首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Neuronal growth cones are motile sensory structures at the tip of axons, transducing guidance information into directional movements towards target cells. The morphology and dynamics of neuronal growth cones have been well characterized with optical techniques; however, very little quantitative information is available on the three-dimensional structure and mechanical properties of distinct subregions. In the present study, we imaged the large Aplysia growth cones after chemical fixation with the atomic force microscope (AFM) and directly compared our data with images acquired by light microscopy methods. Constant force imaging in contact mode in combination with force-distant measurements revealed an average height of 200 nm for the peripheral (P) domain, 800 nm for the transition (T) zone, and 1200 nm for the central (C) domain, respectively. The AFM images show that the filopodial F-actin bundles are stiffer than surrounding F-actin networks. Enlarged filopodia tips are 60 nm higher than the corresponding shafts. Measurements of the mechanical properties of the specific growth cone regions with the AFM revealed that the T zone is stiffer than the P and the C domain. Direct comparison of AFM and optical data acquired by differential interference contrast and fluorescence microscopy revealed a good correlation between these imaging methods. However, the AFM provides height and volume information at higher resolution than fluorescence methods frequently used to estimate the volume of cellular compartments. These findings suggest that AFM measurements on live growth cones will provide a quantitative understanding of how proteins can move between different growth cone regions.  相似文献   

2.
Neuronal growth cones are motile structures located at the end of axons that translate extracellular guidance information into directional movements. Despite the important role of growth cones in neuronal development and regeneration, relatively little is known about the topography and mechanical properties of distinct subcellular growth cone regions under live conditions. In this study, we used the AFM to study the P domain, T zone, and C domain of live Aplysia growth cones. The average height of these regions was calculated from contact mode AFM images to be 183 ± 33, 690 ± 274, and 1322 ± 164 nm, respectively. These findings are consistent with data derived from dynamic mode images of live and contact mode images of fixed growth cones. Nano-indentation measurements indicate that the elastic moduli of the C domain and T zone ruffling region ranged between 3-7 and 7-23 kPa, respectively. The range of the measured elastic modulus of the P domain was 10-40 kPa. High resolution images of the P domain suggest its relatively high elastic modulus results from a dense meshwork of actin filaments in lamellipodia and from actin bundles in the filopodia. The increased mechanical stiffness of the P and T domains is likely important to support and transduce tension that develops during growth cone steering.  相似文献   

3.
Growth cones are highly polarized and dynamic structures confined to the tips of axons. The polarity of growth cones is in part maintained by suppression of protrusive activity from the distal axon shaft, a process termed axon consolidation. The mechanistic basis of axon consolidation that contributes to the maintenance of growth cone polarity is not clear. We report that inhibition of RhoA‐kinase (ROCK) or myosin II resulted in unstable consolidation of the distal axon as evidenced by increased filopodial and lamellipodial extension. Furthermore, when ROCK or myosin II was inhibited lamellipodia formed at the growth cone migrated onto the axon shaft. Analysis of EYFP‐actin dynamics in the distal axon revealed that ROCK negatively regulates actin polymerization and initiation of protrusive structures from spontaneously formed axonal F‐actin patches, the latter being an effect attributable to ROCK‐mediated regulation of myosin II. Inhibition of ROCK or myosin II blocked growth cone turning toward NGF by preventing suppression of protrusive activity away from the source of NGF, resulting in aborted turning responses. These data elucidate the mechanism of growth cone polarity, provide evidence that consolidation of the distal axon is a component of guidance, and identify ROCK as a negative regulator of F‐actin polymerization underlying protrusive activity in the distal axon. © 2006 Wiley Periodicals, Inc. J Neurobiol, 2006  相似文献   

4.
During adhesion-mediated neuronal growth cone guidance microtubules undergo major rearrangements. However, it is unknown whether microtubules extend to adhesion sites because of changes in plus-end polymerization and/or translocation dynamics, because of changes in actin-microtubule interactions, or because they follow the reorganization of the actin cytoskeleton. Here, we used fluorescent speckle microscopy to directly quantify microtubule and actin dynamics in Aplysia growth cones as they turn towards beads coated with the cell adhesion molecule apCAM. During the initial phase of adhesion formation, dynamic microtubules in the peripheral domain preferentially explore apCAM-beads prior to changes in growth cone morphology and retrograde actin flow. Interestingly, these early microtubules have unchanged polymerization rates but spend less time in retrograde translocation due to uncoupling from actin flow. Furthermore, microtubules exploring the adhesion site spend less time in depolymerization. During the later phase of traction force generation, the central domain advances and more microtubules in the peripheral domain extend because of attenuation of actin flow and clearance of F-actin structures. Microtubules in the transition zone and central domain, however, translocate towards the adhesion site in concert with actin arcs and bundles, respectively. We conclude that adhesion molecules guide neuronal growth cones and underlying microtubule rearrangements largely by differentially regulating microtubule-actin coupling and actin movements according to growth cone region and not by controlling plus-end polymerization rates.  相似文献   

5.
We have analyzed the morphology of growth cones of differentiating neurons from rat dorsal root ganglia (DRG) with conventional Laser Scanning Confocal Microscopy (LSCM) and Atomic Force Microscopy (AFM). Images of immunofluorescent DRG growth cones colabeled for actin and tubulin were superimposed to images obtained with AFM at different scanning forces. In order to reduce changes of the image surface caused by the pressure of the AFM tip, we have developed a procedure to obtain 0 pN AFM images. Further analysis of these images revealed topographical structures with nanoscale dimensions, referred to as “invaginations” or “holes”. These holes had an area varying from 0.01 to 3.5 μm2 with a depth varying from 2 to 178 nm. Comparative analysis with LSCM images showed that these holes correspond to regions where staining of both actin and tubulin was negligible. Filopodia height varied from 40 to 270 nm and their diameter from 113 to 887 nm. These results show that the combination of LSCM and AFM reveal structural details with a nanoscale dimension of DRG growth cones, difficult to resolve with conventional microscopy.  相似文献   

6.
Growth cones at the distal tips of growing nerve axons contain bundles of actin filaments distributed throughout the lamellipodium and that project into filopodia. The regulation of actin bundling by specific actin binding proteins is likely to play an important role in many growth cone behaviors. Although the actin binding protein, fascin, has been localized in growth cones, little information is available on its functional significance. We used the large growth cones of the snail Helisoma to determine whether fascin was involved in temporal changes in actin filaments during growth cone morphogenesis. Fascin localized to radially oriented actin bundles in lamellipodia (ribs) and filopodia. Using a fascin antibody and a GFP fascin construct, we found that fascin incorporated into actin bundles from the beginning of growth cone formation at the cut end of axons. Fascin associated with most of the actin bundle except the proximal 6--12% adjacent to the central domain, which is the region associated with actin disassembly. Later, during growth cone morphogenesis when actin ribs shortened, the proximal fascin-free zone of bundles increased, but fascin was retained in the distal, filopodial portion of bundles. Treatment with tumor promoter 12-O-tetradecanoylphorbol-13-acetate (TPA), which phosphorylates fascin and decreases its affinity for actin, resulted in loss of all actin bundles from growth cones. Our findings suggest that fascin may be particularly important for the linear structure and dynamics of filopodia and for lamellipodial rib dynamics by regulating filament organization in bundles.  相似文献   

7.
Mechanical properties of the extracellular environment modulate axon outgrowth. Growth cones at the tip of extending axons generate traction force for axon outgrowth by transmitting the force of actin filament retrograde flow, produced by actomyosin contraction and F-actin polymerization, to adhesive substrates through clutch and cell adhesion molecules. A molecular clutch between the actin filament flow and substrate is proposed to contribute to cellular mechanosensing. However, the molecular identity of the clutch interface responsible for mechanosensitive growth cone advance is unknown. We previously reported that mechanical coupling between actin filament retrograde flow and adhesive substrates through the clutch molecule shootin1a and the cell adhesion molecule L1 generates traction force for axon outgrowth and guidance. Here, we show that cultured mouse hippocampal neurons extend longer axons on stiffer substrates under elastic conditions that correspond to the soft brain environments. We demonstrate that this stiffness-dependent axon outgrowth requires actin-adhesion coupling mediated by shootin1a, L1, and laminin on the substrate. Speckle imaging analyses showed that L1 at the growth cone membrane switches between two adhesive states: L1 that is immobilized and that undergoes retrograde movement on the substrate. The duration of the immobilized phase was longer on stiffer substrates; this was accompanied by increases in actin-adhesion coupling and in the traction force exerted on the substrate. These data suggest that the interaction between L1 and laminin is enhanced on stiffer substrates, thereby promoting force generation for axon outgrowth.  相似文献   

8.
The neuron‐specific ELAV/Hu family member, HuD, interacts with and stabilizes GAP‐43 mRNA in developing neurons, and leads to increased levels of GAP‐43 protein. As GAP‐43 protein is enriched in growth cones, it is of interest to determine if HuD and GAP‐43 mRNA are associated in developing growth cones. HuD granules in growth cones are found in the central domain that is rich in microtubules and ribosomes, in the peripheral domain with its actin network, and in filopodia. This distribution of HuD granules in growth cones is dependent on actin filaments but not on microtubules. GAP‐43 mRNA is localized in granules found in both the central and peripheral domains, but not in filopodia. Ribosomes were extensively colocalized with HuD and GAP‐43 mRNA granules in the central domain, consistent with a role in the control of GAP‐43 mRNA stability in the growth cone. Together, these results demonstrate that many of the components necessary for GAP‐43 mRNA translation/stabilization are present within growth cones. © 2004 Wiley Periodicals, Inc. J Neurobiol, 2004  相似文献   

9.
Proper neural circuitry requires that growth cones, motile tips of extending axons, respond to molecular guidance cues expressed in the developing organism. However, it is unclear how guidance cues modify the cytoskeleton to guide growth cone pathfinding. Here, we show acute treatment with two attractive guidance cues, nerve growth factor (NGF) and netrin‐1, for embryonic dorsal root ganglion and temporal retinal neurons, respectively, results in increased growth cone membrane protrusion, actin polymerization, and filamentous actin (F‐actin). ADF/cofilin (AC) family proteins facilitate F‐actin dynamics, and we found the inactive phosphorylated form of AC is decreased in NGF‐ or netrin‐1‐treated growth cones. Directly increasing AC activity mimics addition of NGF or netrin‐1 to increase growth cone protrusion and F‐actin levels. Extracellular gradients of NGF, netrin‐1, and a cell‐permeable AC elicit attractive growth cone turning and increased F‐actin barbed ends, F‐actin accumulation, and active AC in growth cone regions proximal to the gradient source. Reducing AC activity blunts turning responses to NGF and netrin. Our results suggest that gradients of NGF and netrin‐1 locally activate AC to promote actin polymerization and subsequent growth cone turning toward the side containing higher AC activity. © 2010 Wiley Periodicals, Inc. Develop Neurobiol 70: 565–588, 2010  相似文献   

10.
Growth cone behavior and production of traction force   总被引:11,自引:9,他引:2       下载免费PDF全文
《The Journal of cell biology》1990,111(5):1949-1957
The growth cone must push its substrate rearward via some traction force in order to propel itself forward. To determine which growth cone behaviors produce traction force, we observed chick sensory growth cones under conditions in which force production was accommodated by movement of obstacles in the environment, namely, neurites of other sensory neurons or glass fibers. The movements of these obstacles occurred via three, different, stereotyped growth cone behaviors: (a) filopodial contractions, (b) smooth rearward movement on the dorsal surface of the growth cone, and (c) interactions with ruffling lamellipodia. More than 70% of the obstacle movements were caused by filopodial contractions in which the obstacle attached at the extreme distal end of a filopodium and moved only as the filopodium changed its extension. Filopodial contractions were characterized by frequent changes of obstacle velocity and direction. Contraction of a single filopodium is estimated to exert 50-90 microdyn of force, which can account for the pull exerted by chick sensory growth cones. Importantly, all five cases of growth cones growing over the top of obstacle neurites (i.e., geometry that mimics the usual growth cone/substrate interaction), were of the filopodial contraction type. Some 25% of obstacle movements occurred by a smooth backward movement along the top surface of growth cones. Both the appearance and rate of movements were similar to that reported for retrograde flow of cortical actin near the dorsal growth cone surface. Although these retrograde flow movements also exerted enough force to account for growth cone pulling, we did not observe such movements on ventral growth cone surfaces. Occasionally obstacles were moved by interaction with ruffling lamellipodia. However, we obtained no evidence for attachment of the obstacles to ruffling lamellipodia or for directed obstacle movements by this mechanism. These data suggest that chick sensory growth cones move forward by contractile activity of filopodia, i.e., isometric contraction on a rigid substrate. Our data argue against retrograde flow of actin producing traction force.  相似文献   

11.
Here, we demonstrate a new function of myosin VI using observations of Drosophila spermatid individualization in vivo. We find that myosin VI stabilizes a branched actin network in actin structures (cones) that mediate the separation of the syncytial spermatids. In a myosin VI mutant, the cones do not accumulate F-actin during cone movement, whereas overexpression of myosin VI leads to bigger cones with more F-actin. Myosin subfragment 1-fragment decoration demonstrated that the actin cone is made up of two regions: a dense meshwork at the front and parallel bundles at the rear. The majority of the actin filaments were oriented with their pointed ends facing in the direction of cone movement. Our data also demonstrate that myosin VI binds to the cone front using its motor domain. Fluorescence recovery after photobleach experiments using green fluorescent protein-myosin VI revealed that myosin VI remains bound to F-actin for minutes, suggesting its role is tethering, rather than transporting cargo. We hypothesize that myosin VI protects the actin cone structure either by cross-linking actin filaments or anchoring regulatory molecules at the cone front. These observations uncover a novel mechanism mediated by myosin VI for stabilizing long-lived actin structures in cells.  相似文献   

12.
Arp2/3 is a negative regulator of growth cone translocation   总被引:6,自引:0,他引:6  
Arp2/3 is an actin binding complex that is enriched in the peripheral lamellipodia of fibroblasts, where it forms a network of short, branched actin filaments, generating the protrusive force that extends lamellipodia and drives fibroblast motility. Although it has been assumed that Arp2/3 would play a similar role in growth cones, our studies indicate that Arp2/3 is enriched in the central, not the peripheral, region of growth cones and that the growth cone periphery contains few branched actin filaments. Arp2/3 inhibition in fibroblasts severely disrupts actin organization and membrane protrusion. In contrast, Arp2/3 inhibition in growth cones minimally affects actin organization and does not inhibit lamellipodia protrusion or de novo filopodia formation. Surprisingly, Arp2/3 inhibition significantly enhances axon elongation and causes defects in growth cone guidance. These results indicate that Arp2/3 is a negative regulator of growth cone translocation.  相似文献   

13.
The lamina is a filamentous meshwork beneath the inner nuclear membrane that confers mechanical stability to nuclei. The E145K mutation in lamin A causes Hutchinson‐Gilford progeria syndrome (HGPS). It affects lamin filament assembly and induces profound changes in the nuclear architecture. Expression of wild‐type and E145K lamin A in Xenopus oocytes followed by atomic force microscopy (AFM) probing of isolated oocyte nuclei has shown significant changes in the mechanical properties of the lamina. Nuclei of oocytes expressing E145K lamin A are stiffer than those expressing wild‐type lamin A. Here we present mechanical measurements by AFM on dermal fibroblasts obtained from a 4‐year‐old progeria patient bearing the E145K lamin A mutation and compared it to fibroblasts obtained from 2 healthy donors of 10 and 61 years of age, respectively. The abnormal shape of nuclei expressing E145K lamin A was analyzed by fluorescence microscopy. Lamina thickness was measured using electron micrographs. Fluorescence microscopy showed alterations in the actin network of progeria cells. AFM probing of whole dermal fibroblasts did not demonstrate significant differences in the elastic moduli of nuclear and cytoplasmic cell regions. In contrast, AFM measurements of isolated nuclei showed that nuclei of progeria and old person's cells are significantly stiffer than those of the young person, indicating that the process of aging, be it natural or abnormal, increases nuclear stiffness. Our results corroborate AFM data obtained using Xenopus oocyte nuclei and prove that the presence of E145K lamin A abnormally increases nuclear stiffness.  相似文献   

14.
Reactive oxygen species are well known for their damaging effects due to oxidation of lipids, proteins and DNA that ultimately result in cell death. Accumulating evidence indicates that reactive oxygen species also have important signaling functions in cell proliferation, differentiation, cell motility and apoptosis. Here, we tested the hypothesis whether reactive oxygen species play a physiological role in regulating F-actin structure and dynamics in neuronal growth cones. Lowering cytoplasmic levels of reactive oxygen species with a free radical scavenger, N -tert-butyl-α-phenylnitrone, or by inhibiting specific sources of reactive oxygen species, such as NADPH oxidases or lipoxygenases, reduced the F-actin content in the peripheral domain of growth cones. Fluorescent speckle microscopy revealed that these treatments caused actin assembly inhibition, reduced retrograde actin flow and increased contractility of actin structures in the transition zone referred to as arcs, possibly by activating the Rho pathway. Reduced levels of reactive oxygen species ultimately resulted in disassembly of the actin cytoskeleton. When neurons were cultured overnight in conditions of reduced free radicals, growth cone formation and neurite outgrowth were severely impaired. Therefore, we conclude that physiological levels of reactive oxygen species are critical for maintaining a dynamic F-actin cytoskeleton and controlling neurite outgrowth.  相似文献   

15.
Motile growth cones lead growing axons through developing tissues to synaptic targets. These behaviors depend on the organization and dynamics of actin filaments that fill the growth cone leading margin [peripheral (P‐) domain]. Actin filament organization in growth cones is regulated by actin‐binding proteins that control all aspects of filament assembly, turnover, interactions with other filaments and cytoplasmic components, and participation in producing mechanical forces. Actin filament polymerization drives protrusion of sensory filopodia and lamellipodia, and actin filament connections to the plasma membrane link the filament network to adhesive contacts of filopodia and lamellipodia with other surfaces. These contacts stabilize protrusions and transduce mechanical forces generated by actomyosin activity into traction that pulls an elongating axon along the path toward its target. Adhesive ligands and extrinsic guidance cues bind growth cone receptors and trigger signaling activities involving Rho GTPases, kinases, phosphatases, cyclic nucleotides, and [Ca++] fluxes. These signals regulate actin‐binding proteins to locally modulate actin polymerization, interactions, and force transduction to steer the growth cone leading margin toward the sources of attractive cues and away from repellent guidance cues.

  相似文献   


16.
Although pulling forces have been observed in axonal growth for several decades, their underlying mechanisms, absolute magnitudes, and exact roles are not well understood. In this study, using two different experimental approaches, we quantified retrograde traction force in Aplysia californica neuronal growth cones as they develop over time in response to a new adhesion substrate. In the first approach, we developed a novel method, to our knowledge, for measuring traction forces using an atomic force microscope (AFM) with a cantilever that was modified with an Aplysia cell adhesion molecule (apCAM)-coated microbead. In the second approach, we used force-calibrated glass microneedles coated with apCAM ligands to guide growth cone advance. The traction force exerted by the growth cone was measured by monitoring the microneedle deflection using an optical microscope. Both approaches showed that Aplysia growth cones can develop traction forces in the 100–102 nN range during adhesion-mediated advance. Moreover, our results suggest that the level of traction force is directly correlated to the stiffness of the microneedle, which is consistent with a reinforcement mechanism previously observed in other cell types. Interestingly, the absolute level of traction force did not correlate with growth cone advance toward the adhesion site, but the amount of microneedle deflection did. In cases of adhesion-mediated growth cone advance, the mean needle deflection was 1.05 ± 0.07 μm. By contrast, the mean deflection was significantly lower (0.48 ± 0.06 μm) when the growth cones did not advance. Our data support a hypothesis that adhesion complexes, which can undergo micron-scale elastic deformation, regulate the coupling between the retrogradely flowing actin cytoskeleton and apCAM substrates, stimulating growth cone advance if sufficiently abundant.  相似文献   

17.
《The Journal of cell biology》1994,127(6):2049-2060
Neurons were grown on plastic surfaces that were untreated, or treated with polylysine, laminin, or L1 and their growth cones were detached from their culture surface by applying known forces with calibrated glass needles. This detachment force was taken as a measure of the force of adhesion of the growth cone. We find that on all surfaces, lamellipodial growth cones require significantly greater detachment force than filopodial growth cones, but this differences is, in general, due to the greater area of lamellipodial growth cones compared to filopodial growth cones. That is, the stress (force/unit area) required for detachment was similar for growth cones of lamellipodial and filopodial morphology on all surfaces, with the exception of lamellipodial growth cones on L1-treated surfaces, which had a significantly lower stress of detachment than on other surfaces. Surprisingly, the forces required for detachment (760-3,340 mudynes) were three to 15 times greater than the typical resting axonal tension, the force exerted by advancing growth cones, or the forces of retraction previously measured by essentially the same method. Nor did we observe significant differences in detachment force among growth cones of similar morphology on different culture surfaces, with the exception of lamellipodial growth cones on L1-treated surfaces. These data argue against the differential adhesion mechanism for growth cone guidance preferences in culture. Our micromanipulations revealed that the most mechanically resistant regions of growth cone attachment were confined to quite small regions typically located at the ends of filopodia and lamellipodia. Detached growth cones remained connected to the substratum at these regions by highly elastic retraction fibers. The closeness of contact of growth cones to the substratum as revealed by interference reflection microscopy (IRM) did not correlate with our mechanical measurements of adhesion, suggesting that IRM cannot be used as a reliable estimator of growth cone adhesion.  相似文献   

18.
Cytoplasmic dynein transports short microtubules down the axon in part by pushing against the actin cytoskeleton. Recent studies have suggested that comparable dynein-driven forces may impinge upon the longer microtubules within the axon. Here, we examined a potential role for these forces on axonal retraction and growth cone turning in neurons partially depleted of dynein heavy chain (DHC) by small interfering RNA. While DHC-depleted axons grew at normal rates, they retracted far more robustly in response to donors of nitric oxide than control axons, and their growth cones failed to efficiently turn in response to substrate borders. Live cell imaging of dynamic microtubule tips showed that microtubules in DHC-depleted growth cones were largely confined to the central zone, with very few extending into filopodia. Even under conditions of suppressed microtubule dynamics, DHC depletion impaired the capacity of microtubules to advance into the peripheral zone of the growth cone, indicating a direct role for dynein-driven forces on the distribution of the microtubules. These effects were all reversed by inhibition of myosin-II forces, which are known to underlie the retrograde flow of actin in the growth cone and the contractility of the cortical actin during axonal retraction. Our results are consistent with a model whereby dynein-driven forces enable microtubules to overcome myosin-II-driven forces, both in the axonal shaft and within the growth cone. These dynein-driven forces oppose the tendency of the axon to retract and permit microtubules to advance into the peripheral zone of the growth cone so that they can invade filopodia.  相似文献   

19.
Growth cone collapsing factors induce growth cone collapse or repulsive growth cone turning by interacting with membrane receptors that induce alterations in the growth cone cytoskeleton. A common change induced by collapsing factors in the cytoskeleton of the peripheral domain, the thin lamellopodial area of growth cones, is a decline in the number of radially aligned F-actin bundles that form the core of filopodia. The present study examined whether ML-7, a myosin light chain kinase inhibitor, serotonin, a neurotransmitter and TPA, an activator of protein kinase C, which induce growth cone collapse of Helisoma growth cones, depolymerized or debundled F-actin. We report that these collapsing factors had different effects. ML-7 induced F-actin reorganization consistent with debundling whereas serotonin and TPA predominately depolymerized and possibly debundled F-actin. Additionally, these collapsing factors induced the formation of a dense actin-ring around the central domain, the thicker proximal area of growth cones [Zhou and Cohan, 2001: J. Cell Biol. 153:1071-1083]. The formation of the actin-ring occurred subsequent to the loss of actin bundles. The ML-7-induced actin-ring was found to inhibit microtubule extension into the P-domain. Thus, ML-7, serotonin, and TPA induce growth cone collapse associated with a decline in radially aligned F-actin bundles through at least two mechanisms involving debundling of actin filaments and/or actin depolymerization.  相似文献   

20.
Collapsin response mediator proteins (CRMPs) have been implicated in signaling of axonal guidance, including semaphorins. We have previously identified a unique member of this gene family, CRMP-associated molecule CRAM (CRMP-5), which is phylogenetically divergent from the other four CRMPs. In this study, we have examined the distribution and function of CRAM in developing neurons. Immunohistochemical analysis showed accumulation of CRAM in the filopodia of growth cones. Experiments using cytochalasin D indicated that filopodial localization of CRAM was independent of filamentous actin. Overexpression of CRAM in neuronal cells significantly promoted filopodial growth and led to the formation of supernumerary growth cones, which acquired resistance to semaphorin-3A stimulation. Finally, knockdown of CRAM by using RNA interference blocked filopodial formation and revealed an aberrant morphology of growth cones. We propose that CRAM regulates filopodial dynamics and growth cone development, thereby restricting the response of growth cone to repulsive guidance cues.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号