首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 468 毫秒
1.

Background

Host-associated microbes comprise an integral part of animal digestive systems and these interactions have a long evolutionary history. It has been hypothesized that the gastrointestinal microbiome of humans and other non-human primates may have played significant roles in host evolution by facilitating a range of dietary adaptations. We have undertaken a comparative sequencing survey of the gastrointestinal microbiomes of several non-human primate species, with the goal of better understanding how these microbiomes relate to the evolution of non-human primate diversity. Here we present a comparative analysis of gastrointestinal microbial communities from three different species of Old World wild monkeys.

Methodology/Principal Findings

We analyzed fecal samples from three different wild non-human primate species (black-and-white colobus [Colubus guereza], red colobus [Piliocolobus tephrosceles], and red-tailed guenon [Cercopithecus ascanius]). Three samples from each species were subjected to small subunit rRNA tag pyrosequencing. Firmicutes comprised the vast majority of the phyla in each sample. Other phyla represented were Bacterioidetes, Proteobacteria, Spirochaetes, Actinobacteria, Verrucomicrobia, Lentisphaerae, Tenericutes, Planctomycetes, Fibrobacateres, and TM7. Bray-Curtis similarity analysis of these microbiomes indicated that microbial community composition within the same primate species are more similar to each other than to those of different primate species. Comparison of fecal microbiota from non-human primates with microbiota of human stool samples obtained in previous studies revealed that the gut microbiota of these primates are distinct and reflect host phylogeny.

Conclusion/Significance

Our analysis provides evidence that the fecal microbiomes of wild primates co-vary with their hosts, and that this is manifested in higher intraspecies similarity among wild primate species, perhaps reflecting species specificity of the microbiome in addition to dietary influences. These results contribute to the limited body of primate microbiome studies and provide a framework for comparative microbiome analysis between human and non-human primates as well as a comparative evolutionary understanding of the human microbiome.  相似文献   

2.
Humans and baboons (Papio spp.) share considerable anatomical and physiological similarities in their reproductive tracts. Given the similarities, it is reasonable to expect that the normal vaginal microbial composition (microbiota) of baboons would be similar to that of humans. We have used a 16S rRNA phylogenetic approach to assess the composition of the baboon vaginal microbiota in a set of nine animals from a captive facility and six from the wild. Results show that although Gram‐positive bacteria dominate in baboons as they do in humans, there are major differences between the vaginal microbiota of baboons and that of humans. In contrast to humans, the species of Gram‐positive bacteria (Firmicutes) were taxa other than Lactobacillus species. In addition, some groups of Gram‐negative bacteria that are not normally abundant in humans were found in the baboon samples. A further level of difference was also seen even within the same bacterial phylogenetic group, as baboon strains tended to be more phylogenetically distinct from human strains than human strains were with each other. Finally, results of our analysis suggests that co‐evolution of microbes and their hosts cannot account for the major differences between the microbiota of baboons and that of humans because divergences between the major bacterial genera were too ancient to have occurred since primates evolved. Instead, the primate vaginal tracts appear to have acquired discrete subsets of bacteria from the vast diversity of bacteria available in the environment and established a community responsive to and compatible with host species physiology. Am. J. Primatol. 73:119–126, 2011. © 2010 Wiley‐Liss, Inc.  相似文献   

3.
Milk is inhabited by a community of bacteria and is one of the first postnatal sources of microbial exposure for mammalian young. Bacteria in breast milk may enhance immune development, improve intestinal health, and stimulate the gut‐brain axis for infants. Variation in milk microbiome structure (e.g., operational taxonomic unit [OTU] diversity, community composition) may lead to different infant developmental outcomes. Milk microbiome structure may depend on evolutionary processes acting at the host species level and ecological processes occurring over lactation time, among others. We quantified milk microbiomes using 16S rRNA high‐throughput sequencing for nine primate species and for six primate mothers sampled over lactation. Our data set included humans (Homo sapiens, Philippines and USA) and eight nonhuman primate species living in captivity (bonobo [Pan paniscus], chimpanzee [Pan troglodytes], western lowland gorilla [Gorilla gorilla gorilla], Bornean orangutan [Pongo pygmaeus], Sumatran orangutan [Pongo abelii], rhesus macaque [Macaca mulatta], owl monkey [Aotus nancymaae]) and in the wild (mantled howler monkey [Alouatta palliata]). For a subset of the data, we paired microbiome data with nutrient and hormone assay results to quantify the effect of milk chemistry on milk microbiomes. We detected a core primate milk microbiome of seven bacterial OTUs indicating a robust relationship between these bacteria and primate species. Milk microbiomes differed among primate species with rhesus macaques, humans and mantled howler monkeys having notably distinct milk microbiomes. Gross energy in milk from protein and fat explained some of the variations in microbiome composition among species. Microbiome composition changed in a predictable manner for three primate mothers over lactation time, suggesting that different bacterial communities may be selected for as the infant ages. Our results contribute to understanding ecological and evolutionary relationships between bacteria and primate hosts, which can have applied benefits for humans and endangered primates in our care.  相似文献   

4.
Simian immunodeficiency viruses (SIVs) have been discovered in over 45 primate species; however, the pathogenic potential of most SIV strains remains unknown due to difficulties inherent in observing wild populations. Because those SIV infections that are pathogenic have been shown to induce changes in the host's gut microbiome, monitoring the microbiota present in faecal samples can provide a noninvasive means for studying the effects of SIV infection on the health of wild‐living primates. Here, we examine the effects of SIVgor, a close relative of SIVcpz of chimpanzees and HIV‐1 of humans, on the gut bacterial communities residing within wild gorillas, revealing that gorilla gut microbiomes are exceptionally robust to SIV infection. In contrast to the microbiomes of HIV‐1‐infected humans and SIVcpz‐infected chimpanzees, SIVgor‐infected gorilla microbiomes exhibit neither rises in the frequencies of opportunistic pathogens nor elevated rates of microbial turnover within individual hosts. Regardless of SIV infection status, gorilla microbiomes assort into enterotypes, one of which is compositionally analogous to those identified in humans and chimpanzees. The other gorilla enterotype appears specialized for a leaf‐based diet and is enriched in environmentally derived bacterial genera. We hypothesize that the acquisition of this gorilla‐specific enterotype was enabled by lowered immune system control over the composition of the microbiome. Our results indicate differences between the pathology of SIVgor and SIVcpz/HIV‐1 infections, demonstrating the utility of investigating host microbial ecology as a means for studying disease in wild primates of high conservation priority.  相似文献   

5.
The bacterial population of the primate vaginal canal is an infant primate's first exposure to the microbial population inhabiting the outside world. Yet, little is known about this population and the effect it might have on the development and survival of the infant primate. As a first step toward characterizing the vaginal microbiota of a nonhuman primate, we used denaturing gradient gel electrophoresis to evaluate variations in the vaginal microbiota of a group of 35 baboons (Papio hamadryas), which were housed in a facility where they shared the same diet and the same environmental conditions. We found that, despite the uniform environment, there were appreciable differences in the composition of the microbiota from one individual to another. Our results also indicate that a simple swab test is sufficient for sampling the vaginal microbiota in the field, a finding that should help make more detailed characterization of the microbiota of wild primates feasible in the future. Am. J. Primatol. 72:467–474, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

6.
Although the critical role that our gastrointestinal microbes play in host physiology is now well established, we know little about the factors that influenced the evolution of primate gut microbiomes. To further understand current gut microbiome configurations and diet–microbe co-metabolic fingerprints in primates, from an evolutionary perspective, we characterized fecal bacterial communities and metabolomic profiles in 228 fecal samples of lowland and mountain gorillas (G. g. gorilla and G. b. beringei, respectively), our closest evolutionary relatives after chimpanzees. Our results demonstrate that the gut microbiomes and metabolomes of these two species exhibit significantly different patterns. This is supported by increased abundance of metabolites and bacterial taxa associated with fiber metabolism in mountain gorillas, and enrichment of markers associated with simple sugar, lipid and sterol turnover in the lowland species. However, longitudinal sampling shows that both species'' microbiomes and metabolomes converge when hosts face similar dietary constraints, associated with low fruit availability in their habitats. By showing differences and convergence of diet–microbe co-metabolic fingerprints in two geographically isolated primate species, under specific dietary stimuli, we suggest that dietary constraints triggered during their adaptive radiation were potential factors behind the species-specific microbiome patterns observed in primates today.  相似文献   

7.
Living ‘things’ coexist with microorganisms, known as the microbiota/microbiome that provides essential physiological functions to its host. Despite this reliance, the microbiome is malleable and can be altered by several factors including birth-mode, age, antibiotics, nutrition, and disease. In this minireview, we consider how other microbiomes and microbial communities impact the host microbiome and the host through the concept of microbiome collisions (initial exposures) and interactions. Interactions include changes in host microbiome composition and functionality and/or host responses. Understanding the impact of other microbiomes and microbial communities on the microbiome and host are important considering the decline in human microbiota diversity in the developed world – paralleled by the surge of non-communicable, inflammatory-based diseases. Thus, surrounding ourselves with rich and diverse beneficial microbiomes and microbial communities to collide and interact with should help to diminish the loss in microbial diversity and protect from certain diseases. In the same vein, our microbiomes not only influence our health but potentially the health of those close to us. We also consider strategies for enhanced host microbiome collisions and interactions through the surrounding environment that ensure increased microbiome diversity and functionality contributing to enhanced symbiotic return to the host in terms of health benefit.  相似文献   

8.
《Genomics》2021,113(4):2605-2613
Blood is an important non-reproductive tissue, but little is known about the sex-specific gene expressions in the blood. Therefore, we investigated sex-specific gene expression differences in the blood tissues of four primates, rhesus macaques (Macaca mulatta), Tibetan macaques (M. thibetana), yellow baboons (Papio cynocephalus), and humans. We identified seven sex-specific differentially expressed genes (SDEGs) in each non-human primate and 31 SDEGs in humans. The four primates had only one common SDEG, MAP7D2. In humans, immune-related SDEGs were identified as up-regulated, but also down-regulated in females. We also found that most of the X-Y gene pairs had similar expression levels between species, except pair EIF1AY/EIF1AX. The expression level of X-Y gene pairs of rhesus and Tibetan macaques showed no significant differential expression levels, while humans had six significant XY-biased and three XX-biased X-Y gene pairs. Our observed sex differences in blood should increase understanding of sex differences in primate blood tissue.  相似文献   

9.
We used high throughput pyrosequencing to characterize stomach and gut content microbiomes of Crassostrea virginica, the Easter oyster, obtained from two sites, one in Barataria Bay (Hackberry Bay) and the other in Terrebonne Bay (Lake Caillou), Louisiana, USA. Stomach microbiomes in oysters from Hackberry Bay were overwhelmingly dominated by Mollicutes most closely related to Mycoplasma; a more rich community dominated by Planctomyctes occurred in Lake Caillou oyster stomachs. Gut communities for oysters from both sites differed from stomach communities, and harbored a relatively diverse assemblage of phylotypes. Phylotypes most closely related to Shewanella and a Chloroflexi strain dominated the Lake Caillou and Hackberry Bay gut microbiota, respectively. While many members of the stomach and gut microbiomes appeared to be transients or opportunists, a putative core microbiome was identified based on phylotypes that occurred in all stomach or gut samples only. The putative core stomach microbiome comprised 5 OTUs in 3 phyla, while the putative core gut microbiome contained 44 OTUs in 12 phyla. These results collectively revealed novel microbial communities within the oyster digestive system, the functions of the oyster microbiome are largely unknown. A comparison of microbiomes from Louisiana oysters with bacterial communities reported for other marine invertebrates and fish indicated that molluscan microbiomes were more similar to each other than to microbiomes of polychaetes, decapods and fish.  相似文献   

10.
11.
The vaginal microbiota is important in women’s reproductive and overall health. However, the relationships between the structure, function and dynamics of this complex microbial community and health outcomes remain elusive. The objective of this study was to determine the phylogenetic range and abundance of prokaryotes in the vaginal microbiota of healthy, non-pregnant, ethnically diverse, reproductive-aged Canadian women. Socio-demographic, behavioural and clinical data were collected and vaginal swabs were analyzed from 310 women. Detailed profiles of their vaginal microbiomes were generated by pyrosequencing of the chaperonin-60 universal target. Six community state types (CST) were delineated by hierarchical clustering, including three Lactobacillus-dominated CST (L. crispatus, L. iners, L. jensenii), two Gardnerella-dominated (subgroups A and C) and an “intermediate” CST which included a small number of women with microbiomes dominated by seven other species or with no dominant species but minority populations of Streptococcus, Staphylococcus, Peptoniphilus, E. coli and various Proteobacteria in co-dominant communities. The striking correspondence between Nugent score and deep sequencing CST continues to reinforce the basic premise provided by the simpler Gram stain method, while additional analyses reveal detailed cpn60-based phylogeny and estimated abundance in microbial communities from vaginal samples. Ethnicity was the only demographic or clinical characteristic predicting CST, with differences in Asian and White women (p = 0.05). In conclusion, this study confirms previous work describing four cpn60-based subgroups of Gardnerella, revealing previously undescribed CST. The data describe the range of bacterial communities seen in Canadian women presenting with no specific vaginal health concerns, and provides an important baseline for future investigations of clinically important cohorts.  相似文献   

12.
The metabolic activities of gut microbes significantly influence host physiology; thus, characterizing the forces that modulate this micro‐ecosystem is key to understanding mammalian biology and fitness. To investigate the gut microbiome of wild primates and determine how these microbial communities respond to the host's external environment, we characterized faecal bacterial communities and, for the first time, gut metabolomes of four wild lowland gorilla groups in the Dzanga‐Sangha Protected Areas, Central African Republic. Results show that geographical range may be an important modulator of the gut microbiomes and metabolomes of these gorilla groups. Distinctions seemed to relate to feeding behaviour, implying energy harvest through increased fruit consumption or fermentation of highly fibrous foods. These observations were supported by differential abundance of metabolites and bacterial taxa associated with the metabolism of cellulose, phenolics, organic acids, simple sugars, lipids and sterols between gorillas occupying different geographical ranges. Additionally, the gut microbiomes of a gorilla group under increased anthropogenic pressure could always be distinguished from that of all other groups. By characterizing the interplay between environment, behaviour, diet and symbiotic gut microbes, we present an alternative perspective on primate ecology and on the forces that shape the gut microbiomes of wild primates from an evolutionary context.  相似文献   

13.
Almost all higher organisms, including plants, insects, and mammals, are colonized by complex microbial communities and harbor a microbiome. Emerging studies with plants reveal that these microbiomes are structured and form complex, interconnected microbial networks. Within these networks, different taxa have different roles, and keystone species have been identified that could be crucial for plant health and ecosystem functioning. A new paper in this issue of PLOS Biology by Agler et al. highlights the presence of microbial hubs in these networks that may act as mediators between the plant and its microbiome. A next major frontier is now to link microbiome composition to function. In order to do this, we present a number of hypothetical examples of how microbiome diversity and function potentially influence host performance.  相似文献   

14.
15.
Microbial organisms are ubiquitous in nature and often form communities closely associated with their host, referred to as the microbiome. The microbiome has strong influence on species interactions, but microbiome studies rarely take interactions between hosts into account, and network interaction studies rarely consider microbiomes. Here, we propose to use metacommunity theory as a framework to unify research on microbiomes and host communities by considering host insects and their microbes as discretely defined “communities of communities” linked by dispersal (transmission) through biotic interactions. We provide an overview of the effects of heritable symbiotic bacteria on their insect hosts and how those effects subsequently influence host interactions, thereby altering the host community. We suggest multiple scenarios for integrating the microbiome into metacommunity ecology and demonstrate ways in which to employ and parameterize models of symbiont transmission to quantitatively assess metacommunity processes in host‐associated microbial systems. Successfully incorporating microbiota into community‐level studies is a crucial step for understanding the importance of the microbiome to host species and their interactions.  相似文献   

16.
Microbialites are mineral formations formed by microbial communities that are often dominated by cyanobacteria. Carbonate microbialites, known from Proterozoic times through the present, are recognized for sequestering globally significant amounts of inorganic carbon. Recent ecological work has focused on microbial communities dominated by cyanobacteria that produce microbial mats and laminate microbialites (stromatolites). However, the taxonomic composition and functions of microbial communities that generate distinctive clotted microbialites (thrombolites) are less well understood. Here, microscopy and deep shotgun sequencing were used to characterize the microbiome (microbial taxa and their genomes) associated with a single cyanobacterial host linked by 16S sequences to Nostoc commune Vaucher ex Bornet & Flahault, which dominates abundant littoral clotted microbialites in shallow, subpolar, freshwater Laguna Larga in southern Chile. Microscopy and energy‐dispersive X‐ray spectroscopy suggested the hypothesis that adherent hollow carbonate spheres typical of the clotted microbialite begin development on the rigid curved outer surfaces of the Nostoc balls. A surface biofilm included >50 nonoxygenic bacterial genera (taxa other than Nostoc) that indicate diverse ecological functions. The Laguna Larga Nostoc microbiome included the sulfate reducers Desulfomicrobium and Sulfospirillum and genes encoding all known proteins specific to sulfate reduction, a process known to facilitate carbonate deposition by increasing pH. Sequences indicating presence of nostocalean and other types of nifH, nostocalean sulfide:ferredoxin oxidoreductase (indicating anoxygenic photosynthesis), and biosynthetic pathways for the secondary products scytonemin, mycosporine, and microviridin toxin were identified. These results allow comparisons with microbiota and microbiomes of other algae and illuminate biogeochemical roles of ancient microbialites.  相似文献   

17.
Microbiomes exist in all ecosystems and are composed of diverse microbial communities. Perturbation to microbiomes brings about undesirable phenotypes in the hosts, resulting in diseases and disorders, and disturbs the balance of the associated ecosystems. Engineering of microbiomes can be used to modify structures of the microbiota and restore ecological balance. Consequently, microbiome engineering has been employed for improving human health and agricultural productivity. The importance and current applications of microbiome engineering, particularly in humans, animals, plants and soil is reviewed. Furthermore, we explore the challenges in engineering microbiome and the future of this field, thus providing perspectives and outlook of microbiome engineering.  相似文献   

18.
The gut microbiome of earthworms has a complex interdependence with the host. When the soil minerals pass through earthworm’s gut, they may affect the gut microbiota. To gain insight into the response of gut microbiota to the passed minerals, we fed earthworm (Eisenia fetida) on nutrient-poor soil and ore powder, and used high throughput sequencing to characterize the earthworm intestinal microbial community to find evidence for a core bacterial community of the E. fetida. The results showed that earthworms’ gut maintained a core microbiome that appeared in all samples. These core microbiota may play a significant role in a species’ environmental interactions. The composition of intestinal microbiomes varied with substrates. The earthworm guts from two nutrient-poor substrates had similar microbial communities and they were different from nutrient-rich substrate. Proteobacteria and Bacteroidetes were more abundant in the gut of earthworms kept on a nutrient-poor substrate such as ore powder or mineral soil than in the gut of earthworms kept in organic-rich compost soil; some of these microorganisms may help earthworms survive in nutrient-poor substrates.  相似文献   

19.
Background  Methanogenesis by methanogenic Archaea and sulfate reduction by sulfate reducing bacteria (SRB) are the major hydrogenotrophic pathways in the human colon. Methanogenic status of mammals is suggested to be under evolutionary rather than dietary control. However, information is lacking regarding the dynamics of hydrogenotrophic microbial communities among different primate species.
Methods  Rectal swabs were collected from 10 sooty mangabeys ( Cercocebus atys ) and 10 baboons ( Papio hamadryas ). The diversity and abundance of methanogens and SRB were examined using PCR-denaturing gradient gel electrophoresis (DGGE) and real-time quantitative PCR (qPCR).
Results  The DGGE results revealed that intestinal Archaea and SRB communities differ between mangabeys and baboons. Phylogenetic analyses of Archaea DGGE bands revealed two distinct clusters with one representing a putative novel order of methanogenic Archaea. The qPCR detected a similar abundance of methanogens and SRB.
Conclusions  Intestinal Archaea and SRB coexist in these primates, and the community patterns are host species-specific.  相似文献   

20.

Background

Whipworms (Trichuris sp.) are a globally distributed genus of parasitic helminths that infect a diversity of mammalian hosts. Molecular methods have successfully resolved porcine whipworm, Trichuris suis, from primate whipworm, T. trichiura. However, it remains unclear whether T. trichiura is a multi-host parasite capable of infecting a wide taxonomic breadth of primate hosts or a complex of host specific parasites that infect one or two closely related hosts.

Methods and Findings

We examined the phylogenetic structure of whipworms in a multi-species community of non-human primates and humans in Western Uganda, using both traditional microscopy and molecular methods. A newly developed nested polymerase chain reaction (PCR) method applied to non-invasively collected fecal samples detected Trichuris with 100% sensitivity and 97% specificity relative to microscopy. Infection rates varied significantly among host species, from 13.3% in chimpanzees (Pan troglodytes) to 88.9% in olive baboons (Papio anubis). Phylogenetic analyses based on nucleotide sequences of the Trichuris internal transcribed spacer regions 1 and 2 of ribosomal DNA revealed three co-circulating Trichuris groups. Notably, one group was detected only in humans, while another infected all screened host species, indicating that whipworms from this group are transmitted among wild primates and humans.

Conclusions and Significance

Our results suggest that the host range of Trichuris varies by taxonomic group, with some groups showing host specificity, and others showing host generality. In particular, one Trichuris taxon should be considered a multi-host pathogen that is capable of infecting wild primates and humans. This challenges past assumptions about the host specificity of this and similar helminth parasites and raises concerns about animal and human health.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号