首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.

Background  

Immunosenescence is the age-related decline and dysfunction of protective immunity leading to a marked increase in the risk of infections, autoimmune disease, and cancer. The majority of studies have focused on immunosenescence in the systemic immune system; information concerning the effect of aging on intestinal immunity is limited. Isolated lymphoid follicles (ILFs) are newly appreciated dynamic intestinal lymphoid structures that arise from nascent lymphoid tissues, or cryptopatches (CP), in response to local inflammatory stimuli. ILFs promote "homeostatic" responses including the production of antigen-specific IgA, thus playing a key role in mucosal immune protection. ILF dysfunction with aging could contribute to immunosenescence of the mucosal system, and accordingly we examined phenotypic and functional aspects of ILFs from young (2 month old) and aged (2 year old) mice.  相似文献   

2.
Accumulating evidence suggests that innate immunity interacts with the adaptive immune system to identify potentially harmful antigens and eliminate them from the host. A central facet of innate immunity is complement, which for some time has been recognized as a contributor to inflammation in transplant rejection but without detailed analysis of its role in what is principally a T cell mediated process. Moreover, epithelial and vascular tissues at local sites of inflammation secrete complement components; however, the role of such local synthesis remains unclear. Here we show that the absence of locally synthesized complement component C3 is capable of modulating the rejection of renal allografts in vivo and regulating T-cell responses in vivo and in vitro. The results indicate that improved success in kidney transplantation could come from therapeutic manipulation of innate immunity in concert with T cell directed immunosuppression.  相似文献   

3.
NK and NKT cell functions in immunosenescence   总被引:6,自引:0,他引:6  
Immunosenescence is defined as the state of dysregulated immune function that contributes to the increased susceptibility to infection, cancer and autoimmune diseases observed in old organisms, including humans. However, dysregulations in the immune functions are normally counterbalanced by continuous adaptation of the body to the deteriorations that occur over time. These adaptive changes are likely to occur in healthy human centenarians. Both innate (natural) and adaptive (acquired) immune responses decline with advancing age. Natural killer (NK) and natural killer T (NKT) cells represent the best model to describe innate and adaptive immune response in aging. NK and NKT cell cytotoxicity decreases in aging as well as interferon-gamma (IFN-gamma) production by both activated cell types. Their innate and acquired immune responses are preserved in very old age. However, NKT cells bearing T-cell receptor (TCR) gammadelta also display an increased cytotoxicity and IFN-gamma production in very old age. This fact suggests that NKT cells bearing TCRgammadelta are more involved in maintaining innate and adaptive immune response in aging leading to successful aging. The role played by the neuroendocrine-immune network and by nutritional factors, such as zinc, in maintaining NK and NKT cell functions in aging is discussed.  相似文献   

4.
Immunosenescence is described as a decline in the normal functioning of the immune system associated with physiologic ageing.Immunosenescence contributes to reduced efficacy to vaccination and increased susceptibility to infectious diseases in the elderly.Extensive studies of laboratory animal models of ageing or donor lymphocyte analysis have identified changes in immunity caused by the ageing process.Most of these studies have identified phenotypic and functional changes in innate and adaptive immunity.However,it is unclear which of these defects are critical for impaired immune defense against infection.This review describes the changes that occur in innate and adaptive immunity with ageing and some age-related viral diseases where defects in a key component of immunity contribute to the high mortality rate in mouse models of ageing.  相似文献   

5.
6.
7.
[18F]fluorodeoxyglucose (18FDG) positron emission tomography (PET) is a noninvasive metabolic imaging modality that is well suited to the assessment of activity and extent of large vessel vasculitis, such as giant cell arteritis and Takayasu arteritis. PET could be more effective than magnetic resonance imaging in detecting the earliest stages of vascular wall inflammation. The visual grading of vascular [18F]FDG uptake makes it possible to discriminate arteritis from atherosclerosis, providing therefore high specificity. High sensitivity can be achieved provided scanning is performed during active inflammatory phase, preferably before starting corticosteroid treatment. Large scale prospective studies are needed to determine the exact value of PET imaging in assessing the large vessel vasculitis outcome and response to immunosuppressive treatment.  相似文献   

8.
The histopathology of two populations of Sarisodera hydrophila Wouts and Sher, 1971 was examined on Salix lasiolepis Benth. (willow), Populus fremontii Wats. (cottonwood), and Lyonothamnus floribundus Gray (ironwood) using light microscopy as well as scanning and transmission electron microscopy. Sarisodera hydrophila induces formation of a single uninucleate hypertrophied cell (giant cell) which varies only slightly among the three hosts. The giant cell is enclosed by the root stele and contacts phloem, vascular cambium, and xylem. The single hypertrophied nucleus of the giant cell is ameboid or lobulate in shape, generally with a single nucleolus. The cell is characterized by a wall which is separated into two distinct regions about 2 μm and 13 μm thick; the thicker region occurs adjacent to the nematode head. Cell wall ingrowths, such as those associated with host responses to certain other plant-parasitic nematodes, were not observed in giant cells induced by S. hydrophila. However, a high frequency of pit fields with plasmodesmata occurred in the thinner portion of the cell wall which is adjacent to vascular elements. Roots of the three hosts simultaneously infected with S. hydrophila and Meloidogyne sp. resulted in adjacent responses characteristic of each nematode, supporting the view that the specific type of host response is a function of the nematode rather than the host. The varying expressions of host responses among Heteroderoidea may be useful in testing congruency with existing interpretations of phylogeny.  相似文献   

9.
The immune response is the result of the interplay between innate and adaptive immunity, yet the impact of aging on this interaction is unclear. Addressing this fundamental question will be critical for the development of effective vaccines for the rapidly rising older subpopulation that manifests increased prevalence of malignancies and infections. Therefore, we undertook the current study to investigate whether aging impairs toll-like receptor (TLR) function in myeloid dendritic cells and whether this leads to reduced T-cell priming. Our results demonstrate that innate TLR immune priming function of myeloid bone marrow derived and splenic dendritic cells (DC) is preserved with aging using both allogeneic and infectious murine experimental systems. In contrast, aging impairs in vitro and in vivo intrinsic T-cell function. Therefore, our results demonstrate that myeloid DCs manifest preserved TLR-mediated immune responses with aging. However, aging critically impairs intrinsic adaptive T-cell function.  相似文献   

10.
An immune response is triggered in host cells when host receptors recognize conserved molecular motifs, pathogen-associated molecular patterns (PAMPs), such as β-glucans, and chitin at the cell surface of a pathogen. Effector-triggered immunity occurs when pathogens deliver effectors into the host cell to suppress the first immune signaling. Using a differential proteomic approach, we identified an array of proteins responding to aflatoxins in cotyledons of peanut (Arachis hypogaea) infected with aflatoxin-producing (toxigenic) but not nonaflatoxin-producing (atoxigenic) strains of Aspergillus flavus. These proteins are involved in immune signaling and PAMP perception, DNA and RNA stabilization, induction of defense, innate immunity, hypersensitive response, biosynthesis of phytoalexins, cell wall responses, peptidoglycan assembly, penetration resistance, condensed tannin synthesis, detoxification, and metabolic regulation. Gene expression analysis confirmed the differential abundance of proteins in peanut cotyledons supplemented with aflatoxins, with or without infection with the atoxigenic strain. Similarly, peanut germination and A. flavus growth were altered in response to aflatoxin B1. These findings show an additional immunity initiated by aflatoxins. With the PAMP- and effector-triggered immune responses, this immunity constitutes the third immune response of the immune system in peanut cotyledon cells. The system is also a three-grade coevolution of plant-pathogen interaction.  相似文献   

11.
12.
The 14-kDa HIV-1 accessory gene vpr has been reported to have effects on host cell biology. These activities include inhibition of cell proliferation, inhibition of NF-kappaB activation, inhibition of CD4 T-cell proliferation, and induction of apoptosis in tissue culture. This collection of activities could, in theory, impact host cell immune responses. We tested the activity of recombinant Vpr protein to inhibit T-cell activation in vitro. Here, we present data illustrating that the Vpr protein can significantly suppress T-cell activation-related cytokine elaboration and proliferation. In vivo, we observed that covaccination with plasmids expressing the vpr gene product profoundly reduces antigen-specific CD8-mediated cytotoxic T lymphocyte (CTL) activity. This supports that vpr might compromise T-cell immunity in vivo during infection. To study this aspect of Vpr biology, we developed an Adenoviral Vpr expression vector for delivery of Vpr to immune cells and to study Vpr function in the absence of other lentiviral gene products. This vector delivers a functional Vpr protein to immune cells including antigen-presenting cells (APCs). We observe that the Adeno-Vpr vector suppresses human CD4 T-cell proliferation driven by immune activation in vitro. Further study of the biology of Vpr will likely have importance for a clearer understanding of host pathogenesis as well as have important implications for HIV vaccine development.  相似文献   

13.
Aging is a natural physiological process that features various and variable challenges, associated with loss of homeostasis within the organism, often leading to negative consequences for health. Cellular senescence occurs when cells exhaust the capacity to renew themselves and their tissue environment as the cell cycle comes to a halt. This process is influenced by genetics, metabolism and extrinsic factors. Immunosenescence, the aging of the immune system, is a result of the aging process, but can also in turn act as a secondary inducer of senescence within other tissues. This review aims to summarize the current state of knowledge regarding hallmarks of aging in relation to immunosenescence, with a focus on aging-related imbalances in the medullary environment, as well as the components of the innate and adaptive immune responses. Aging within the immune system alters its functionality, and has consequences for the person's ability to fight infections, as well as for susceptibility to chronic diseases such as cancer and cardiovascular disease. The senescence-associated secretory phenotype is described, as well as the involvement of this phenomenon in the paracrine induction of senescence in otherwise healthy cells. Inflammaging is discussed in detail, along with the comorbidities associated with this process. A knowledge of these processes is required in order to consider possible targets for the application of senotherapeutic agents - interventions with the potential to modulate the senescence process, thus prolonging the healthy lifespan of the immune system and minimizing the secondary effects of immunosenescence.  相似文献   

14.
Ageing is associated with declines in many physiological parameters, including multiple immune system functions. The rate of acceleration of the frequency of death due to cardiovascular disease or cancer seems to increase with age from middle age up to around 80 years, plateauing thereafter. Mortality due to infectious disease, however, does not plateau, but continues to accelerate indefinitely. The elderly commonly possess oligoclonal expansions of T cells, especially of CD8 cells, which, surprisingly, are often associated with cytomegalovirus (CMV) seropositivity. This in turn is associated with many of the same phenotypic and functional alterations to T cell immunity that have been suggested as biomarkers of immune system aging. Thus, the manner in which CMV and the host immune system interact is critical in determining the "age" of specific immunity. We may therefore consider immunosenescence in some respects as an infectious state. This implies that interventions aimed at the pathogen may improve the organ system affected. Hence, CMV-directed anti-virals or vaccination may have beneficial effects on immunity in later life.  相似文献   

15.
益生菌及其细胞组分的免疫调节作用   总被引:4,自引:2,他引:2  
益生菌对肠道黏膜系统的调节作用是应用益生菌提高宿主抵抗某些病源菌感染及预防肿瘤发生的基础。但是,益生菌的作用机理目前还不完全清楚。益生菌细胞壁组分可能是引发免疫反应的功能性物质,而构成各种益生菌细胞壁组分的差异可能是益生菌免疫调节作用存在菌种特异性的主要原因。肠道派伊尔斑外层的M细胞是介导益生菌或其细胞组分进入上皮下层的主要通道,进入上皮下层的益生菌或其细胞残片可以被黏膜免疫系统的树突状细胞(DC)或巨噬细胞吞噬,并呈递给淋巴细胞。益生菌及其细胞组分在黏膜局部刺激黏膜免疫系统,也可以引起系统免疫反应,但其通过局部免疫刺激引起系统免疫反应的机理目前还不清楚。研究益生菌细胞组分构成和益生菌免疫激活作用之间的关系,及由局部免疫刺激引发系统免疫反应的机理是益生菌免疫刺激作用机理研究需要解决的两大问题。  相似文献   

16.
17.
Persistent infection with the gastric bacterial pathogen Helicobacter pylori causes gastritis and predisposes carriers to a high gastric cancer risk, but has also been linked to protection from allergic, chronic inflammatory and autoimmune diseases. In the course of tens of thousands of years of co-existence with its human host, H. pylori has evolved elaborate adaptations that allow it to persist in the hostile environment of the stomach in the face of a vigorous innate and adaptive immune response. For this review, we have identified several key immune cell types and signaling pathways that appear to be preferentially targeted by the bacteria to establish and maintain persistent infection. We explore the mechanisms that allow the bacteria to avoid detection by innate immune cells via their pattern recognition receptors, to escape T-cell mediated adaptive immunity, and to reprogram the immune system towards tolerance rather than immunity. The implications of the immunomodulatory properties of the bacteria for the prevention of allergic and auto-immune diseases in chronically infected individuals are also discussed.  相似文献   

18.
The age-related decline in immunity reduces the effectiveness of vaccines in older adults. Immunosenescence is associated with chronic, low-grade inflammation, and the accumulation of senescent cells. The latter express Bcl-2 family members (providing resistance to cell death) and exhibit a pro-inflammatory, senescence-associated secretory phenotype (SASP). Preexisting senescent cells cause many aging-related disorders and therapeutic means of eliminating these cells have recently gained attention. The potential consequences of senescent cell removal on vaccine efficacy in older individuals are still ignored. We used the Bcl-2 family inhibitor ABT-263 to investigate the effects of pre-vaccination senolysis on immune responses in old mice. Two different ovalbumin (OVA)-containing vaccines (containing a saponin-based or a CpG oligodeoxynucleotide adjuvant) were tested. ABT-263 depleted senescent cells (apoptosis) and ablated the basal and lipopolysaccharide-induced production of SASP-related factors in old mice. Depletion of senescent cells prior to vaccination (prime/boost) had little effect on OVA-specific antibody and T-cell responses (slightly reduced and augmented, respectively). We then used a preclinical melanoma model to test the antitumor potential of senolysis before vaccination (prime with the vaccine and OVA boost by tumor cells). Surprisingly, ABT-263 treatment abrogated the vaccine's ability to protect against B16 melanoma growth in old animals, an effect associated with reduced antigen-specific T-cell responses. Some, but not all, of the effects were age-specific, which suggests that preexisting senescent cells were partly involved. Hence, depletion of senescent cells modifies immune responses to vaccines in some settings and caution should be taken when incorporating senolytics into vaccine-based cancer therapies.  相似文献   

19.
Adult T-cell leukemia (ATL) occurs in a small population of human T-cell leukemia virus type 1 (HTLV-1)-infected individuals. Although the critical risk factor for ATL development is not clear, it has been noted that ATL is incidentally associated with mother-to-child infection, elevated proviral loads, and weakness in HTLV-1-specific T-cell immune responses. In the present study, using a rat system, we investigated the relationships among the following conditions: primary HTLV-1 infection, a persistent HTLV-1 load, and host HTLV-1-specific immunity. We found that the persistent HTLV-1 load in orally infected rats was significantly greater than that in intraperitoneally infected rats. Even after inoculation with only 50 infected cells, a persistent viral load built up to considerable levels in some orally infected rats but not in intraperitoneally infected rats. In contrast, HTLV-1-specific cellular immune responses were markedly impaired in orally infected rats. As a result, a persistent viral load was inversely correlated with levels of virus-specific T-cell responses in these rats. Otherwise very weak HTLV-1-specific cellular immune responses in orally infected rats were markedly augmented after subcutaneous reimmunization with infected syngeneic rat cells. These findings suggest that HTLV-1-specific immune unresponsiveness associated with oral HTLV-1 infection may be a potential risk factor for development of ATL, allowing expansion of the infected cell reservoir in vivo, but could be overcome with immunological strategies.  相似文献   

20.
Candida albicans is an opportunistic fungal pathogen of humans causing superficial mucosal infections and life‐threatening systemic disease. The fungal cell wall is the first point of contact between the invading pathogen and the host innate immune system. As a result, the polysaccharides that comprise the cell wall act as pathogen associated molecular patterns, which govern the host–pathogen interaction. The cell wall is dynamic and responsive to changes in the external environment. Therefore, the host environment plays a critical role in regulating the host–pathogen interaction through modulation of the fungal cell wall. This review focuses on how environmental adaptation modulates the cell wall structure and composition, and the subsequent impact this has on the innate immune recognition of C. albicans.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号