首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Carbon isotope ratios (δ13C) were studied in evergreen and deciduous forest ecosystems in semi-arid Utah (Pinus contorta, Populus tremuloides, Acer negundo and Acer grandidentatum). Measurements were taken in four to five stands of each forest ecosystem differing in overstory leaf area index (LAI) during two consecutive growing seasons. The δ13Cleaf (and carbon isotope discrimination) of understory vegetation in the evergreen stands (LAI 1.5–2.2) did not differ among canopies with increasing LAI, whereas understory in the deciduous stands (LAI 1.5–4.5) exhibited strongly decreasing δ13Cleaf values (increasing carbon isotope discrimination) with increasing LAI. The δ13C values of needles and leaves at the top of the canopy were relatively constant over the entire LAI range, indicating no change in intrinsic water-use efficiency with overstory LAI. In all canopies, δ13Cleaf decreased with decreasing height above the forest floor, primarily due to physiological changes affecting c i/c a (> 60%) and to a minor extent due to δ13C of canopy air (< 40%). This intra-canopy depletion of δ13Cleaf was lowest in the open stand (1‰) and greatest in the denser stands (4.5‰). Although overstory δ13Cleaf did not change with canopy LAI, δ13C of soil organic carbon increased with increasing LAI in Pinus contorta and Populus tremuloides ecosystems. In addition, δ13C of decomposing organic carbon became increasingly enriched over time (by 1.7–2.9‰) for all deciduous and evergreen dry temperate forests. The δ13Ccanopy of CO2 in canopy air varied temporally and spatially in all forest stands. Vertical canopy gradients of δ13Ccanopy, and [CO2]canopy were larger in the deciduous Populus tremuloides than in the evergreen Pinu contorta stands of similar LAI. In a very wet and cool year, ecosystem discrimination (Δe) was similar for both deciduous Populus tremulodies (18.0 ± 0.7‰) and evergreen Pinus contorta (18.3 ± 0.9‰) stands. Gradients of δ13Ccanopy and [CO2]canopy were larger in denser Acer spp. stands than those in the open stand. However, 13C enrichment above and photosynthetic draw-down of [CO2]canopy below tropospheric baseline values were larger in the open than in the dense stands, due to the presence of a vigorous understory vegetation. Seasonal patterns of the relationship δ13Ccanopy versus 1/[CO2]canopy were strongly influenced by precipitation and air temperature during the growing season. Estimates of Δe for Acer spp. did not show a significant effect of stand structure, and averaged 16.8 ± 0.5‰ in 1933 and 17.4 ± 0.7‰ in 1994. However, Δe varied seasonally with small fluctuations for the open stand (2‰), but more pronounced changes for the dense stand (5‰). Received: 15 April 1996 / Accepted: 19 October 1996  相似文献   

2.
Though field data for naturally senesced leaf litter are rare, it is commonly assumed that rising atmospheric CO2 concentrations will reduce leaf litter quality and decomposition rates in terrestrial ecosystems and that this will lead to decreased rates of nutrient cycling and increased carbon sequestration in native ecosystems. We generally found that the quality of␣naturally senesced leaf litter (i.e. concentrations of C, N and lignin; C:N, lignin:N) of a variety of native plant species produced in alpine, temperate and tropical communities maintained at elevated CO2 (600–680 μl l−1) was not significantly different from that produced in similar communities maintained at current ambient CO2 concentrations (340–355 μl l−1). When this litter was allowed to decompose in situ in a humid tropical forest in Panama (Cecropia peltata, Elettaria cardamomum, and Ficus benjamina, 130 days exposure) and in a lowland temperate calcareous grassland in Switzerland (Carex flacca and a graminoid species mixture; 261 days exposure), decomposition rates of litter produced under ambient and elevated CO2 did not differ significantly. The one exception to this pattern occurred in the high alpine sedge, Carex curvula, growing in the Swiss Alps. Decomposition of litter produced in situ under elevated CO2 was significantly slower than that of litter produced under ambient CO2 (14% vs. 21% of the initial litter mass had decomposed over a 61-day exposure period, respectively). Overall, our results indicate that relatively little or no change in leaf litter quality can be expected in plant communities growing under soil fertilities common in many native ecosystems as atmospheric CO2 concentrations continue to rise. Even in situations where small reductions in litter quality do occur, these may not necessarily lead to significantly slower rates of decomposition. Hence in many native species in situ litter decomposition rates, and the time course of decomposition, may remain relatively unaffected by rising CO2. Received: 12 September 1996 / Accepted: 30 November 1996  相似文献   

3.
We examined the effects of climate and allocation patterns on stem respiration in ponderosa pine (Pinus ponderosa) growing on identical substrate in the cool, moist Sierra Nevada mountains and the warm, dry, Great Basin Desert. These environments are representative of current climatic conditions and those predicted to accompany a doubling of atmospheric CO2, respectively, throughout the range of many western north American conifers. A previous study found that trees growing in the desert allocate proportionally more biomass to sapwood and less to leaf area than montane trees. We tested the hypothesis that respiration rates of sapwood are lower in desert trees than in montane trees due to reduced stem maintenance respiration (physiological acclimation) or reduced construction cost of stem tissue (structural acclimation). Maintenance respiration per unit sapwood volume at 15°C did not differ between populations (desert: 6.39 ± 1.14 SE μmol m−3 s−1, montane: 6.54 ± 1.13 SE μmol m−3 s−1, P = 0.71) and declined with increasing stem diameter (P = 0.001). The temperature coefficient of respiration (Q 10) varied seasonally within both environments (P = 0.05). Construction cost of stem sapwood was the same in both environments (desert: 1.46 ± 0.009 SE g glucose g−1 sapwood, montane: 1.48 ± 0.009 SE glucose g−1 sapwood, P = 0.14). Annual construction respiration calculated from construction cost, percent carbon and relative growth rate was greater in montane populations due to higher growth rates. These data provide no evidence of respiratory acclimation by desert trees. Estimated yearly stem maintenance respiration was greater in large desert trees than in large montane trees because of higher temperatures in the desert and because of increased allocation of biomass to sapwood. By analogy, these data suggest that under predicted increases in temperature and aridity, potential increases in aboveground carbon gain due to enhanced photosynthetic rates may be partially offset by increases in maintenance respiration in large trees growing in CO2-enriched atmospheres. Received: 4 November 1996 / Accepted: 23 January 1997  相似文献   

4.
This study investigated the effects on running economy (RE) of ingesting either no fluid or an electrolyte solution with or without 6% carbohydrate (counterbalanced design) during 60-min running bouts at 80% maximal oxygen consumption (O2max). Tests were undertaken in either a thermoneutral (22–23°C; 56–62% relative humidity, RH) or a hot and humid natural environment (Singapore: 25–35°C; 66–77% RH). The subjects were 15 young adult male Singaporeans [O2max = 55.5 (4.4 SD) ml kg−1 min−1]. The RE was measured at 3 m s−1 [65 (6)% O2max] before (RE1) and after each prolonged run (RE2). Fluids were administered every 2 min, at an individual rate determined from prior tests, to maintain body mass (group mean = 17.4 ml min−1). The O2 during RE2 was higher (P < 0.05) than that during the RE1 test for all treatments, with no differences between treatments (ANOVA). The mean increase in O2 from RE1 to RE2 ranged from 3.4 to 4.7 ml kg−1 min−1 across treatments. In conclusion, the deterioration in RE at 3 m s−1 (65% O2max) after 60 min of running at 80% O2max appears to occur independently of whether fluid is ingested and regardless of whether the fluid contains carbohydrates or electrolytes, in both a thermoneutral and in a hot, humid environment. Accepted: 30 October 1997  相似文献   

5.
Phosphorus magnetic resonance spectroscopy (31P-MRS) was used to investigate the influence of maximal aerobic power (˙VO 2max) on the recovery of human calf muscle from high-intensity exercise. The (˙VOO2max) of 21 males was measured during treadmill exercise and subjects were assigned to either a low-aerobic-power (LAP) group (n = 10) or a high-aerobic-power (HAP) group (n = 11). Mean (SE) ˙VO 2max of the groups were 46.6 (1.1) and 64.4 (1.4) ml · kg−1 · min−1, respectively. A calf ergometry work capacity test was used to assign the same relative exercise intensity to each subject for the MRS protocol. At least 48 h later, subjects performed the rest (4 min), exercise (2 min) and recovery (10 min) protocol in a 1.5 T MRS scanner. The relative concentration of phosphocreatine (PCr) was measured throughout the protocol and intracellular pH (pHi) was determined from the chemical shift between inorganic phospate (Pi) and PCr. End-exercise PCr levels were 27 (3.4) and 25 (3.5)% of resting levels for LAP and HAP respectively. Mean resting pHi was 7.07 for both groups, and following exercise it fell to 6.45 (0.04) for HAP and 6.38 (0.04) for LAP. Analysis of data using non-linear regression models showed no differences in the rate of either PCr or pHi recovery. The results suggest that ˙VO2max is a poor predictor of metabolic recovery rate from high-intensity exercise. Differences in recovery rate observed between individuals with similar ˙VO2max imply that other factors influence recovery. Accepted: 17 December 1996  相似文献   

6.
Unlike northern hemisphere conifer families, the southern family, Podocarpaceae, produces a great variety of foliage forms ranging from functionally broad-, to needle-leaved. The production of broad photosynthetic surfaces in podocarps has been linked qualitatively to low-light-environments, and we undertook to assess the validity of this assumption by measuring the light response of a morphologically diverse group of podocarps. The light response, as apparent photochemical electron transport rate (ETR), was measured by modulated fluorescence in ten species of this family and six associated species (including five Cupressaceae and one functionally needle-leaved angiosperm) all grown under identical glasshouse conditions. In all species, ETR was found to increase as light intensity increased, reaching a peak value (ETRmax) at saturating quantum flux (PPFDsat), and decreasing thereafter. ETRmax ranged from 217 μmol electrons · m−2 · s−1 at a PPFDsat of 1725 μmol photons · m−2 · s−1 in Actinostrobus acuminatus to an ETR of 60 μmol electrons · m−2 · s−1 at a PPFDsat of 745 μmol electrons · m−2 · s−1 in Podocarpus dispermis. Good correlations were observed between ETRmax and both PPFDsat and maximum assimilation rate measured by gas-exchange analysis. The effective quantum yield at light saturation remained constant in all species with an average value of 0.278 ± 0.0035 determined for all 16 species. Differences in the shapes of light response curves were related to differences in the response of non-photochemical quenching (q n), with q n saturating faster in species with low PPFDsat. Amongst the species of Podocarpaceae, the log of average shoot width was well correlated with PPFDsat, wider leaves saturating at lower light intensities. This suggests that broadly flattened shoots in the Podocarpaceae are an adaptation to low light intensity. Received: 15 April 1996 / Accepted: 30 September 1996  相似文献   

7.
The heat increment of feeding (HIF), a transient postprandial increase in metabolic rate, is the energy cost of processing a meal. We measured HIF in house wren chicks (Troglodytes aedon) ranging in mass from 1.6 to 10.3 g. This mass range (age 2–10 days) spanned a transition from blind, naked, ectothermic chicks through alert, endothermic birds with nearly complete feathering. We fed chicks crickets (2.7–10% of chick body mass) and determined HIF from continuous measurements of oxygen consumption rate (O2) before and after meals. At warm ambient temperatures (T a) of 33–36 °C, the magnitude of HIF (in ml O2 or joules) was linearly related to meal mass and was not affected by chick mass. HIF accounted for 6.3% of ingested energy, which is within the range of results for other carnivorous vertebrates. The duration of HIF was inversely related to chick mass; 10-g chicks processed a standard meal approximately twice as fast as 2-g chicks. HIF duration increased with increasing meal mass. The peak O2 during HIF, expressed as the factorial increase above resting metabolism, was independent of body mass and meal mass. In large, endothermic chicks ( > 8 g), HIF substituted for thermoregulatory heat production at low T a. Accepted: 11 December 1996  相似文献   

8.
Fluxes of CO2 and N2O were measured from both natural and experimentally augmented snowpacks during the winters of 1993 and 1994 on Niwot Ridge in the Colorado Front Range. Consistent snow cover insulated the soil surface from extreme air temperatures and allowed heterotrophic activity to continue through much of the winter. In contrast, soil remained frozen at sites with inconsistent snow cover and production did not begin until snowmelt. Fluxes were measured when soil temperatures under the snow ranged from –5°C to 0°C, but there was no significant relationship between flux for either gas and temperature within this range. While early developing snowpacks resulted in warmer minimum soil temperatures allowing production to continue for most of the winter, the highest CO2 fluxes were recorded at sites which experienced a hard freeze before a consistent snowpack developed. Consequently, the seasonal flux of CO2 C from snow covered soils was related both to the severity of freeze and the duration of snow cover. Over-winter CO2 C loss ranged from 0.3 g C m−2 season−1 at sites characterized by inconsistent snow cover to 25.7 g C m−2 season−1 at sites that experienced a hard freeze followed by an extended period of snow cover. In contrast to the pattern observed with C loss, a hard freeze early in the winter did not result in greater N2ON loss. Both mean daily N2O fluxes and the total over-winter N2ON loss were related to the length of time soils were covered by a consistent snowpack. Over-winter N2ON loss ranged from less 0.23 mg N m−2 from the latest developing, short duration snowpacks to 16.90 mg N m−2 from sites with early snow cover. These data suggest that over-winter heterotrophic activity in snow-covered soil has the potential to mineralize from less than 1% to greater than 25% of the carbon fixed in ANPP, while over-winter N2O fluxes range from less than half to an order of magnitude higher than growing season fluxes. The variability in these fluxes suggests that small changes in climate which affect the timing of seasonal snow cover may have a large effect on C and N cycling in these environments. Received: 5 April 1996 / Accepted: 25 November 1996  相似文献   

9.
The thermal and metabolic physiology of Chalinolobus gouldii, an Australian vespertilionid bat, was studied in the laboratory using flow-through respirometry. Chalinolobus gouldii exhibits a clear pattern of euthermic thermoregulation, typical of endotherms with respect to body temperature and rate of oxygen consumption. The basal metabolic rate of euthermic Chalinolobus gouldii is approximately 86% of that predicted for a 17.5-g mammal and falls into the range of mass-specific basal metabolic rates ascribed to vespertilionid bats. However, like most vespertilionid bats, Chalinolobus gouldii displays extreme thermolability. It is able to enter into torpor and spontaneously arouse at ambient temperatures as low as 5 °C. Torpid bats thermoconform at moderate ambient temperature, with body temperature ≈ ambient temperature, and have a low rate of oxygen consumption determined primarily by Q 10 effects. At low ambient temperature (< 10 °C), torpid C. gouldii begin to regulate their body temperature by increased metabolic heat production; they tend to maintain a higher body temperature at low ambient temperature than do many northern hemisphere hibernating bats. Use of torpor leads to significant energy savings. The evaporative water loss of euthermic bats is relatively high, which seems unusual for a bat whose range includes extremely arid areas of Australia, and is reduced during torpor. The thermal conductance of euthermic C. gouldii is less than that predicted for a mammal of its size. The thermal conductance is considerably lower for torpid bats at intermediate body temperature and ambient temperature, but increases to euthermic values for torpid bats when thermoregulating at low ambient temperature. Accepted: 22 August 1996  相似文献   

10.
The kinetics of the torque-velocity (T-ω) relationship after aerobic exercise was studied to assess the effect of fatigue on the contractile properties of muscle. A group of 13 subjects exercised until fatigued on a cycle ergometer, at an intensity which corresponded to 60% of their maximal aerobic power for 50 min (MAP60%); ten subjects exercised until fatigued at 80% of their maximal aerobic power for 15 min (MAP80%). Of the subjects 7 exercised at both intensities with at least a 1-week interval between sessions. Pedalling rate was set at 60 rpm. The T-ω relationship was determined from the velocity data collected during all-out sprints against a 19 N · m braking torque on the same ergometer, according to a method proposed previously. Maximal theoretical velocity (ω0) and maximal theoretical torque (T 0) were estimated by extrapolation of the linear T-ω relationship. Maximal power (P max) was calculated from the values of T 0 and ω0 (P max = 0.25 ω0T 0). The T-ω relationships were determined before, immediately after and 5 and 10 min after the aerobic exercise. The kinetics of ω0, T 0 and P max was assumed to express the effects of fatigue on the muscle contractile properties (maximal shortening velocity, maximal muscle strength and maximal power). Immediately after exercise at MAP60% a 7.8% decrease in T 0 and 8.8% decrease in P max was seen while the decrease in ω0 was nonsignificant, which suggested that P max decreased in the main because of a loss in maximal muscle strength. In contrast, MAP80% induced a 8.1% decrease in ω0 and 12.8% decrease in P max while the decrease in T 0 was nonsignificant, which suggested that the main cause of the decrease in P max was probably a slowing of maximal shortening velocity. The short recovery time of the T-ω relationship suggests that the causes of the decrease of torque and velocity are processes which recover rapidly. Accepted: 25 November 1996  相似文献   

11.
Canopy CO2 concentrations in a tropical rainforest in French Guiana were measured continuously for 5 days during the 1994 dry season and the 1995 wet season. Carbon dioxide concentrations ([CO2]) throughout the canopy (0.02–38 m) showed a distinct daily pattern, were well-stratified and decreased with increasing height into the canopy. During both seasons, daytime [CO2] in the upper and middle canopy decreased on average 7–10 μmol mol−1 below tropospheric baseline values measured at Barbados. Within the main part of the canopy (≥ 0.7 m), [CO2] did not differ between the wet and dry seasons. In contrast, [CO2] below 0.7 m were generally higher during the dry season, resulting in larger [CO2] gradients. Supporting this observation, soil CO2 efflux was on average higher during the dry season than during the wet season, either due to diffusive limitations and/or to oxygen deficiency of root and microbial respiration. Soil respiration rates decreased by 40% after strong rain events, resulting in a rapid decrease in canopy [CO2] immediately above the forest floor of about 50␣μmol mol−1. Temporal and spatial variations in [CO2]canopy were reflected in changes of δ13Ccanopy and δ18Ocanopy values. Tight relationships were observed between δ13C and δ18O of canopy CO2 during both seasons (r 2 > 0.86). The most depleted δ13Ccanopy and δ18Ocanopy values were measured immediately above the forest floor (δ13C = −16.4‰; δ18O = 39.1‰ SMOW). Gradients in the isotope ratios of CO2 between the top of the canopy and the forest floor ranged between 2.0‰ and 6.3‰ for δ13C, and between 1.0‰ and 3.5‰ for δ18O. The δ13Cleaf and calculated c i/c a of foliage at three different positions were similar for the dry and wet seasons indicating that the canopy maintained a constant ratio of photosynthesis to stomatal conductance. About 20% of the differences in δ13Cleaf within the canopy was accounted for by source air effects, the remaining 80% must be due to changes in c i/c a. Plotting 1/[CO2] vs. the corresponding δ13C ratios resulted in very tight, linear relationships (r 2 = 0.99), with no significant differences between the two seasons, suggesting negligible seasonal variability in turbulent mixing relative to ecosystem gas exchange. The intercepts of these relationships that should be indicative of the δ13C of respired sources were close to the measured δ13C of soil respired CO2 and to the δ13C of litter and soil organic matter. Estimates of carbon isotope discrimination of the entire ecosystem, Δe, were calculated as 20.3‰ during the dry season and as 20.5‰ during the wet season. Received: 3 March 1996 / Accepted: 19 October 1996  相似文献   

12.
Water relations of nutrient-poor calcareous grassland under long-term CO2 enrichment were investigated. Understanding CO2 effects on soil moisture is critical because productivity in these grasslands is water limited. In general, leaf conductance was reduced at elevated CO2, but responses strongly depended on date and species. Evapotranspiration (measured as H2O gas exchange) revealed only small, non-significant reductions at elevated CO2, indicating that leaf conductance effects were strongly buffered by leaf boundary layer and canopy conductance (leaf area index was not or only marginally increased under elevated CO2). However, these minute and non-significant responses of water vapour loss accumulated over time and resulted in significantly higher soil moisture in CO2-enriched plots (gravimetric spot measurements and continuous readings using a network of time-domain reflectometry probes). Differences strongly depended on date, with the smallest effects when soil moisture was very high (after heavy precipitation) and effects were largest at intermediate soil moisture. Elevated CO2 also affected diurnal soil moisture courses and rewetting of soils after precipitation. We conclude that ecosystem-level controls of the water balance (including soil feedbacks) overshadow by far the physiological effects observed at the leaf level. Indirect effects of CO2 enrichment mediated by trends in soil moisture will have far-ranging consequences on plant species composition, soil bacterial and faunal activity as well as on soil physical structure and may indirectly also affect hydrology and trace gas emissions and atmospheric chemistry. Received: 21 December 1997 / Accepted: 3 August 1998  相似文献   

13.
The purpose of this study was to investigate the effect of a thiamin derivative, thiamin tetrahydrofurfuryl disulfide (TTFD), on oxygen uptake (˙VO2), lactate accumulation and cycling performance during exercise to exhaustion. Using a randomized, double-blind, cross-over design with a 10-day washout between trials, 14 subjects ingested either 1 g · day−1 of TTFD or a placebo (PL) for 4 days. On day 3, subjects performed a progressive exercise test to exhaustion on a cycle ergometer for the determination of ˙VO2submax, ˙VO2peak, lactate concentration ([La ]), lactate threshold (ThLa) and heart rate ( f c). On day 4, subjects performed a maximal 2000-m time trial on a cycle ergometer. A one-way analysis of variance (ANOVA) with repeated measures was used to determine significant differences between trials. There were no significant differences detected between trials for serial measures of ˙VO2submax, [La] or f c. Likewise, ˙VO2peak [PL 4.06 (0.19) TTFD 4.12 (0.19) l · min−1, P = 0.83], ThLa [PL 2.47 (0.17), TTFD 2.43 (0.16) l · min−1, P = 0.86] and 2000-m performance time [PL 204.5 (5.5), TTFD 200.9 (4.3) s, P = 0.61] were not significantly different between trials. The results of this study suggest that thiamin derivative supplementation does not influence high-intensity exercise performance. Accepted: 19 December 1996  相似文献   

14.
To study the physiological responses induced by immersing in cold water various areas of the upper limb, 20 subjects immersed either the index finger (T1), hand (T2) or forearm and hand (T3) for 30 min in 5°C water followed by a 15-min recovery period. Skin temperature of the index finger, skin blood flow (Qsk) measured by laser Doppler flowmetry, as well as heart rate (HR) and mean arterial blood pressure (ˉBPa) were all monitored during the test. Cutaneous vascular conductance (CVC) was calculated as Qsk / ˉBPa. Cold induced vasodilatation (CIVD) indices were calculated from index finger skin temperature and CVC time courses. The results showed that no differences in temperature, CVC or cardiovascular changes were observed between T2 and T3. During T1, CIVD appeared earlier compared to T2 and T3 [5.90 (SEM 0.32) min in T1 vs 7.95 (SEM 0.86) min in T2 and 9.26 (SEM 0.78) min in T3, P < 0.01]. The HR was unchanged in T1 whereas it increased significantly at the beginning of T2 and T3 [+13 (SEM 2) beats · min−1 in T2 and +15 (SEM 3) beats · min−1 in T3, P < 0.01] and then decreased at the end of the immersion [−12 (SEM 3) beats · min−1 in T2, and −15 (SEM 3) beats · min−1 in T3, P < 0.01]. Moreover, ˉBPaincreased at the beginning of T1 but was lower than in T2 and T3 [+9.3 (SEM 2.5) mmHg in T1, P < 0.05;  +20.6 (SEM 2.6) mmHg and 26.5 (SEM 2.8) mmHg in T2 and T3, respectively, P < 0.01]. The rewarming during recovery was faster and higher in T1 compared to T2 and T3. These results showed that general and local physiological responses observed during an upper limb cold water test differed according to the area immersed. Index finger cooling led to earlier and faster CIVD without significant cardiovascular changes, whereas hand or forearm immersion led to a delayed and slower CIVD with a bradycardia at the end of the test. Accepted: 26 November 1996  相似文献   

15.
Rising atmospheric carbon dioxide (CO2) concentrations may warm northern latitudes up to 8°C by the end of the century. Boreal forests play a large role in the global carbon cycle, and the responses of northern trees to climate change will thus impact the trajectory of future CO2 increases. We grew two North American boreal tree species at a range of future climate conditions to assess how growth and carbon fluxes were altered by high CO2 and warming. Black spruce (Picea mariana, an evergreen conifer) and tamarack (Larix laricina, a deciduous conifer) were grown under ambient (407 ppm) or elevated CO2 (750 ppm) and either ambient temperatures, a 4°C warming, or an 8°C warming. In both species, the thermal optimum of net photosynthesis (ToptA) increased and maximum photosynthetic rates declined in warm‐grown seedlings, but the strength of these changes varied between species. Photosynthetic capacity (maximum rates of Rubisco carboxylation, Vcmax, and of electron transport, Jmax) was reduced in warm‐grown seedlings, correlating with reductions in leaf N and chlorophyll concentrations. Warming increased the activation energy for Vcmax and Jmax (EaV and EaJ, respectively) and the thermal optimum for Jmax. In both species, the ToptA was positively correlated with both EaV and EaJ, but negatively correlated with the ratio of Jmax/Vcmax. Respiration acclimated to elevated temperatures, but there were no treatment effects on the Q10 of respiration (the increase in respiration for a 10°C increase in leaf temperature). A warming of 4°C increased biomass in tamarack, while warming reduced biomass in spruce. We show that climate change is likely to negatively affect photosynthesis and growth in black spruce more than in tamarack, and that parameters used to model photosynthesis in dynamic global vegetation models (EaV and EaJ) show no response to elevated CO2.  相似文献   

16.
The physiological responses to forced exercise were studied in yellowbelly and marbled rockcod (Notothenia coriiceps and N. rossii), and the haemoglobinless icefish (Chaenocephalus aceratus), from blood samples obtained via indwelling catheters. The maximal exertion tolerable by N. coriiceps was 3–5 min, although N. rossii was not fully exhausted by this effort, and it proved difficult to elicit sustained maximal activity in C. aceratus. Arterial O2 tension reflected the relative degree of exhaustion, showing a significant fall in the case of N. coriiceps, little change in N. rossii, and even a rise in C. aceratus as a result of hyperventilation. Such changes in the red-blooded species were not caused by altered O2 carrying capacity, as there was no change in haematocrit. In Notothenia spp. the decrease in arterial pH was better correlated with a rise in arterial CO2 tension than with blood lactate concentration, which is reflected in a modest net metabolic acid load. In contrast, the icefish showed an attenuated hypercapnia and a more pronounced lactacidosis, but an insignificant net metabolic acid load. Disturbance in ionoregulation following exercise was limited to an elevated [Cl] in Notothenia, while circulating catecholamine levels remained unusually low in all specimens. The response to stress appears to reflect lifestyle and/or endemic speciation, rather than specific adaptations to the stenothermal environment. Accepted: 9 August 1996  相似文献   

17.
The aim of this work was to study the acclimation of photosynthesis in a boreal grass (Phalaris arundinacea L.) grown in controlled environment chambers under elevated temperature (ambient + 3.5°C) and CO2 (700 μmol mol−1) with varying soil water regimes. More specifically, we studied, during two development stages (early: heading; late: florescence completed), how the temperature response of light-saturated net photosynthetic rate (P sat), maximum rate of ribulose-1,5-bisphosphate carboxylase/oxygenase activity (V cmax) and potential rate of electron transport (J max) acclimatized to the changed environment. During the early growing period, we found a greater temperature-induced enhancement of P sat at higher measurement temperatures, which disappeared during the late stage. Under elevated growth temperature, V cmax and J max at lower measurement temperatures (5–15°C) were lower than those under ambient growth temperature during the early period. When the measurements were done at 20–30°C, the situation was the opposite. During the late growing period, V cmax and J max under elevated growth temperature were consistently lower across measurement temperatures. CO2 enrichment significantly increased P sat with higher intercellular CO2 compared to ambient CO2 treatment, however, elevated CO2 slightly decreased V cmax and J max across measurement temperatures, probably due to down-regulation acclimation. For two growing periods, soil water availability affected the variation in photosynthesis and biochemical parameters much more than climatic treatment did. Over two growing periods, V cmax and J max were on average 36.4 and 30.6%, respectively, lower with low water availability compared to high water availability across measurement temperatures. During the late growing period, elevated growth temperature further reduced the photosynthesis under low water availability. V cmax and J max declined along with the decrease in nitrogen content of leaves as growing period progressed, regardless of climatic treatment and water regime. We suggest that, for grass species, seasonal acclimation of the photosynthetic parameters under varying environmental conditions needed to be identified to fairly estimate the whole-life photosynthesis.  相似文献   

18.
In this study we measured growth and milk intake and calculated energy intake and its allocation into metabolism and stored tissue for hooded seal (Cystophora cristata) pups. In addition, we measured mass loss, change in body composition and metabolic rate during the first days of the postweaning fast. The mean body mass of the hooded seal pups (n = 5) at the start of the experiments, when they were new-born, was 24.3 ± 1.3 kg (SD). They gained an average of 5.9 ± 1.1. kg · day−1 of which 19% was water, 76% fat and 5% protein. This corresponds to an average daily energy deposition of 179.8 ± 16.0 MJ. The pups were weaned at an average body mass of 42.5 ± 1.0 kg 3.1 days after the experiment was initiated. During the first days of the postweaning fast the pups lost an average of 1.3 ± 0.5␣kg of body mass daily, of which 56% was water, 16% fat and 28% protein. During the nursing period the average daily water influx for the pups was 124.6 ± 25.8 ml · kg−1. The average CO2 production during this period was 1.10 ± 0.20 ml · g−1 · h−1, which corresponds to a field metabolic rate of 714 ± 130 kJ ·  kg−1 · day−1, or 5.8 ± 1.1 times the predicted basal metabolic rate according to Kleiber (1975). During the postweaning fast the average daily water influx was reduced to 16.1 ± 6.6 ml · kg−1. The average CO2 production in␣this period was 0.58 ± 0.17 ml · g−1 · h−1 which corresponds to a field metabolic rate of 375 ± 108 kJ · kg−1 · day−1 or 3.2 ± 0.9 times the predicted basal metabolic rate. Average values for milk composition were 33.5% water, 58.6% fat and 6.2% protein. The pups drank an average of 10.4 ± 1.8␣kg of milk daily, which represents an energy intake of 248.9 ± 39.1 MJ · day−1. The pups were able to store 73.2 ± 7.7% of this energy as body tissue. Accepted: 15 August 1996  相似文献   

19.
We tested the hypotheses that increased belowground allocation of carbon by hybrid poplar saplings grown under elevated atmospheric CO2 would increase mass or turnover of soil biota in bulk but not in rhizosphere soil. Hybrid poplar saplings (Populus×euramericana cv. Eugenei) were grown for 5 months in open-bottom root boxes at the University of Michigan Biological Station in northern, lower Michigan. The experimental design was a randomized-block design with factorial combinations of high or low soil N and ambient (34 Pa) or elevated (69 Pa) CO2 in five blocks. Rhizosphere microbial biomass carbon was 1.7 times greater in high-than in low-N soil, and did not respond to elevated CO2. The density of protozoa did not respond to soil N but increased marginally (P < 0.06) under elevated CO2. Only in high-N soil did arbuscular mycorrhizal fungi and microarthropods respond to CO2. In high-N soil, arbuscular mycorrhizal root mass was twice as great, and extramatrical hyphae were 11% longer in elevated than in ambient CO2 treatments. Microarthropod density and activity were determined in situ using minirhizotrons. Microarthropod density did not change in response to elevated CO2, but in high-N soil, microarthropods were more strongly associated with fine roots under elevated than ambient treatments. Overall, in contrast to the hypotheses, the strongest response to elevated atmospheric CO2 was in the rhizosphere where (1) unchanged microbial biomass and greater numbers of protozoa (P < 0.06) suggested faster bacterial turnover, (2) arbuscular mycorrhizal root length increased, and (3) the number of microarthropods observed on fine roots rose. Received: 18 March 1997 / Accepted: 5 August 1997  相似文献   

20.
Plant growth responses to rising atmospheric CO2 and O3 vary among genotypes and between species, which could plausibly influence the strength of competitive interactions for soil N. Ascribable to the size‐symmetric nature of belowground competition, we reasoned that differential growth responses to CO2 and O3 should shift as juvenile individuals mature, thereby altering competitive hierarchies and forest composition. In a 12‐year‐long forest FACE experiment, we used tracer 15N and whole‐plant N content to assess belowground competitive interactions among five Populus tremuloides genotypes, between a single P. tremuloides genotype and Betula papryrifera, as well as between the same single P. tremuloides genotype and Acer saccharum. Under elevated CO2, the amount of soil N and 15N obtained by the P. tremuloides genotype common to each community was contingent on the nature of belowground competition. When this genotype competed with its congeners, it obtained equivalent amounts of soil N and tracer 15N under ambient and elevated CO2; however, its acquisition of soil N under elevated CO2 increased by a significant margin when grown in competition with B. papyrifera (+30%) and A. saccharum (+60%). In contrast, elevated O3 had no effect on soil N and 15N acquisition by the P. tremuloides genotype common in each community, regardless of competitive interactions. Under elevated CO2, the rank order of N acquisition among P. tremuloides genotypes shifted over time, indicating that growth responses to CO2 change during ontogeny; this was not the case under elevated O3. In the aspen‐birch community, the competitive advantage elevated CO2 initially conveyed on birch diminished over time, whereas maple was a poor competitor for soil N in all regards. The extent to which elevated CO2 and O3 will shape the genetic structure and composition of future forests is, in part, contingent on the time‐dependent effects of belowground competition on plant growth response.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号