首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The genome of Chlamydophila caviae (formerly Chlamydia psittaci, GPIC isolate) (1 173 390 nt with a plasmid of 7966 nt) was determined, representing the fourth species with a complete genome sequence from the Chlamydiaceae family of obligate intracellular bacterial pathogens. Of 1009 annotated genes, 798 were conserved in all three other completed Chlamydiaceae genomes. The C.caviae genome contains 68 genes that lack orthologs in any other completed chlamydial genomes, including tryptophan and thiamine biosynthesis determinants and a ribose-phosphate pyrophosphokinase, the product of the prsA gene. Notable amongst these was a novel member of the virulence-associated invasin/intimin family (IIF) of Gram-negative bacteria. Intriguingly, two authentic frameshift mutations in the ORF indicate that this gene is not functional. Many of the unique genes are found in the replication termination region (RTR or plasticity zone), an area of frequent symmetrical inversion events around the replication terminus shown to be a hotspot for genome variation in previous genome sequencing studies. In C.caviae, the RTR includes several loci of particular interest including a large toxin gene and evidence of ancestral insertion(s) of a bacteriophage. This toxin gene, not present in Chlamydia pneumoniae, is a member of the YopT effector family of type III-secreted cysteine proteases. One gene cluster (guaBA-add) in the RTR is much more similar to orthologs in Chlamydia muridarum than those in the phylogenetically closest species C.pneumoniae, suggesting the possibility of horizontal transfer of genes between the rodent-associated Chlamydiae. With most genes observed in the other chlamydial genomes represented, C.caviae provides a good model for the Chlamydiaceae and a point of comparison against the human atherosclerosis-associated C.pneumoniae. This crucial addition to the set of completed Chlamydiaceae genome sequences is enabling dissection of the roles played by niche-specific genes in these important bacterial pathogens.  相似文献   

2.
3.
Regulation of tryptophan synthase gene expression in Chlamydia trachomatis   总被引:5,自引:0,他引:5  
We previously reported that Chlamydia trachomatis expresses the genes encoding tryptophan synthase (trpA and trpB). The results presented here indicate that C. trachomatis also expresses the tryptophan repressor gene (trpR). The complement of genes regulated by tryptophan levels in C. trachomatis is limited to trpBA and trpR. trp gene expression was repressed if chlamydiae-infected HeLa cells were cultured the presence of tryptophan and induced if grown in tryptophan-depleted medium or in the presence of IFN-gamma. Furthermore, expression of the trp genes in strains which encode a functional tryptophan synthase is repressed when infected cells are cultured in the presence of the tryptophan precursor indole. Results from experiments with cycloheximide, an inhibitor of eukaryotic protein synthesis, indicate that in addition to the absolute size of the intracellular tryptophan pool, host competition for available tryptophan plays a key role in regulating expression of the trp genes. The tryptophan analogue, 5-fluorotryptophan, repressed trp gene expression and induced the formation of aberrant organisms of C. trachomatis. The growth-inhibitory properties of 5-fluorotryptophan could be reversed with exogenous tryptophan but not indole. In total, our results indicate that the ability to regulate trp gene expression in response to tryptophan availability is advantageous for the intracellular survival of this organism. Furthermore, the fact that C. trachomatis has retained the capacity to respond to tryptophan limitation supports the view that the in vivo antichlamydial effect of IFN-gamma is via the induction of the tryptophan-degrading enzyme, indoleamine 2,3-dioxygenase.  相似文献   

4.
5.
Chlamydophila felis (Chlamydia psittaci feline pneumonitis agent) is a worldwide spread pathogen for pneumonia and conjunctivitis in cats. Herein, we determined the entire genomic DNA sequence of the Japanese C. felis strain Fe/C-56 to understand the mechanism of diseases caused by this pathogen. The C. felis genome is composed of a circular 1,166,239 bp chromosome encoding 1005 protein-coding genes and a 7552 bp circular plasmid. Comparison of C. felis gene contents with other Chlamydia species shows that 795 genes are common in the family Chlamydiaceae species and 47 genes are specific to C. felis. Phylogenetic analysis of the common genes reveals that most of the orthologue sets exhibit a similar divergent pattern but 14 C. felis genes accumulate more mutations, implicating that these genes may be involved in the evolutional adaptation to the C. felis-specific niche. Gene distribution and orthologue analyses reveal that two distinctive regions, i.e. the plasticity zone and frequently gene-translocated regions (FGRs), may play important but different roles for chlamydial genome evolution. The genomic DNA sequence of C. felis provides information for comprehension of diseases and elucidation of the chlamydial evolution.  相似文献   

6.
The gene kdtA of Chlamydia pneumoniae strain TW-183, encoding the enzyme 3-deoxy-α- d - manno -octulosonic acid (Kdo)transferase of lipopolysaccharide biosynthesis, was cloned and sequenced. A single open reading frame of 1314 bp was identified, the deduced amino acid sequence of which revealed 69% similarity and 43% identity with KdtA of Chlamydia trachomatis and Chlamydia psittaci . The gene was expressed in the Gram-positive host Corynebacterium glutamicum and the primary gene product was characterized as a multi-functional glycosyltransferase. Cell-free extracts generated in vitro the genus-specific epitope of Chlamydia composed of the trisaccharide (αKdo(2–8)αKdo(2–4)αKdo. The results show that a single polypeptide affords three different glycosidic bonds, which is in contradiction to the dogma of glycobiology: 'one enzyme — one glycosidic bond'.  相似文献   

7.
8.
In order to develop reagents to study the immune response of guinea pigs to infection by Chlamydia psittaci guinea pig inclusion conjunctivitis strain (GPIC), we constructed a plasmid clone bank with C. psittaci DNA. One of the recombinant clones isolated produced large amounts of a 57-kilodalton (kDa) protein that was immunoreactive with sera from GPIC infected guinea pigs. While investigating this recombinant protein, we discovered that all the Gram-negative bacteria analyzed so far have immunoreactive proteins of similar size. This protein seems to be a 'common antigen' already described in various Gram-negative bacteria.  相似文献   

9.
Chlamydiae have amino acid requirements for growth in tissue culture as defined by those amino acids whose individual omission from the growth medium prevents chlamydial multiplication. We have tested the hypothesis that this inhibition of growth arises as a result of antagonism between particular amino acids such that inhibition occurs when the concentration of one amino acid is reduced in the presence of the antagonist amino acid at high concentration. Using the Chlamydia psittaci strain guinea pig inclusion conjunctivitis (GPIC), in the presence of cycloheximide, the requirement for valine was abrogated by the simultaneous omission of isoleucine, that for phenylalanine by simultaneous omission of tryptophan and that for leucine by simultaneous omission of isoleucine plus valine. The antagonism shown between leucine and isoleucine plus valine appears to be unique among bacteria. In the absence of cycloheximide, GPIC had an additional need for tryptophan, tyrosine and isoleucine; these amino acid requirements were shown for both infected McCoy, HeLa and BHK cells. The results are consistent with a mechanism for regulation of parasite growth which depends on the balance of amino acid concentrations in the extracellular environment.  相似文献   

10.
11.
Type III secretion genes identify a putative virulence locus of Chlamydia   总被引:7,自引:2,他引:5  
Four genes of Chlamydia psittaci strain guinea pig inclusion conjunctivitis (GPIC), whose predicted products are highly homologous to structural and regulatory components of a contact-dependent or type III secretion apparatus, were isolated. Related to genes present in several animal and plant bacterial pathogens, these genes may represent a section of a previously undetected chromosomal virulence locus analogous to several recently described virulence-associated type III secretion loci. The existence of contact-dependent secretion in Chlamydia strongly suggests that these bacteria use pathogenic mechanisms that are similar to those of other intracellular bacterial pathogens. Unlike other intracellular bacteria, however, chlamydiae are metabolically inactive extracellularly and only become capable of global protein synthesis several hours after infection. This implies that chlamydial contact-dependent secretion is only active from within, uniquely after the bacteria have been internalized by eukaryotic cells. The possible role(s) of this pathway in chlamydial pathogenesis are discussed.  相似文献   

12.
13.
The envelopes of elementary bodies of Chlamydia spp. consist largely of disulfide-cross-linked major outer membrane protein (MOMP) and two cysteine-rich proteins (CRPs). The MOMP gene of Chlamydia psittaci 6BC has been sequenced previously, and the genes encoding the small and large CRPs from this strain were cloned and sequenced in this study. The CRP genes were found to be tandemly arranged on the chlamydial chromosome but could be independently expressed in Escherichia coli. The deduced 87-amino-acid sequence of the small-CRP gene (envA) contains 15 cysteine residues, a potential signal peptide, and a potential signal peptidase II-lipid modification site. Hydropathy plot and conformation analysis of the small-CRP amino acid sequence indicated that the protein was unlikely to be associated with a membrane. However, the small CRP was specifically labeled in host cells incubated with [3H]palmitic acid and may therefore be associated with a membrane through a covalently attached lipid portion of the molecule. The deduced 557-amino-acid sequence of the large-CRP gene (envB) contains 37 cysteine residues and a single putative signal peptidase I cleavage site. In one recombinant clone the large CRP appeared to be posttranslationally cleaved at two sites, forming a doublet in a manner similar to the large-CRP doublet made in native C. psittaci 6BC. Comparison of the deduced amino acid sequences of the CRPs from chlamydial strains indicated that the small CRP is moderately conserved, with 54% identity between C. psittaci 6BC and Chlamydia trachomatis, and the large CRP is highly conserved, with 71% identity between C. psittaci and C. trachomatis and 85% identity between C. psittaci 6BC and Chlamydia pneumoniae. The positions of the cysteine residues in both CRPs are highly conserved in Chlamydia spp. From the number of cysteine residues in the MOMP and the CRPs and the relative incorporation of [35S]cysteine into these proteins, it was calculated that the molar ratio of C. psittaci 6BC elementary body envelope proteins is about one large-CRP molecule to two small-CRP molecules to five MOMP molecules.  相似文献   

14.
While a variety of chemical transformations related to the aerobic degradation of L-tryptophan (kynurenine pathway), and most of the genes and corresponding enzymes involved therein have been predominantly characterized in eukaryotes, relatively little was known about this pathway in bacteria. Using genome comparative analysis techniques we have predicted the existence of the three-step pathway of aerobic L-tryptophan degradation to anthranilate (anthranilate pathway) in several bacteria. Based on the chromosomal gene clustering analysis, we have identified a previously unknown gene encoding for kynurenine formamidase (EC 3.5.1.19) involved with the second step of the anthranilate pathway. This functional prediction was experimentally verified by cloning, expression and enzymatic characterization of recombinant kynurenine formamidase orthologs from Bacillus cereus, Pseudomonas aeruginosa and Ralstonia metallidurans. Experimental verification of the inferred anthranilate pathway was achieved by functional expression in Escherichia coli of the R. metallidurans putative kynBAU operon encoding three required enzymes: tryptophan 2,3-dioxygenase (gene kynA), kynurenine formamidase (gene kynB), and kynureninase (gene kynU). Our data provide the first experimental evidence of the connection between these genes (only one of which, kynU, was previously characterized) and L-tryptophan aerobic degradation pathway in bacteria.  相似文献   

15.
A protein encoded by sulD, one of four genes in a previously cloned folate biosynthetic operon of Streptococcus pneumoniae, had been shown to harbor 6-hydroxymethyl-7,8-dihydropterin pyrophosphokinase activity. This SulD protein was purified and shown now to harbor also dihydroneopterin aldolase activity. The bifunctional protein therefore catalyzes two successive steps in folate biosynthesis. The aldolase activity can be ascribed to the N-terminal domain of the SulD polypeptide, and the pyrophosphokinase activity can be ascribed to the C-terminal domain. Homologs of the dihydroneopterin aldolase domain were identified in other species, in one of which the domain was encoded as a separate polypeptide. The native SulD protein is a trimer or tetramer of a 31-kDa subunit, and it dissociated reversibly after purification. Dihydroneopterin aldolase activity required the multimeric protein, whereas pyrophosphokinase was expressed by the monomeric form. With purified SulD, the amount of 6-hydroxymethyl-7,8-dihydropterin product formed by the aldolase was proportional to the fourth power of the enzyme concentration, as expected for a reversibly dissociating tetramer. By identifying the gene encoding dihydroneopterin aldolase, this work extends our understanding of the molecular basis of the folate biosynthetic system common to many organisms.  相似文献   

16.

Background

Chlamydia pecorum is the causative agent of a number of acute diseases, but most often causes persistent, subclinical infection in ruminants, swine and birds. In this study, the genome sequences of three C. pecorum strains isolated from the faeces of a sheep with inapparent enteric infection (strain W73), from the synovial fluid of a sheep with polyarthritis (strain P787) and from a cervical swab taken from a cow with metritis (strain PV3056/3) were determined using Illumina/Solexa and Roche 454 genome sequencing.

Results

Gene order and synteny was almost identical between C. pecorum strains and C. psittaci. Differences between C. pecorum and other chlamydiae occurred at a number of loci, including the plasticity zone, which contained a MAC/perforin domain protein, two copies of a >3400 amino acid putative cytotoxin gene and four (PV3056/3) or five (P787 and W73) genes encoding phospholipase D. Chlamydia pecorum contains an almost intact tryptophan biosynthesis operon encoding trpABCDFR and has the ability to sequester kynurenine from its host, however it lacks the genes folA, folKP and folB required for folate metabolism found in other chlamydiae. A total of 15 polymorphic membrane proteins were identified, belonging to six pmp families. Strains possess an intact type III secretion system composed of 18 structural genes and accessory proteins, however a number of putative inc effector proteins widely distributed in chlamydiae are absent from C. pecorum. Two genes encoding the hypothetical protein ORF663 and IncA contain variable numbers of repeat sequences that could be associated with persistence of infection.

Conclusions

Genome sequencing of three C. pecorum strains, originating from animals with different disease manifestations, has identified differences in ORF663 and pseudogene content between strains and has identified genes and metabolic traits that may influence intracellular survival, pathogenicity and evasion of the host immune system.

Electronic supplementary material

The online version of this article (doi:10.1186/1471-2164-15-23) contains supplementary material, which is available to authorized users.  相似文献   

17.
18.
Chromobacterium violaceum presents a distinctive phenotypic characteristic, the production of a deep violet pigment named violacein. Although the physiological function of this pigment is not well understood, the sequencing of the genome of this bacterium has given some insight into the mechanisms and control of violacein production. It was found that erythrose-4-phosphate (E4P), a precursor to aromatic amino acid biosynthesis, is produced by the non-oxidative portion of the hexose monophosphate pathway, since it lacks 6-phosphogluconate dehydrogenase. All genes leading from E4P plus phosphoenolpyruvate to tryptophan are present in the genome. Nevertheless, these genes are not organized in an operon, as in E. coli, indicating that other mechanisms are involved in expression. The sequencing data also indicated the presence and organization of an operon for violacein biosynthesis. Three of the four gene products of this operon presented similarity with nucleotide-dependent monooxygenases and one with a limiting enzyme polyketide synthase. As previously suggested, genes encoding proteins involved in quorum sensing control by N-hexanoyl-homoserine-lactone, an autoinducer signal molecule, are present in the bacterial genome. These data should help guide strategies to increase violacein biosynthesis, a potentially useful molecule.  相似文献   

19.
The synthesis of L-cysteine, the major mechanism by which sulfur is incorporated into organic compounds in microorganisms, occupies a significant fraction of bacterial metabolism. In Bacillus subtilis the cysH operon, encoding several proteins involved in cysteine biosynthesis, is induced by sulfur starvation and tightly repressed by cysteine. We show that a null mutation in the cysK gene encoding an O-acetylserine-(thiol)lyase, the enzyme that catalyzes the final step in cysteine biosynthesis, results in constitutive expression of the cysH operon. Using DNA microarrays we found that, in addition to cysH, almost all of the genes required for sulfate assimilation are constitutively expressed in cysK mutants. These results indicate that CysK, besides its enzymatic role in cysteine biosynthesis, is a global negative regulator of genes involved in sulfur metabolism.  相似文献   

20.
The waaA gene encoding the essential, lipopolysaccharide (LPS)-specific 3-deoxy-Dmanno-oct-2-ulosonic acid (Kdo) transferase was inactivated in the chromosome of a heptosyltransferase I and II deficient Escherichia coli K-12 strain by insertion of gene expression cassettes encoding the waaA genes of Chlamydia trachomatis, Chlamydophila pneumoniae or Chlamydophila psittaci. The three chlamydial Kdo transferases were able to complement the knockout mutation without changing the growth or multiplication behaviour. The LPS of the mutants were serologically and structurally characterized in comparison to the LPS of the parent strain using compositional analyses, high performance anion exchange chromatography, matrix-assisted laser desorption/ionization time-of-flight mass spectrometry and specific monoclonal antibodies. The data show that chlamydial Kdo transferases can replace in E. coli K-12 the host's Kdo transferase and retain the product specificities described in their natural background. In addition, we unequivocally proved that WaaA from C. psittaci transfers predominantly four Kdo residues to lipid A, forming a branched tetrasaccharide with the structure alpha-Kdo-(2-->8)-[alpha-Kdo-(2-->4)]-alpha-Kdo-(2-->4)-alpha-Kdo.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号