首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.

Background

Bone marrow-derived endothelial progenitor cells (EPCs) are critical for neovascularization. We hypothesized that microparticles (MPs), small fragments generated from the plasma membrane, can activate angiogenic programming of EPCs.

Methodology/Principal Findings

We studied the effects of MPs obtained from wild type (MPsPPARα+/+) and knock-out (MPsPPARα−/−) mice on EPC differentiation and angiogenesis. Bone marrow-derived cells were isolated from WT or KO mice and were cultured in the presence of MPsPPARα+/+ or MPsPPARα−/− obtained from blood of mice. Only MPsPPARα+/+ harboring PPARα significantly increased EPC, but not monocytic, differentiation. Bone marrow-derived cells treated with MPsPPARα+/+ displayed increased expression of pro-angiogenic genes and increased in vivo angiogenesis. MPsPPARα+/+ increased capillary-like tube formation of endothelial cells that was associated with enhanced expressions of endothelial cell-specific markers. Finally, the effects of MPsPPARα+/+ were mediated by NF-κB-dependent mechanisms.

Conclusions/Significance

Our results underscore the obligatory role of PPARα carried by MPs for EPC differentiation and angiogenesis. PPARα-NF-κB-Akt pathways may play a pivotal stimulatory role for neovascularization, which may, at least in part, be mediated by bone marrow-derived EPCs. Improvement of EPC differentiation may represent a useful strategy during reparative neovascularization.  相似文献   

3.

Background

GPRC6A is a widely expressed orphan G-protein coupled receptor that senses extracellular amino acids, osteocalcin and divalent cations in vitro. The physiological functions of GPRC6A are unknown.

Methods/Principal Findings

In this study, we created and characterized the phenotype of GPRC6A −/− mice. We observed complex metabolic abnormalities in GPRC6A −/− mice involving multiple organ systems that express GPRC6A, including bone, kidney, testes, and liver. GPRC6A −/− mice exhibited hepatic steatosis, hyperglycemia, glucose intolerance, and insulin resistance. In addition, we observed high expression of GPRC6A in Leydig cells in the testis. Ablation of GPRC6A resulted in feminization of male GPRC6A −/− mice in association with decreased lean body mass, increased fat mass, increased circulating levels of estradiol, and reduced levels of testosterone. GPRC6A was also highly expressed in kidney proximal and distal tubules, and GPRC6A−/− mice exhibited increments in urine Ca/Cr and PO4/Cr ratios as well as low molecular weight proteinuria. Finally, GPRC6A −/− mice exhibited a decrease in bone mineral density (BMD) in association with impaired mineralization of bone.

Conclusions/Significance

GPRC6A−/− mice have a metabolic syndrome characterized by defective osteoblast-mediated bone mineralization, abnormal renal handling of calcium and phosphorus, fatty liver, glucose intolerance and disordered steroidogenesis. These findings suggest the overall function of GPRC6A may be to coordinate the anabolic responses of multiple tissues through the sensing of extracellular amino acids, osteocalcin and divalent cations.  相似文献   

4.

Background

There are no rigorously confirmed effective medical therapies for calcific aortic stenosis. Hypercholesterolemic Ldlr −/− Apob 100/100 mice develop calcific aortic stenosis and valvular cardiomyopathy in old age. Osteoprotegerin (OPG) modulates calcification in bone and blood vessels, but its effect on valve calcification and valve function is not known.

Objectives

To determine the impact of pharmacologic treatment with OPG upon aortic valve calcification and valve function in aortic stenosis-prone hypercholesterolemic Ldlr −/− Apob 100/100 mice.

Methods

Young Ldlr −/− Apob 100/100 mice (age 2 months) were fed a Western diet and received exogenous OPG or vehicle (N = 12 each) 3 times per week, until age 8 months. After echocardiographic evaluation of valve function, the aortic valve was evaluated histologically. Older Ldlr −/− Apob 100/100 mice were fed a Western diet beginning at age 2 months. OPG or vehicle (N = 12 each) was administered from 6 to 12 months of age, followed by echocardiographic evaluation of valve function, followed by histologic evaluation.

Results

In Young Ldlr −/− Apob 100/100 mice, OPG significantly attenuated osteogenic transformation in the aortic valve, but did not affect lipid accumulation. In Older Ldlr −/− Apob 100/100 mice, OPG attenuated accumulation of the osteoblast-specific matrix protein osteocalcin by ∼80%, and attenuated aortic valve calcification by ∼ 70%. OPG also attenuated impairment of aortic valve function.

Conclusions

OPG attenuates pro-calcific processes in the aortic valve, and protects against impairment of aortic valve function in hypercholesterolemic aortic stenosis-prone Ldlr −/− Apob 100/100 mice.  相似文献   

5.

Introduction

Ligament and meniscal damage can cause joint disease. Arthritic joints contain increased amounts of epidermal growth factor receptor (EGFR) protein, and polymorphisms in EGFR are associated with arthritis risk. The role of endogenous EGFR regulation during joint disease due to ligament and meniscal trauma is unknown. Mitogen-inducible gene 6 (MIG-6) can reduce EGFR phosphorylation and downstream signaling. We examined the effect of EGFR modulation by MIG-6 on joint disease development after ligament and meniscus injury.

Methods

Knee ligament transection and meniscus removal were performed surgically on mice homozygous for a global inactivating mutation in MIG-6 (Mig-6−/−) and in wild-type (WT) animals.

Results

Two weeks after surgery, Mig-6−/−mice had bone erosion as well as greater fibrous tissue area and serum RANKL concentration than WT mice. Four weeks after surgery, Mig-6−/−mice had less cartilage and increased cell proliferation relative to contralateral control and WT knees. Increased apoptotic cells and growth outside the articulating region occurred in Mig-6−/−mice. Tibia trabecular bone mineral density (BMD) and the number of trabeculae were lower in surgically treated knees relative to the respective control knees for both groups. BMD, as well as trabecular thickness and number, were lower in surgically treated knees from Mig-6−/−mice relative to WT surgically treated knees. Phosphorylated EGFR staining in surgically treated knees decreased for WT mice and increased for Mig-6−/−mice. Fewer inflammatory cells were present in the knees of WT mice.

Conclusion

Mig-6−/−mice have rapid and increased joint damage after ligament and meniscal trauma. Mig-6 modification could lessen degenerative disease development after this type of injury.  相似文献   

6.

Background

The Mutyh DNA glycosylase is involved in the repair of oxidized DNA bases. Mutations in the human MUTYH gene are responsible for colorectal cancer in familial adenomatous polyposis. Since defective DNA repair genes might contribute to the increased cancer risk associated with inflammatory bowel diseases, we compared the inflammatory response of wild-type and Mutyh−/− mice to oxidative stress.

Methodology/Principal Findings

The severity of colitis, changes in expression of genes involved in DNA repair and inflammation, DNA 8-oxoguanine levels and microsatellite instability were analysed in colon of mice treated with dextran sulfate sodium (DSS). The Mutyh−/− phenotpe was associated with a significant accumulation of 8-oxoguanine in colon DNA of treated mice. A single DSS cycle induced severe acute ulcerative colitis in wild-type mice, whereas lesions were modest in Mutyh−/− mice, and this was associated with moderate variations in the expression of several cytokines. Eight DSS cycles caused chronic colitis in both wild-type and Mutyh−/− mice. Lymphoid hyperplasia and a significant reduction in Foxp3+ regulatory T cells were observed only in Mutyh−/− mice.

Conclusions

The findings indicate that, in this model of ulcerative colitis, Mutyh plays a major role in maintaining intestinal integrity by affecting the inflammatory response.  相似文献   

7.

Background

Telomeres are essential to maintain chromosomal stability. Cells derived from mice lacking telomerase RNA component (mTERC−/− mice) display elevated telomere-mediated chromosome instability. Age-dependent telomere shortening and associated chromosome instability reduce the capacity to respond to cellular stress occurring during inflammation and cancer. Inflammation is one of the important risk factors in cancer progression. Controlled innate immune responses mediated by Toll-like receptors (TLR) are required for host defense against infection. Our aim was to understand the role of chromosome/genome instability in the initiation and maintenance of inflammation.

Methodology/Principal Findings

We examined the function of TLR4 in telomerase deficient mTERC−/− mice harbouring chromosome instability which did not develop any overt immunological disorder in pathogen-free condition or any form of cancers at this stage. Chromosome instability was measured in metaphase spreads prepared from wildtype (mTERC+/+), mTERC+/− and mTERC−/− mouse splenocytes. Peritoneal and/or bone marrow-derived macrophages were used to examine the responses of TLR4 by their ability to produce inflammatory mediators TNFα and IL6. Our results demonstrate that TLR4 is highly up-regulated in the immune cells derived from telomerase-null (mTERC−/−) mice and lipopolysaccharide, a natural ligand for TLR4 stabilises NF-κB binding to its promoter by down-regulating ATF-3 in mTERC−/− macrophages.

Conclusions/Significance

Our findings implied that background chromosome instability in the cellular level stabilises the action of TLR4-induced NF-κB action and sensitises cells to produce excess pro-inflammatory mediators. Chromosome/genomic instability data raises optimism for controlling inflammation by non-toxic TLR antagonists among high-risk groups.  相似文献   

8.

Aim

To study whether 18F-FDG can be used for in vivo imaging of atherogenesis by examining the correlation between 18F-FDG uptake and gene expression of key molecular markers of atherosclerosis in apoE−/− mice.

Methods

Nine groups of apoE−/− mice were given normal chow or high-fat diet. At different time-points, 18F-FDG PET/contrast-enhanced CT scans were performed on dedicated animal scanners. After scans, animals were euthanized, aortas removed, gamma counted, RNA extracted from the tissue, and gene expression of chemo (C-X-C motif) ligand 1 (CXCL-1), monocyte chemoattractant protein (MCP)-1, vascular cell adhesion molecule (VCAM)-1, cluster of differentiation molecule (CD)-68, osteopontin (OPN), lectin-like oxidized LDL-receptor (LOX)-1, hypoxia-inducible factor (HIF)-1α, HIF-2α, vascular endothelial growth factor A (VEGF), and tissue factor (TF) was measured by means of qPCR.

Results

The uptake of 18F-FDG increased over time in the groups of mice receiving high-fat diet measured by PET and ex vivo gamma counting. The gene expression of all examined markers of atherosclerosis correlated significantly with 18F-FDG uptake. The strongest correlation was seen with TF and CD68 (p<0.001). A multivariate analysis showed CD68, OPN, TF, and VCAM-1 to be the most important contributors to the uptake of 18F-FDG. Together they could explain 60% of the 18F-FDG uptake.

Conclusion

We have demonstrated that 18F-FDG can be used to follow the progression of atherosclerosis in apoE−/− mice. The gene expression of ten molecular markers representing different molecular processes important for atherosclerosis was shown to correlate with the uptake of 18F-FDG. Especially, the gene expressions of CD68, OPN, TF, and VCAM-1 were strong predictors for the uptake.  相似文献   

9.

Purpose

Adrenomedullin (ADM) has been shown to take part in physiological and pathological angiogenesis. The purpose of this study was to investigate whether ADM signaling is involved in choroidal neovascularization (CNV) using a mouse model.

Methods and Results

CNV was induced by laser photocoagulation in 8-week-old C57BL/6 mice. ADM mRNA expression significantly increased following treatment, peaking 4 days thereafter. The expression of ADM receptor (ADM-R) components (CRLR, RAMP2 and RAMP 3) was higher in CD31+CD45 endothelial cells (ECs) than CD31CD45 non-ECs. Inflammatory stimulation upregulated the expression of ADM not only in cell lines but also in cells in primary cultures of the choroid/retinal pigment epithelium complex. Supernatants from TNFα-treated macrophage cell lines potentiated the proliferation of ECs and this was partially suppressed by an ADM antagonist, ADM (22–52). Intravitreous injection of ADM (22–52) or ADM neutralizing monoclonal antibody (mAb) after laser treatment significantly reduced the size of CNV compared with vehicle-treated controls (p<0.01).

Conclusions

ADM signaling is involved in laser-induced CNV formation, because both an ADM antagonist and ADM mAb significantly inhibited it. Suppression of ADM signaling might be a valuable alternative treatment for CNV associated with age-related macular degeneration.  相似文献   

10.

Background

In the clinic, variations in circadian rhythm are evident in patients with cardiovascular disease, and the risk of cardiovascular events increases when rhythms are disrupted. In this study, we focused on the role of the circadian gene period2 (per2) in mobilization and function of endothelial progenitor cells (EPCs) in vitro and in vivo after myocardial infarction (MI) in mice.

Methods and Results

MI was produced by surgical ligation of the left anterior descending coronary artery in mice with and without per2 deficiency. Trans-thoracic echocardiography was used to evaluate cardiac function in mice. Per2−/− mice with MI showed decreased cardiac function and increased infarct size. The number of CD34+ cells and capillary density were decreased in the myocardium of per2−/− mice on immunohistochemistry. Flow cytometry revealed decreased number of circulating EPCs in per2−/− mice after MI. In vitro, per2−/− EPCs showed decreased migration and tube formation capacity under hypoxia. Western blot analysis revealed inhibited activation of extracellular signal-regulated kinase and Akt signaling in the bone marrow of per2−/− mice and inhibited PI3K/Akt expression in per2−/− EPCs under hypoxia.

Conclusions

Per2 modulates EPC mobilization and function after MI, which is important to recovery after MI in mice.  相似文献   

11.
12.

Purpose

The purpose of our study was to investigate alterations in the meibomian gland (MG) in Cu, Zn-Superoxide Dismutase-1 knockout (Sod1 −/−) mouse.

Methods

Tear function tests [Break up time (BUT) and cotton thread] and ocular vital staining test were performed on Sod1 −/− male mice (n = 24) aged 10 and 50 weeks, and age and sex matched wild–type (+/+) mice (n = 25). Tear and serum samples were collected at sacrifice for inflammatory cytokine assays. MG specimens underwent Hematoxylin and Eosin staining, Mallory staining for fibrosis, Oil Red O lipid staining, TUNEL staining, immunohistochemistry stainings for 4HNE, 8-OHdG and CD45. Transmission electron microscopic examination (TEM) was also performed.

Results

Corneal vital staining scores in the Sod1 −/− mice were significantly higher compared with the wild type mice throughout the follow-up. Tear and serum IL-6 and TNF-α levels also showed significant elevations in the 10 to 50 week Sod1 −/− mice. Oil Red O staining showed an accumulation of large lipid droplets in the Sod1 −/− mice at 50 weeks. Immunohistochemistry revealed both increased TUNEL and oxidative stress marker stainings of the MG acinar epithelium in the Sod1 −/− mice compared to the wild type mice. Immunohistochemistry staining for CD45 showed increasing inflammatory cell infiltrates from 10 to 50 weeks in the Sod1 −/− mice compared to the wild type mice. TEM revealed prominent mitochondrial changes in 50 week Sod1 −/− mice.

Conclusions

Our results suggest that reactive oxygen species might play a vital role in the pathogensis of meibomian gland dysfunction. The Sod1 −/− mouse appears to be a promising model for the study of reactive oxygen species associated MG alterations.  相似文献   

13.

Background

Immunization with murine pneumotropic virus virus-like particles carrying Her2/neu (Her2MPtVLPs) prevents tumour outgrowth in mice when given prophylactically, and therapeutically if combined with the adjuvant CpG. We investigated which components of the immune system are involved in tumour rejection, and whether long-term immunological memory can be obtained.

Methodology and Results

During the effector phase in BALB/c mice, only depletion of CD4+ and CD8+ in combination, with or without NK cells, completely abrogated tumour protection. Depletion of single CD4+, CD8+ or NK cell populations only had minor effects. During the immunization/induction phase, combined depletion of CD4+ and CD8+ cells abolished protection, while depletion of each individual subset had no or negligible effect. When tumour rejection was studied in knock-out mice with a C57Bl/6 background, protection was lost in CD4−/−CD8−/− and CD4−/−, but not in CD8−/− mice. In contrast, when normal C57Bl/6 mice were depleted of different cell types, protection was lost irrespective of whether only CD4+, only CD8+, or CD4+ and CD8+ cells in combination were eradicated. No anti-Her2/neu antibodies were detected but a Her2/neu-specific IFNγ response was seen. Studies of long-term memory showed that BALB/c mice could be protected against tumour development when immunized together with CpG as long as ten weeks before challenge.

Conclusion

Her2MPtVLP immunization is efficient in stimulating several compartments of the immune system, and induces an efficient immune response including long-term memory. In addition, when depleting mice of isolated cellular compartments, tumour protection is not as efficiently abolished as when depleting several immune compartments together.  相似文献   

14.

Background

Tobacco-induced pulmonary vascular disease is partly driven by endothelial dysfunction. The bioavailability of the potent vasodilator nitric oxide (NO) depends on competition between NO synthase-3 (NOS3) and arginases for their common substrate (L-arginine). We tested the hypothesis whereby tobacco smoking impairs pulmonary endothelial function via upregulation of the arginase pathway.

Methods

Endothelium-dependent vasodilation in response to acetylcholine (Ach) was compared ex vivo for pulmonary vascular rings from 29 smokers and 10 never-smokers. The results were expressed as a percentage of the contraction with phenylephrine. We tested the effects of L-arginine supplementation, arginase inhibition (by N(omega)-hydroxy-nor-l-arginine, NorNOHA) and NOS3 induction (by genistein) on vasodilation. Protein levels of NOS3 and arginases I and II in the pulmonary arteries were quantified by Western blotting.

Results

Overall, vasodilation was impaired in smokers (relative to controls; p < 0.01). Eleven of the 29 smokers (the ED+ subgroup) displayed endothelial dysfunction (defined as the absence of a relaxant response to Ach), whereas 18 (the ED subgroup) had normal vasodilation. The mean responses to 10−4 M Ach were −23 ± 10% and 31 ± 4% in the ED+ and ED subgroups, respectively (p < 0.01). Supplementation with L- arginine improved endothelial function in the ED+ subgroup (−4 ± 10% vs. -32 ± 10% in the presence and absence of L- arginine, respectively; p = 0.006), as did arginase inhibition (18 ± 9% vs. -1 ± 9%, respectively; p = 0.0002). Arginase I protein was overexpressed in ED+ samples, whereas ED+ and ED samples did not differ significantly in terms of NOS3 expression. Treatment with genistein did not significantly improve endothelial function in ED+ samples.

Conclusion

Overexpression and elevated activity of arginase I are involved in tobacco-induced pulmonary endothelial dysfunction.  相似文献   

15.

Background

The endothelial protein C receptor (EPCR) enhances anticoagulation by accelerating activation of protein C to activated protein C (APC) and mediates anti-inflammatory effects by facilitating APC-mediated signaling via protease activated receptor-1. We studied the role of EPCR in the host response during pneumonia-derived sepsis instigated by Burkholderia (B.) pseudomallei, the causative agent of melioidosis, a common form of community-acquired Gram-negative (pneumo)sepsis in South-East Asia.

Methodology/Principal Findings

Soluble EPCR was measured in plasma of patients with septic culture-proven melioidosis and healthy controls. Experimental melioidosis was induced by intranasal inoculation of B. pseudomallei in wild-type (WT) mice and mice with either EPCR-overexpression (Tie2-EPCR) or EPCR-deficiency (EPCR−/−). Mice were sacrificed after 24, 48 or 72 hours. Organs and plasma were harvested to measure colony forming units, cellular influxes, cytokine levels and coagulation parameters. Plasma EPCR-levels were higher in melioidosis patients than in healthy controls and associated with an increased mortality. Tie2-EPCR mice demonstrated enhanced bacterial growth and dissemination to distant organs during experimental melioidosis, accompanied by increased lung damage, neutrophil influx and cytokine production, and attenuated coagulation activation. EPCR−/− mice had an unremarkable response to B. pseudomallei infection as compared to WT mice, except for a difference in coagulation activation in plasma.

Conclusion/Significance

Increased EPCR-levels correlate with accelerated mortality in patients with melioidosis. In mice, transgenic overexpression of EPCR aggravates outcome during Gram-negative pneumonia-derived sepsis caused by B. pseudomallei, while endogenous EPCR does not impact on the host response. These results add to a better understanding of the regulation of coagulation during severe (pneumo)sepsis.  相似文献   

16.

Aim

Several recent reports have revealed that dipeptidyl peptidase (DPP)-4 inhibitors have suppressive effects on atherosclerosis in apolipoprotein E-null (Apoe −/−) mice. It remains to be seen, however, whether this effect stems from increased levels of the two active incretins, glucagon-like peptide-1 (GLP-1) and glucose-dependent insulinotropic polypeptide (GIP).

Methods

Nontreated Apoe −/− mice, streptozotocin-induced diabetic Apoe −/− mice, and db/db diabetic mice were administered the DPP-4 inhibitor vildagliptin in drinking water and co-infused with either saline, the GLP-1 receptor blocker, exendin(9–39), the GIP receptor blocker, (Pro3)GIP, or both via osmotic minipumps for 4 weeks. Aortic atherosclerosis and oxidized low-density lipoprotein-induced foam cell formation in exudate peritoneal macrophages were determined.

Results

Vildagliptin increased plasma GLP-1 and GIP levels without affecting food intake, body weight, blood pressure, or plasma lipid profile in any of the animals tested, though it reduced HbA1c in the diabetic mice. Diabetic Apoe −/− mice exhibited further-progressed atherosclerotic lesions and foam cell formation compared with nondiabetic counterparts. Nondiabetic and diabetic Apoe −/− mice showed a comparable response to vildagliptin, namely, remarkable suppression of atherosclerotic lesions with macrophage accumulation and foam cell formation in peritoneal macrophages. Exendin(9–39) or (Pro3)GIP partially attenuated the vildagliptin-induced suppression of atherosclerosis. The two blockers in combination abolished the anti-atherosclerotic effect of vildagliptin in nondiabetic mice but only partly attenuated it in diabetic mice. Vildagliptin suppressed macrophage foam cell formation in nondiabetic and diabetic mice, and this suppressive effect was abolished by infusions with exendin(9–39)+(Pro3)GIP. Incubation of DPP-4 or vildagliptin in vitro had no effect on macrophage foam cell formation.

Conclusions

Vildagliptin confers a substantial anti-atherosclerotic effect in both nondiabetic and diabetic mice, mainly via the action of the two incretins. However, the partial attenuation of atherosclerotic lesions by the dual incretin receptor antagonists in diabetic mice implies that vildagliptin confers a partial anti-atherogenic effect beyond that from the incretins.  相似文献   

17.

Background

CXCL14 is a chemoattractant for macrophages and immature dendritic cells. We recently reported that CXCL14-deficient (CXCL14 −/−) female mice in the mixed background are protected from obesity-induced hyperglycemia and insulin resistance. The decreased macrophage infiltration into visceral adipose tissues and the increased insulin sensitivity of skeletal muscle contributed to these phenotypes.

Methodology/Principal Findings

In this study, we performed a comprehensive study for the body weight control of CXCL14 −/− mice in the C57BL/6 background. We show that both male and female CXCL14 −/− mice have a 7–11% lower body weight compared to CXCL14 +/− and CXCL14 +/+ mice in adulthood. This is mainly caused by decreased food intake, and not by increased energy expenditure or locomotor activity. Reduced body weight resulting from the CXCL14 deficiency was more pronounced in double mutant CXCL14−/− ob/ob and CXCL14 −/−Ay mice. In the case of CXCL14 −/−Ay mice, oxygen consumption was increased compared to CXCL14 +/−Ay mice, in addition to the reduced food intake. In CXCL14 −/− mice, fasting-induced up-regulation of Npy and Agrp mRNAs in the hypothalamus was blunted. As intracerebroventricular injection of recombinant CXCL14 did not change the food intake of CXCL14 −/− mice, CXCL14 could indirectly regulate appetite. Intriguingly, the food intake of CXCL14 −/− mice was significantly repressed when mice were transferred to a novel environment.

Conclusions/Significance

We demonstrated that CXCL14 is involved in the body weight control leading to the fully obese phenotype in leptin-deficient or Ay mutant mice. In addition, we obtained evidence indicating that CXCL14 may play an important role in central nervous system regulation of feeding behavior.  相似文献   

18.

Background

The CXCR4 chemokine receptor regulates migration and homing of cancer cells to specific metastatic sites. Determination of the CXCR4 receptor status will provide predictive information for disease prognosis and possible therapeutic intervention. However, previous attempts to localize CXCR4 using poorly characterized mouse monoclonal or rabbit polyclonal antibodies have produced predominant nuclear and occasional cytoplasmic staining but did not result in the identification of bona fide cell surface receptors.

Methodology/Principal Findings

In the present study, we extensively characterized the novel rabbit monoclonal anti-CXCR4 antibody (clone UMB-2) using transfected cells and tissues from CXCR4-deficient mice. Specificity of UMB-2 was demonstrated by cell surface staining of CXCR4-transfected cells; translocation of CXCR4 immunostaining after agonist exposure; detection of a broad band migrating at M r 38,000–43,000 in Western blots of homogenates from CXCR4-expressing cells; selective detection of the receptor in tissues from CXCR4+/+ but not from CXCR4−/− mice; and abolition of tissue immunostaining by preadsorption of UMB-2 with its immunizing peptide. In formalin-fixed, paraffin-embedded human tumor tissues, UMB-2 yielded highly effective plasma membrane staining of a subpopulation of tumor cells, which were often heterogeneously distributed throughout the tumor. A comparative analysis of the mouse monoclonal antibody 12G5 and other frequently used commercially available antibodies revealed that none of these was able to detect CXCR4 under otherwise identical conditions.

Conclusions/Significance

Thus, the rabbit monoclonal antibody UMB-2 may prove of great value in the assessment of the CXCR4 receptor status in a variety of human tumors during routine histopathological examination.  相似文献   

19.

Purpose

The inhibition of serum glucocorticoid-regulated kinase-1 (SGK-1) has been found to decrease growth of colon and prostate cancer cells. The purpose of this study is to evaluate the therapeutic effect of SGK-1 inhibition in head and neck squamous cell carcinoma (SCC).

Experimental Design

Human head and neck tumors (HTB41/43) were established in athymic mice. Growth rates between mice treated with vehicle (PBS) injection (group 1, n = 5), SGK-1 Inhibitor GSK 650394 (group 2, n = 6), systemic cisplatin (group 3, n = 6), and a combination of SGK-1 Inhibitor and cisplatin (group 4, n = 6) were compared using repeated measures one-way ANOVA with Newman-Keuls Multiple Comparison Test. Tumor cells were subsequently submitted to further analyses.

Results

At the end of the experiment mean tumor sizes were 122.33+/−105.86, 76.73+/−36.09, 94.52+/−75.92, and 25.76+/−14.89 mm2 (mean +/− SD) for groups 1 to 4. Groups 2 and 3 showed decreased tumor growth compared to controls (p<0.001). Group 4 displayed even greater growth suppression (p<0.0001). Importantly, group 4 fared better than group 3 (p<0.001). CD44 expression was reduced in group 2 (p<0.05), and to an even greater extent in groups 3 and 4 (p<0.0025). A trend towards reduction of HER 2 expression was noted in group 4.

Conclusions

SGK-1 inhibition suppresses tumor growth, and in combination with systemic cisplatin exceeds the effect of cisplatin alone. Decreased expression of CD44 and HER 2 implies depletion of tumor stem cells, and less tumorigenicity. SGK-1 inhibition represents a potential modality of local control for palliation in advanced cases.  相似文献   

20.

Background

Abolishing the inhibitory signal of intracellular cAMP by phosphodiesterases (PDEs) is a prerequisite for effector T (Teff) cell function. While PDE4 plays a prominent role, its control of cAMP levels in Teff cells is not exclusive. T cell activation has been shown to induce PDE8, a PDE isoform with 40- to 100-fold greater affinity for cAMP than PDE4. Thus, we postulated that PDE8 is an important regulator of Teff cell functions.

Methodology/Principal Findings

We found that Teff cells express PDE8 in vivo. Inhibition of PDE8 by the PDE inhibitor dipyridamole (DP) activates cAMP signaling and suppresses two major integrins involved in Teff cell adhesion. Accordingly, DP as well as the novel PDE8-selective inhibitor PF-4957325-00 suppress firm attachment of Teff cells to endothelial cells. Analysis of downstream signaling shows that DP suppresses proliferation and cytokine expression of Teff cells from Crem −/− mice lacking the inducible cAMP early repressor (ICER). Importantly, endothelial cells also express PDE8. DP treatment decreases vascular adhesion molecule and chemokine expression, while upregulating the tight junction molecule claudin-5. In vivo, DP reduces CXCL12 gene expression as determined by in situ probing of the mouse microvasculature by cell-selective laser-capture microdissection.

Conclusion/Significance

Collectively, our data identify PDE8 as a novel target for suppression of Teff cell functions, including adhesion to endothelial cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号