首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 812 毫秒
1.
2.
3.
4.
5.
Placental hypoxia has been implicated in pregnancy pathologies, including fetal growth restriction and preeclampsia; however, the mechanism by which the trophoblast cell responds to hypoxia has not been adequately explored. Glucose transport, a process crucial to fetoplacental growth, is upregulated by hypoxia in a number of cell types. We investigated the effects of hypoxia on the regulation of trophoblast glucose transporter (GLUT) expression and activity in BeWo choriocarcinoma cells, a trophoblast cell model, and human placental villous tissue explants. GLUT1 expression in BeWo cells was upregulated by the hypoxia-inducing chemical agents desferroxamine and cobalt chloride. Reductions in oxygen tension resulted in dose-dependent increases in GLUT1 and GLUT3 expression. Exposure of cells to hypoxic conditions also resulted in an increase in transepithelial glucose transport. A role for hypoxia-inducible factor (HIF)-1 was suggested by the increase in HIF-1 as a result of hypoxia and by the increase in GLUT1 expression following treatment of BeWo with MG-132, a proteasomal inhibitor that increases HIF-1 levels. The function of HIF-1 was confirmed in experiments where the hypoxic upregulation of GLUT1 and GLUT3 was inhibited by antisense HIF-1. In contrast to BeWo cells, hypoxia produced minimal increases in GLUT1 expression in explants; however, treatment with MG-132 did upregulate syncytial basal membrane GLUT1. Our results show that GLUTs are upregulated by hypoxia via a HIF-1-mediated pathway in trophoblast cells and suggest that the GLUT response to hypoxia in vivo will be determined not only by low oxygen tension but also by other factors that modulate HIF-1 levels. glucose transporter 1; glucose transporter 3; glucose transport  相似文献   

6.
7.
Local tissue oxygenation profoundly influences placental development. To elucidate the impact of hypoxia on cellular and molecular adaptation in vivo, pregnant mice at embryonic days 7.5-11.5 were exposed to reduced environmental oxygen (6-7% O2) for various periods of time. Hypoxia-inducible factor (HIF)-1alpha mRNA was highly expressed in the placenta, whereas HIF-2alpha was predominantly found in the decidua, indicating that HIF-1 is a relevant oxygen-dependent factor involved in placental development. During severe hypoxia, HIF-1alpha protein was strongly induced in the periphery but, however, not in the labyrinth layer of the placenta. Accordingly, no indication for tissue hypoxia in this central area was detected with 2-(2-nitro-1H-imidazol-1-yl)-N-(2,2,3,3,3-pentafluoropropyl)acetamide staining and VEGF expression as hypoxic markers. The absence of significant tissue hypoxia was reflected by preserved placental architecture and trophoblast differentiation. In the search for mechanisms preventing local hypoxia, we found upregulation of endothelial nitric oxide synthase (NOS) expression in the labyrinth layer. Inhibition of NOS activity by N(omega)-nitro-L-arginine methyl ester application resulted in ubiquitous placental tissue hypoxia. Our results show that placental oxygenation is preserved even during severe systemic hypoxia and imply that NOS-mediated mechanisms are involved to protect the placenta from maternal hypoxia.  相似文献   

8.
9.
10.
11.
12.
13.
14.
15.
ATP-binding cassette transporter A1 plays (ABCA1) a major role in reverse cholesterol transport, a process closely related to atherogenesis. In the thickening atherosclerotic lesions lipid loaded macrophages are exposed to regions of local hypoxia that may influence reverse cholesterol transport. Here we studied the effect of hypoxia on ABCA1 regulation and cholesterol efflux in human macrophages.We found that the hypoxia-inducible factor 1 (HIF-1) specifically binds to the HIF-1 response element of the ABCA1 promoter and the HIF-1 complex increases ABCA1 promoter activity along with ABCA1 expression. Primary human macrophages exposed to hypoxia or expressing constitutively active HIF-1alpha responded with a potent change in ABCA1 expression, which showed a strong correlation with HIF-1beta expression (r: 0.95–0.91). Moreover, ABCA1-mediated cholesterol efflux was also found to be regulated by HIF-1beta under hypoxia. In vivo, in macrophages prepared from human atherosclerotic lesions ABCA1 levels showed a strong correlation with HIF-1beta expression. This in vivo regulatory mechanism was confirmed in human pre-eclamptic placentas, a clinical condition with severe local hypoxia.These results demonstrate that HIF-1beta availability determines ABCA1 expression and cholesterol efflux in macrophages under hypoxia and may contribute to the interpersonal variability of atherosclerotic lesion progression.  相似文献   

16.
17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号