首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
VISA is an adapter protein required for virus-triggered IFN-beta signaling   总被引:14,自引:0,他引:14  
Xu LG  Wang YY  Han KJ  Li LY  Zhai Z  Shu HB 《Molecular cell》2005,19(6):727-740
  相似文献   

2.
3.
The retinal pigment epithelial (RPE) cell is a potent regulatory cell that facilitates normal physiologic processes and plays a critical role in a variety of retinal diseases. We evaluated IFN-beta production in human RPE cells through TLR signaling and investigated the effects of IFN-beta on RPE cells. RPE cells treated with poly(I:C) or infected with an RNA virus produce IFN-beta. Kinetic studies revealed that IFN-beta levels continue to increase over a 48-h period and this was associated with the up-regulation of IRF-7 gene expression, a known positive feedback molecule for IFN-beta production. Microarray analysis revealed that in IFN-beta treated cells, 480 genes of 22,283 genes were up or down-regulated by >2-fold. We hypothesize that IFN-beta induction during TLR signaling in the retina is an immunosuppressive factor produced to limit immunopathologic damage. Cytokine activation of RPE cells results in the production of the chemokines, CXCL9 and CXCL10, and the adhesion molecule, ICAM-1. Pretreatment of RPE cells with IFN-beta resulted in inhibition of ICAM-1 production and elimination of CXCL9 production. This treatment did not alter CXCL10 production. Anti-IFN-beta Ab blocked the inhibitory action of IFN-beta. Real time PCR analysis revealed that IFN-beta treatment inhibited gene expression of sICAM-1 and CXCL9. The results indicate a critical role for RPE cell derived IFN-beta in the down-regulation of CXCL9 and ICAM-1 expression in the retina and suggest that the inhibition of CXCL9 is an immuno-suppressive mechanism that protects the retina from excessive inflammation.  相似文献   

4.
We have previously shown that IFN-beta, a key cytokine associated with the early phase of the innate host defense, can prevent the generation of human Th1 cells. Specifically, we demonstrated that IFN-beta prevents the in vitro monocyte-derived mature dendritic cell (DC)-dependent differentiation of naive Th cells into IFN-gamma-secreting Th cells, as a result of its ability to inhibit DC IL-12 secretion. The goal of the present study was to identify how IFN-beta negatively regulates IL-12 secretion by DC. We report that in our Th cell differentiation model, DC IL-12 secretion is dependent on the CD40L/CD40 accessory pathway, and, utilizing a Th cell-free system, we find that IFN-beta inhibits anti-CD40 mAb-induced DC secretion of the p40 chain of the IL-12 heterodimer. In addition, we show that IFN-beta-mediated inhibition of CD40 signaling does not interfere with all signaling pathways emanating from CD40, since anti-CD40 mAb-induced DC IL-6 secretion is augmented by IFN-beta. Thus, our results demonstrate that signaling from CD40 is differentially regulated by IFN-beta. A second critical element of innate immunity involves the response against components of bacterial membranes such as LPS. DC respond to LPS by secreting IL-6 and IL-12. In contrast to CD40-dependent IL-6 and IL-12 secretion, we find that LPS-induced DC secretion of p40 IL-12 and IL-6 is not affected by IFN-beta. Our findings show that IFN-beta influences the generation of acquired immune responses through its regulation of CD40-dependent DC functions.  相似文献   

5.
Kanda T  Steele R  Ray R  Ray RB 《Journal of virology》2007,81(22):12375-12381
Beta interferon (IFN-beta) expression is triggered by double-stranded RNA, a common intermediate in the replication of many viruses including hepatitis C virus (HCV). The recent development of cell culture-grown HCV allowed us to analyze the IFN signaling pathway following virus infection. In this study, we have examined the IFN-beta signaling pathway following infection of immortalized human hepatocytes (IHH) with HCV genotype 1a (clone H77) or 2a (clone JFH1). We observed that IHH possesses a functional Toll-like receptor 3 pathway. HCV infection in IHH enhanced IFN-beta and IFN-stimulated gene 56 (ISG56) promoter activities; however, poly(I-C)-induced IFN-beta and ISG56 expression levels were modestly inhibited upon HCV infection. IHH infected with HCV (genotype 1a or 2a) exhibited various levels of translocation of IRF-3 into the nucleus. The upregulation of endogenous IFN-beta and 2',5'-oligoadenylate synthetase 1 mRNA expression was also observed in HCV-infected IHH. Subsequent studies suggested that HCV infection in IHH enhanced STAT1 and ISG56 protein expression. A functional antiviral response of HCV-infected IHH was observed by the growth-inhibitory role in vesicular stomatitis virus. Together, our results suggested that HCV infection in IHH induces the IFN signaling pathway, which corroborates observations from natural HCV infection in humans.  相似文献   

6.
7.
8.
Streptococcus pyogenes is a Gram-positive human pathogen that is recognized by yet unknown pattern recognition receptors (PRRs). Engagement of these receptor molecules during infection with S. pyogenes, a largely extracellular bacterium with limited capacity for intracellular survival, causes innate immune cells to produce inflammatory mediators such as TNF, but also type I interferon (IFN). Here we show that signaling elicited by type I IFNs is required for successful defense of mice against lethal subcutaneous cellulitis caused by S. pyogenes. Type I IFN signaling was accompanied with reduced neutrophil recruitment to the site of infection. Mechanistic analysis revealed that macrophages and conventional dendritic cells (cDCs) employ different signaling pathways leading to IFN-beta production. Macrophages required IRF3, STING, TBK1 and partially MyD88, whereas in cDCs the IFN-beta production was fully dependent on IRF5 and MyD88. Furthermore, IFN-beta production by macrophages was dependent on the endosomal delivery of streptococcal DNA, while in cDCs streptococcal RNA was identified as the IFN-beta inducer. Despite a role of MyD88 in both cell types, the known IFN-inducing TLRs were individually not required for generation of the IFN-beta response. These results demonstrate that the innate immune system employs several strategies to efficiently recognize S. pyogenes, a pathogenic bacterium that succeeded in avoiding recognition by the standard arsenal of TLRs.  相似文献   

9.
10.
Intracellular interferons (IFNs) exert biological functions similar to those of extracellular IFNs, but the signal transduction pathway triggered by the intracellular ligands has not been fully revealed. We investigated the signaling cascade by sequence-specific knockdown of signaling molecules by means of the RNA interference. Truncated IFN-beta gene was constructed so that the N-terminal secretory signal sequence was deleted (SD.IFN-beta). Cells transfected with this construct showed phosphorylation and activation of the STAT1 without any detectable secretion of the cytokine. The MHC class I expression was significantly augmented, while the augmentation was suppressed by short interfering RNA duplexes specific for JAK1, TYK2, and IFN-alpha/beta receptor (IFNAR) 1 and 2c chains. The SD.IFN-beta also induced p53 and phosphorylation of p53 at Ser(15). Specific silencing of p53 abrogated the antiviral effect of SD.IFN-beta, suggesting that the tumor suppressor is critically involved in antiviral defense mediated by intracellular IFN.  相似文献   

11.
The macrophage proinflammatory response to Francisella tularensis (Ft) live vaccine strain (LVS) was shown previously to be TLR2 dependent. The observation that intracellular Ft LVS colocalizes with TLR2 and MyD88 inside macrophages suggested that Ft LVS might signal from within the phagosome. Macrophages infected with LVSDeltaiglC, a Ft LVS mutant that fails to escape from the phagosome, displayed greatly increased expression of a subset of TLR2-dependent, proinflammatory genes (e.g., Tnf) but decreased expression of others (e.g., Ifnb1). This latter subset was similarly mitigated in IFN-beta(-/-) macrophages indicating that while Ft LVS-induced TLR2 signaling is necessary, cytosolic sensing of Ft to induce IFN-beta is required for full induction of the macrophage proinflammatory response. Although LVSDeltaiglC greatly increased IL-1beta mRNA in wild-type macrophages, protein secretion was not observed. IL-1beta secretion was also diminished in Ft LVS-infected IFN-beta(-/-) macrophages. rIFN-beta failed to restore IL-1beta secretion in LVSDeltaiglC-infected macrophages, suggesting that signals in addition to IFN-beta are required for assembly of the inflammasome and activation of caspase-1. IFN-beta plays a central role in controlling the macrophage bacterial burden: bacterial recovery was greater in IFN-beta(-/-) than in wild-type macrophages and treatment of Ft LVS-infected macrophages with rIFN-beta or 5,6-dimethylxanthenone-4-acetic acid, a potent IFN-beta inducer, greatly decreased the intracellular Ft LVS burden. In toto, these observations support the hypothesis that the host inflammatory response to Ft LVS is complex and requires engagement of multiple signaling pathways downstream of TLR2 including production of IFN-beta via an unknown cytosolic sensor and activation of the inflammasome.  相似文献   

12.
LRG47/Irgm1, a 47-kDa IFN-inducible GTPase, plays a major role in regulating host resistance as well as the hemopoietic response to intracellular pathogens. LRG47 expression in macrophages has been shown previously to be stimulated in vitro by bacterial LPS, a TLR4 ligand. In this study, we demonstrate that induction of LRG47 by LPS is not dependent on MyD88 signaling, but rather, requires STAT-1 and IFN-beta. In addition, LRG47-deficient mice are highly susceptible to LPS, but not TLR2 ligand-induced shock, an outcome that correlates with enhanced proinflammatory cytokine production in vitro and in vivo. Further analysis revealed that LPS-stimulated LRG47-deficient macrophages display enhanced phosphorylation of p38, a downstream response associated with TLR4/MyD88 rather than IFN-beta/STAT-1 signaling. In contrast, LPS-induced phosphorylation of IFN regulatory factor-3 and expression of IFN-beta or the type I IFN-regulated genes, CCL5 and CCL10, were unaltered in LRG47(-/-) cells. Together, these observations indicate that in LPS-stimulated murine macrophages LRG47 is induced by IFN-beta and negatively regulates TLR4 signaling to prevent excess proinflammatory cytokine production and shock. Thus, our findings reveal a new host-protective function for this GTPase in the response to pathogenic encounter.  相似文献   

13.
14.
15.
RANKing intracellular signaling in osteoclasts   总被引:3,自引:0,他引:3  
Feng X 《IUBMB life》2005,57(6):389-395
RANKL plays a pivotal role in the differentiation, function and survival of osteoclasts, the principal bone-resorbing cells. RANKL exerts the effects by binding RANK, the receptor activator of NF-kappaB, in osteoclasts and its precursors. Upon binding RANKL, RANK activates six major signaling pathways: NFATc1, NF-kappaB, Akt/PKB, JNK, ERK and p38, which play distinct roles in osteoclast differentiation, function and survival. Recent studies have not only provided more insights into RANK signaling but have also revealed that several factors, including INF-gamma, IFN-beta, and ITAM-activated costimulatory signals, regulate osteoclastogenesis via direct crosstalk with RANK signaling. It was recently shown that RANK contains three functional motifs capable of mediating osteoclastogenesis. Moreover, although both IFN-gamma and IFN-beta inhibit osteoclastogenesis, they exert the inhibitory effects by distinct mechanisms. Whereas IFN-gamma has been shown to block osteoclastogenesis by promoting degradation of TRAF6, IFN-beta inhibits osteoclastogenesis by down-regulating c-fos expression. In contrast, the ITAM-activated costimulatory signals positively regulate osteoclastogenesis by mediating the activation of NFATc1 through two ITAM-harboring adaptors: FcRgamma and DAP12. This review is focused on discussing the current understanding of RANK signaling and signaling crosstalk between RANK and the various factors in osteoclasts.  相似文献   

16.
17.
18.
TLRs mediate diverse signaling after recognition of evolutionary conserved pathogen-associated molecular patterns such as LPS and lipopeptides. Both TLR2 and TLR4 are known to trigger a protective immune response as well as cellular apoptosis. In this study, we present evidence that TLR4, but not TLR2, mediates an autoregulatory apoptosis of activated microglia. Brain microglia underwent apoptosis upon stimulation with TLR4 ligand (LPS), but not TLR2 ligands (Pam(3)Cys-Ser-Lys(4), peptidoglycan, and lipoteichoic acid). Based on studies using TLR2-deficient or TLR4 mutant mice and TLR dominant-negative mutants, we also demonstrated that TLR4, but not TLR2, is necessary for microglial apoptosis. The critical difference between TLR2 and TLR4 signalings in microglia was IFN regulatory factor-3 (IRF-3) activation, followed by IFN-beta expression: while TLR4 agonist induced the activation of IRF-3/IFN-beta pathway, TLR2 did not. Nevertheless, both TLR2 and TLR4 agonists strongly induced NF-kappaB activation and NO production in microglia. Neutralizing Ab against IFN-beta attenuated TLR4-mediated microglial apoptosis. IFN-beta alone, however, did not induce a significant cell death. Meanwhile, TLR2 activation induced microglial apoptosis with help of IFN-beta, indicating that IFN-beta production following IRF-3 activation determines the apoptogenic action of TLR signaling. TLR4-mediated microglial apoptosis was mediated by MyD88 and Toll/IL-1R domain-containing adaptor-inducing IFN-beta, and was associated with caspase-11 and -3 activation rather than Fas-associated death domain protein/caspase-8 pathway. Taken together, TLR4 appears to signal a microglial apoptosis via autocrine/paracrine IFN-beta production, which may act as an apoptotic sensitizer.  相似文献   

19.
Small molecules that modulate specific protein functions are valuable tools for dissecting complex signaling pathways. Here, we identified a small molecule that induces the assembly of the interferon-beta (IFN-beta) enhanceosome by stimulating all the enhancer-binding activator proteins: ATF2/c-JUN, IRF3, and p50/p65 of NF-kappaB. This compound stimulates mitogen-activated protein kinase kinase kinase 1 (MEKK1), which is a member of a family of proteins involved in stress-mediated signaling pathways. Consistent with this, MEKK1 activates IRF3 in addition to ATF2/c-JUN and NF-kappaB for the assembly of the IFN-beta enhanceosome. MEKK1 activates IRF3 through the c-JUN amino-terminal kinase (JNK) pathway but not the p38 and IkappaB kinase (IKK) pathway. Taken together with previous observations, these results implicate that, for the assembly of an IFN-beta enhanceosome, MEKK1 can induce IRF3 and ATF2/c-JUN through the JNK pathway, whereas it can induce NF-kappaB through the IKK pathway. Thus, specific MEKK family proteins may be able to integrate some of multiple signal transduction pathways leading to the specific activation of the IFN-beta enhanceosome.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号