (2) the spatial-autocorrelation analysis suggests a significant geographic structure of Y-chromosome genetic variability in South America, although a typical evolutionary pattern could not be categorically identified; and (3) genetic-distance analyses and the analysis of molecular variance suggest greater homogeneity between Andean populations than between non-Andean ones. On the basis of these results, we propose a model for the evolution of the male lineages of South Amerindians that involves differential patterns of genetic drift and gene flow. In the western part of the continent, which is associated with the Andean area, populations have relatively large effective sizes and gene-flow levels among them, which has created a trend toward homogenization of the gene pool. On the other hand, eastern populations-settled in the Amazonian region, the central Brazilian plateau, and the Chaco region-have exhibited higher rates of genetic drift and lower levels of gene flow, with a resulting trend toward genetic differentiation. This model is consistent with the linguistic and cultural diversity of South Amerindians, the environmental heterogeneity of the continent, and the available paleoecological data.  相似文献   

5.
Mitochondrial DNA (mtDNA) was extracted and analyzed from the skeletal remains of 44 individuals, representing four prehistoric populations, and compared to that from two other prehistoric and several contemporary Native American populations to investigate biological relationships and demographic history in northeastern North America. The mtDNA haplogroup frequencies of ancient human remains from the Morse (Red Ocher tradition, 2,700 BP) and Orendorf (Mississippian tradition, 800 BP) sites from the Central Illinois River Valley, and the Great Western Park (Western Basin tradition, 800 BP) and Glacial Kame (2,900 BP) populations from southwestern Ontario, change over time while maintaining a regional continuity between localities. Haplotype patterns suggest that some ancestors of present day Native Americans in northeastern North America have been in that region for at least 3,000 years but have experienced extensive gene flow throughout time, resulting, at least in part, from a demic expansion of ancestors of modern Algonquian-speaking people. However, genetic drift has also been a significant force, and together with a major population crash after European contact, has altered haplogroup frequencies and caused the loss of many haplotypes.  相似文献   

6.
The genetic characterization of Native American groups provides insights into their history and demographic events. We sequenced the mitochondrial D-loop region (control region) of 520 samples from eight Mexican indigenous groups. In addition to an analysis of the genetic diversity, structure and genetic relationship between 28 Native American populations, we applied Bayesian skyline methodology for a deeper insight into the history of Mesoamerica. AMOVA tests applying cultural, linguistic and geographic criteria were performed. MDS plots showed a central cluster of Oaxaca and Maya populations, whereas those from the North and West were located on the periphery. Demographic reconstruction indicates higher values of the effective number of breeding females (Nef) in Central Mesoamerica during the Preclassic period, whereas this pattern moves toward the Classic period for groups in the North and West. Conversely, Nef minimum values are distributed either in the Lithic period (i.e. founder effects) or in recent periods (i.e. population declines). The Mesomerican regions showed differences in population fluctuation as indicated by the maximum Inter-Generational Rate (IGRmax): i) Center-South from the lithic period until the Preclassic; ii) West from the beginning of the Preclassic period until early Classic; iii) North characterized by a wide range of temporal variation from the Lithic to the Preclassic. Our findings are consistent with the genetic variations observed between central, South and Southeast Mesoamerica and the North-West region that are related to differences in genetic drift, structure, and temporal survival strategies (agriculture versus hunter-gathering, respectively). Interestingly, although the European contact had a major negative demographic impact, we detect a previous decline in Mesoamerica that had begun a few hundred years before.  相似文献   

7.
On the basis of comprehensive RFLP analysis, it has been inferred that approximately 97% of Native American mtDNAs belong to one of four major founding mtDNA lineages, designated haplogroups "A"-"D." It has been proposed that a fifth mtDNA haplogroup (haplogroup X) represents a minor founding lineage in Native Americans. Unlike haplogroups A-D, haplogroup X is also found at low frequencies in modern European populations. To investigate the origins, diversity, and continental relationships of this haplogroup, we performed mtDNA high-resolution RFLP and complete control region (CR) sequence analysis on 22 putative Native American haplogroup X and 14 putative European haplogroup X mtDNAs. The results identified a consensus haplogroup X motif that characterizes our European and Native American samples. Among Native Americans, haplogroup X appears to be essentially restricted to northern Amerindian groups, including the Ojibwa, the Nuu-Chah-Nulth, the Sioux, and the Yakima, although we also observed this haplogroup in the Na-Dene-speaking Navajo. Median network analysis indicated that European and Native American haplogroup X mtDNAs, although distinct, nevertheless are distantly related to each other. Time estimates for the arrival of X in North America are 12,000-36,000 years ago, depending on the number of assumed founders, thus supporting the conclusion that the peoples harboring haplogroup X were among the original founders of Native American populations. To date, haplogroup X has not been unambiguously identified in Asia, raising the possibility that some Native American founders were of Caucasian ancestry.  相似文献   

8.
mtDNA sequence variation was examined in 60 Native Americans (Mixtecs from the Alta, Mixtecs from the Baja, Valley Zapotecs, and Highland Mixe) from southern Mexico by PCR amplification and high-resolution restriction endonuclease analysis. Four groups of mtDNA haplotypes (haplogroups A, B, C, and D) characterize Amerind populations, but only three (haplogroups A, B, and C) were observed in these Mexican populations. The comparison of their mtDNA variation with that observed in other populations from Mexico and Central America permits a clear distinction among the different Middle American tribes and raises questions about some of their linguistic affiliations. The males of these population samples were also analyzed for Y-chromosome RFLPs with the probes 49a, 49f, and 12f2. This analysis suggests that certain Y-chromosome haplotypes were brought from Asia during the colonization of the Americas, and a differential gene flow was introduced into Native American populations from European males and females.  相似文献   

9.
Genetic diversity of present American populations results from very complex demographic events involving different types and degrees of admixture. Through the analysis of lineage markers such as mtDNA and Y chromosome it is possible to recover the original Native American haplotypes, which remained identical since the admixture events due to the absence of recombination. However, the decrease in the effective population sizes and the consequent genetic drift effects suffered by these populations during the European colonization resulted in the loss or under-representation of a substantial fraction of the Native American lineages. In this study, we aim to clarify how the diversity and distribution of uniparental lineages vary with the different demographic characteristics (size, degree of isolation) and the different levels of admixture of extant Native groups in Colombia. We present new data resulting from the analyses of mtDNA whole control region, Y chromosome SNP haplogroups and STR haplotypes, and autosomal ancestry informative insertion-deletion polymorphisms in Colombian individuals from different ethnic and linguistic groups. The results demonstrate that populations presenting a high proportion of non-Native American ancestry have preserved nevertheless a substantial diversity of Native American lineages, for both mtDNA and Y chromosome. We suggest that, by maintaining the effective population sizes high, admixture allowed for a decrease in the effects of genetic drift due to Native population size reduction and thus resulting in an effective preservation of the Native American non-recombining lineages.  相似文献   

10.
We analyzed previously reported mtDNA haplogroup frequencies of 577 individuals and hypervariable segment 1 (HVS1) sequences of 265 individuals from Native American tribes in western North America to test hypotheses regarding the settlement of this region. These data were analyzed to determine whether Hokan and Penutian, two hypothesized ancient linguistic stocks, represent biological units as a result of shared ancestry within these respective groups. Although the pattern of mtDNA variation suggests regional continuity and although gene flow between populations has contributed much to the genetic landscape of western North America, some evidence supports the existence of both the Hokan and Penutian phyla. In addition, a comparison between coastal and inland populations along the west coast of North America suggests an ancient coastal migration to the New World. Similarly high levels of haplogroup A among coastal populations in the Northwest and along the California coast as well as shared HVS1 sequences indicate that early migrants to the New World settled along the coast with little gene flow into the interior valleys.  相似文献   

11.
To scrutinize the male ancestry of extant Native American populations, we examined eight biallelic and six microsatellite polymorphisms from the nonrecombining portion of the Y chromosome, in 438 individuals from 24 Native American populations (1 Na Dené and 23 South Amerinds) and in 404 Mongolians. One of the biallelic markers typed is a recently identified mutation (M242) characterizing a novel founder Native American haplogroup. The distribution, relatedness, and diversity of Y lineages in Native Americans indicate a differentiated male ancestry for populations from North and South America, strongly supporting a diverse demographic history for populations from these areas. These data are consistent with the occurrence of two major male migrations from southern/central Siberia to the Americas (with the second migration being restricted to North America) and a shared ancestry in central Asia for some of the initial migrants to Europe and the Americas. The microsatellite diversity and distribution of a Y lineage specific to South America (Q-M19) indicates that certain Amerind populations have been isolated since the initial colonization of the region, suggesting an early onset for tribalization of Native Americans. Age estimates based on Y-chromosome microsatellite diversity place the initial settlement of the American continent at approximately 14,000 years ago, in relative agreement with the age of well-established archaeological evidence.  相似文献   

12.
To estimate the maternal contribution of Native Americans to the human gene pool of Puerto Ricans--a population of mixed African, European, and Amerindian ancestry--the mtDNAs of two sample sets were screened for restriction fragment length polymorphisms (RFLPs) defining the four major Native American haplogroups. The sample set collected from people who claimed to have a maternal ancestor with Native American physiognomic traits had a statistically significant higher frequency of Native American mtDNAs (69.6%) than did the unbiased sample set (52.6%). This higher frequency suggests that, despite the fact that the native Taíno culture has been extinct for centuries, the Taíno contribution to the current population is considerable and some of the Taíno physiognomic traits are still present. Native American haplogroup frequency analysis shows a highly structured distribution, suggesting that the contribution of Native Americans foreign to Puerto Rico is minimal. Haplogroups A and C cover 56.0% and 35.6% of the Native American mtDNAs, respectively. No haplogroup D mtDNAs were found. Most of the linguistic, biological, and cultural evidence suggests that the Ceramic culture of the Taínos originated in or close to the Yanomama territory in the Amazon. However, the absence of haplogroup A in the Yanomami suggests that the Yanomami are not the only Taíno ancestors.  相似文献   

13.
Despite a long history of complex societies and despite extensive present-day linguistic and ethnic diversity, relatively few populations in Peru have been sampled for population genetic investigations. In order to address questions about the relationships between South American populations and about the extent of correlation between genetic distance, language, and geography in the region, mitochondrial DNA (mtDNA) hypervariable region I sequences and mtDNA haplogroup markers were examined in 33 individuals from the state of Ancash, Peru. These sequences were compared to those from 19 American Indian populations using diversity estimates, AMOVA tests, mismatch distributions, a multidimensional scaling plot, and regressions. The results show correlations between genetics, linguistics, and geographical affinities, with stronger correlations between genetics and language. Additionally, the results suggest a pattern of differential gene flow and drift in western vs. eastern South America, supporting previous mtDNA and Y chromosome investigations.  相似文献   

14.
Argentinean Patagonia is inhabited by people that live principally in urban areas and by small isolated groups of individuals that belong to indigenous aboriginal groups; this territory exhibits the lowest population density of the country. Mapuche and Tehuelche (Mapudungun linguistic branch), are the only extant Native American groups that inhabit the Argentinean Patagonian provinces of Río Negro and Chubut. Fifteen autosomal STRs, 17 Y-STRs, mtDNA full length control region sequence and two sets of Y and mtDNA-coding region SNPs were analyzed in a set of 434 unrelated individuals. The sample set included two aboriginal groups, a group of individuals whose family name included Native American linguistic root and urban samples from Chubut, Río Negro and Buenos Aires provinces of Argentina. Specific Y Amerindian haplogroup Q1 was found in 87.5 % in Mapuche and 58.82 % in Tehuelche, while the Amerindian mtDNA haplogroups were present in all the aboriginal sample contributors investigated. Admixture analysis performed by means of autosomal and Y-STRs showed the highest degree of admixture in individuals carrying Mapuche surnames, followed by urban populations, and finally by isolated Native American populations as less degree of admixture. The study provided novel genetic information about the Mapuche and Tehuelche people and allowed us to establish a genetic correlation among individuals with Mapudungun surnames that demonstrates not only a linguistic but also a genetic relationship to the isolated aboriginal communities, representing a suitable proxy indicator for assessing genealogical background.  相似文献   

15.
With this study, we aimed to determine the different male ancestral components of two Native American communities from Argentina, namely Toba and Colla. The analysis of 27 Y-chromosome SNPs allowed us to identify seven different haplogroups in both samples. Chromosomes carrying the M3 mutation, which typically defines the Native American haplogroup Q1a3a, were seen most frequently in the Toba community (90%). Conversely, Q1a3a was represented in 34% of the Colla Y-chromosomes, whereas haplogroup R1b1, the main representative of western European populations, exhibited the highest frequency in this population (41%). Different M3 sublineages in the Toba community could be identified by observing point mutations at both DYS385 and M19 loci. A microvariant at DYS385, named 16.1, has been characterized, which helps to further subdivide Q1a3a. It is the first time the M19 mutated allele is described in a population from Argentina. This finding supports the old age of the lineages carrying the M19 mutation, but it contradicts the previous hypothesis that the M19 mutated allele is confined to only two Equatorial-Tucano population groups from the north region of South America. The detection of M19 further south than previously thought allows questioning of the hypothesis that this lineage serves as an example of isolation after colonization. This observation also affirms the strong genetic drift to which Native Americans have been subjected. Moreover, our study illustrates a heterogeneous contribution of Europeans to these populations and supports previous studies showing that most Native American groups were subjected to European admixture that primarily involved immigrant men.  相似文献   

16.
A number of studies based on linguistic, dental and genetic data have proposed that the colonization of the New World took place in three separate waves of migration from North-East Asia. Recently, other studies have suggested that only one major migration occurred. It is the aim of this study to assess these opposing migration hypotheses using molecular-typed HLA class II alleles to compare the relationships between linguistic and genetic data in contemporary Native American populations. Our results suggest that gene flow and genetic drift have been important factors in shaping the genetic landscape of Native American populations. We report significant correlations between genetic and geographical distances in Native American and East Asian populations. In contrast, a less clear-cut relationship seems to exist between genetic distances and linguistic affiliation. In particular, the close genetic relationship of the neighbouring Na-Dene Athabaskans and Amerindian Salishans suggests that geography is the more important factor. Overall, our results are most congruent with the single migration model.  相似文献   

17.
We studied 156 individuals of Native American descent from the city of Tlapa in the state of Guerrero in western Mexico. Most individuals' ethnicity was either Nahua, Mixtec, or Tlapanec, but self-identified Mestizos and individuals of mixed ethnicities were also included in the sample. We typed 24 autosomal, one Y-chromosome, and four mitochondrial ancestry-informative markers (AIMs) to estimate group and individual admixture proportions, and determine whether the admixture process involved directional gene flow between parental groups. When genetically defined (GD) Mestizos were excluded from the analysis, Native American ancestry represented approximately 98% of the population's gene pool, while European and West African ancestry represented approximately 1% each. Maternally inherited markers also showed an exceptionally high Native American contribution (98.5%), as did the paternally inherited marker, DYS199 (90.7%). We did not detect genetic structure in this population using these AIMs, which appears consistent with the homogeneity of the sample in terms of admixture proportions. The addition of GD Mestizos to the sample did not produce a considerable change in admixture estimates, but it had a major effect on population structure. These results show that the population of Tlapa in Guerrero, Mexico, has experienced little admixture with Europeans and/or West Africans. They also show that the impact of a small number of admixed individuals on an otherwise homogeneous population might have profound implications on subsequent ancestry/phenotype analysis and mapping strategies. We suggest that heterogeneity is a major characteristic of Mexican populations and, as a consequence, should not be disregarded when designing epidemiological studies of Mexican and Mexican American populations.  相似文献   

18.
The mtDNAs of 145 individuals representing the aboriginal populations of Chukotka-the Chukchi and Siberian Eskimos-were subjected to RFLP analysis and control-region sequencing. This analysis showed that the core of the genetic makeup of the Chukchi and Siberian Eskimos consisted of three (A, C, and D) of the four primary mtDNA haplotype groups (haplogroups) (A-D) observed in Native Americans, with haplogroup A being the most prevalent in both Chukotkan populations. Two unique haplotypes belonging to haplogroup G (formerly called "other" mtDNAs) were also observed in a few Chukchi, and these have apparently been acquired through gene flow from adjacent Kamchatka, where haplogroup G is prevalent in the Koryak and Itel'men. In addition, a 16111C-->T transition appears to delineate an "American" enclave of haplogroup A mtDNAs in northeastern Siberia, whereas the 16192C-->T transition demarcates a "northern Pacific Rim" cluster within this haplogroup. Furthermore, the sequence-divergence estimates for haplogroups A, C, and D of Siberian and Native American populations indicate that the earliest inhabitants of Beringia possessed a limited number of founding mtDNA haplotypes and that the first humans expanded into the New World approximately 34,000 years before present (YBP). Subsequent migration 16,000-13,000 YBP apparently brought a restricted number of haplogroup B haplotypes to the Americas. For millennia, Beringia may have been the repository of the respective founding sequences that selectively penetrated into northern North America from western Alaska.  相似文献   

19.
Mitochondrial DNA (mtDNA) haplogroups are valuable for investigations in forensic science, molecular anthropology, and human genetics. In this study, we developed a custom panel of 61 mtDNA markers for high-throughput classification of European, African, and Native American/Asian mitochondrial haplogroup lineages. Using these mtDNA markers, we constructed a mitochondrial haplogroup classification tree and classified 18,832 participants from the National Health and Nutrition Examination Surveys (NHANES). To our knowledge, this is the largest study to date characterizing mitochondrial haplogroups in a population-based sample from the United States, and the first study characterizing mitochondrial haplogroup distributions in self-identified Mexican Americans separately from Hispanic Americans of other descent. We observed clear differences in the distribution of maternal genetic ancestry consistent with proposed admixture models for these subpopulations, underscoring the genetic heterogeneity of the United States Hispanic population. The mitochondrial haplogroup distributions in the other self-identified racial/ethnic groups within NHANES were largely comparable to previous studies. Mitochondrial haplogroup classification was highly concordant with self-identified race/ethnicity (SIRE) in non-Hispanic whites (94.8 %), but was considerably lower in admixed populations including non-Hispanic blacks (88.3 %), Mexican Americans (81.8 %), and other Hispanics (61.6 %), suggesting SIRE does not accurately reflect maternal genetic ancestry, particularly in populations with greater proportions of admixture. Thus, it is important to consider inconsistencies between SIRE and genetic ancestry when performing genetic association studies. The mitochondrial haplogroup data that we have generated, coupled with the epidemiologic variables in NHANES, is a valuable resource for future studies investigating the contribution of mtDNA variation to human health and disease.  相似文献   

20.
We examined genetic diversity and population structure in the American landmass using 678 autosomal microsatellite markers genotyped in 422 individuals representing 24 Native American populations sampled from North, Central, and South America. These data were analyzed jointly with similar data available in 54 other indigenous populations worldwide, including an additional five Native American groups. The Native American populations have lower genetic diversity and greater differentiation than populations from other continental regions. We observe gradients both of decreasing genetic diversity as a function of geographic distance from the Bering Strait and of decreasing genetic similarity to Siberians--signals of the southward dispersal of human populations from the northwestern tip of the Americas. We also observe evidence of: (1) a higher level of diversity and lower level of population structure in western South America compared to eastern South America, (2) a relative lack of differentiation between Mesoamerican and Andean populations, (3) a scenario in which coastal routes were easier for migrating peoples to traverse in comparison with inland routes, and (4) a partial agreement on a local scale between genetic similarity and the linguistic classification of populations. These findings offer new insights into the process of population dispersal and differentiation during the peopling of the Americas.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号