首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.
2.
3.
4.
5.
6.
Finding motifs in the twilight zone   总被引:8,自引:0,他引:8  
  相似文献   

7.
8.
SUMMARY: Tree Gibbs Sampler is a software for identifying motifs by simultaneously using the motif overrepresentation property and the motif evolutionary conservation property. It identifies motifs without depending on pre-aligned orthologous sequences, which makes it useful for the extraction of regulatory elements in multiple genomes of both closely related and distant species. AVAILABILITY: The Tree Gibbs Sampler software is freely downloadable at https://compbio.iupui.edu/xiaomanli/LiSoftware/retrieve.php?ID=tgs  相似文献   

9.
We present an algorithm to detect protein sub-structural motifs from primary sequence. The input to the algorithm is a set of aligned multiple protein sequences. It uses wavelet transforms to decompose protein sequences represented numerically by different indices (such as polarity, accessible surface area or electron-ion integration potentials of the amino acids). The numerical representation of a protein sequence has significant correlation with its biological activity, thus common motifs are expected to be observable from the wavelet spectrum. The decomposed signals are then up-sampled and similarity search techniques are used to identify similar regions across all the proteins at multiple scales. Results indicate that wavelet transform techniques are a promising approach for rapid motif detection.  相似文献   

10.
11.
INCLUSive allows automatic multistep analysis of microarray data (clustering and motif finding). The clustering algorithm (adaptive quality-based clustering) groups together genes with highly similar expression profiles. The upstream sequences of the genes belonging to a cluster are automatically retrieved from GenBank and can be fed directly into Motif Sampler, a Gibbs sampling algorithm that retrieves statistically over-represented motifs in sets of sequences, in this case upstream regions of co-expressed genes.  相似文献   

12.
Assignment of orthologous genes via genome rearrangement   总被引:1,自引:0,他引:1  
The assignment of orthologous genes between a pair of genomes is a fundamental and challenging problem in comparative genomics. Existing methods that assign orthologs based on the similarity between DNA or protein sequences may make erroneous assignments when sequence similarity does not clearly delineate the evolutionary relationship among genes of the same families. In this paper, we present a new approach to ortholog assignment that takes into account both sequence similarity and evolutionary events at a genome level, where orthologous genes are assumed to correspond to each other in the most parsimonious evolving scenario under genome rearrangement. First, the problem is formulated as that of computing the signed reversal distance with duplicates between the two genomes of interest. Then, the problem is decomposed into two new optimization problems, called minimum common partition and maximum cycle decomposition, for which efficient heuristic algorithms are given. Following this approach, we have implemented a high-throughput system for assigning orthologs on a genome scale, called SOAR, and tested it on both simulated data and real genome sequence data. Compared to a recent ortholog assignment method based entirely on homology search (called INPARANOID), SOAR shows a marginally better performance in terms of sensitivity on the real data set because it is able to identify several correct orthologous pairs that are missed by INPARANOID. The simulation results demonstrate that SOAR, in general, performs better than the iterated exemplar algorithm in terms of computing the reversal distance and assigning correct orthologs.  相似文献   

13.
14.
Comparative ab initio prediction of gene structures using pair HMMs   总被引:3,自引:0,他引:3  
We present a novel comparative method for the ab initio prediction of protein coding genes in eukaryotic genomes. The method simultaneously predicts the gene structures of two un-annotated input DNA sequences which are homologous to each other and retrieves the subsequences which are conserved between the two DNA sequences. It is capable of predicting partial, complete and multiple genes and can align pairs of genes which differ by events of exon-fusion or exon-splitting. The method employs a probabilistic pair hidden Markov model. We generate annotations using our model with two different algorithms: the Viterbi algorithm in its linear memory implementation and a new heuristic algorithm, called the stepping stone, for which both memory and time requirements scale linearly with the sequence length. We have implemented the model in a computer program called DOUBLESCAN. In this article, we introduce the method and confirm the validity of the approach on a test set of 80 pairs of orthologous DNA sequences from mouse and human. More information can be found at: http://www.sanger.ac.uk/Software/analysis/doublescan/  相似文献   

15.
The identification of potential protein binding sites (cis-regulatory elements) in the upstream regions of genes is key to understanding the mechanisms that regulate gene expression. To this end, we present a simple, efficient algorithm, BEAM (beam-search enumerative algorithm for motif finding), aimed at the discovery of cis-regulatory elements in the DNA sequences upstream of a related group of genes. This algorithm dramatically limits the search space of expanded sequences, converting the problem from one that is exponential in the length of motifs sought to one that is linear. Unlike sampling algorithms, our algorithm converges and is capable of finding statistically overrepresented motifs with a low failure rate. Further, our algorithm is not dependent on the objective function or the organism used. Limiting the space of candidate motifs enables the algorithm to focus only on those motifs that are most likely to be biologically relevant and enables the algorithm to use direct evaluations of background frequencies instead of resorting to probabilistic estimates. In addition, limiting the space of candidate motifs makes it possible to use computationally expensive objective functions that are able to correctly identify biologically relevant motifs.  相似文献   

16.
17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号