首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 812 毫秒
1.
Abstract. Natural regeneration of Pinus resinosa (red pine) seedlings around mature trees was studied in burned and unburned stands. Growth inhibitory effects of the forest organic matter on red pine seedlings was tested by a stair-step experiment using leachate of forest soil monoliths and also by a seed germination bio-assay using forest floor substrates. To test if higher burning temperatures can remove the allelopathic effects of red pine-Kalmia organic matter, a laboratory bio-assay was conducted by germinating red pine seeds on the organic matter burned at 200, 400, 600 and 800°C. Deposition of dry needles and a thick duff layer under red pine stands affected seedling establishment. Red pine seedling establishment increased with the decreasing thickness of duff layer away from the stump of the seed-bearing trees. Wildfire helped in removing the duff layer and increased seedling establishment. A high fuel load within a 0 - 1 m radius around the tree stump caused a deep burn of the organic matter including part of the soil seed reserve. On a burned-over surface, more seedlings established in a band between 1 and 2 m around the stump than inside and outside the band. Primary root growth of red pine was severely inhibited when the seedlings were grown in unburned forest floor organic matter where Kalmia was the principal understory species. Water leachate of a Pinus resinosa-Kalmia soil monolith was inhibitory to red pine seedling growth. In greenhouse conditions, the seedlings grew well in burned-over soil from a Pinus resinosa stand. Burned organic matter from a red pine forest showed an increase in pH with a burning temperature of 600°C. Primary root growth of red pine seedlings was similarly increased with increasing temperature up to 600°C; at higher temperatures the root length of seedlings did not increase any further.  相似文献   

2.
3.
ABSTRACT Riparian forest communities in the southwestern United States were historically structured by a disturbance regime of annual flooding. In recent decades, however, frequency of flooding has decreased and frequency of wildfires has increased. Riparian forests provide important breeding habitat for a large variety of bird species, and the effects of this altered disturbance regime on birds and their breeding habitat is largely unknown. To evaluate effects of high-intensity spring and summer wildfire on the quality of breeding bird habitat in the Middle Rio Grande valley, we measured vegetation structure and composition, avian nest use, and nest success at 4 unburned plots and 4 wildfire plots over a 3-year period. We measured avian nest use and success at nest boxes located in unburned riparian forest plots and plots recently burned by wildfire. Recent wildfire plots (<7 yr after fire) had a much different vegetation structure than unburned plots; an older (>7 yr after fire) wildfire plot more closely resembled its paired unburned plot than did recently burned plots. Ash-throated flycatchers (Myiarchus cinerascens) and Bewick's wrens (Thryomanes bewickii; hereafter, flycatchers and wrens, respectively) used nest boxes in most of the plots. A model selection procedure applied to logistic regressions showed that frequency of nest box use by flycatchers was positively associated with wildfire, although flycatchers used boxes in unburned plots as well. Wrens showed a preferential use of nest boxes that were in unburned sites and in close proximity to vegetative cover. Growth rates, feeding rates, and fledging mass of flycatchers were similar in wildfire and unburned plots. Growth rates for wrens were slower in wildfire plots, while feeding rates and fledging mass were similar. Nest predation varied between years, was higher for flycatchers than for wrens, and was not directly influenced by wildfire. Model selection showed that predation increased with grass cover, an indicator of forest openness, and decreased with distance to habitat edge. Recovery of dense vegetation appears important in maintaining populations of Bewick's wrens, whereas ash-throated flycatchers were less sensitive to vegetative structure and composition of postfire succession. Postfire management that maintains nest sites in large forest strips would enhance nesting density and success of these cavity-nesting birds in riparian zones.  相似文献   

4.
Abstract: Fire‐affected forests are becoming an increasingly important component of tropical landscapes. The impact of wildfires on rainforest communities is, however, poorly understood. In this study the density, species richness and community composition of seedlings, saplings, trees and butterflies were assessed in unburned and burned forest following the 1997/98 El Niño Southern Oscillation burn event in East Kalimantan, Indonesia. More than half a year after the fires, sapling and tree densities in the burned forest were only 2.5% and 38.8%, respectively, of those in adjacent unburned forest. Rarefied species richness and Shannon's H’ were higher in unburned forest than burned forest for all groups but only significantly so for seedlings. There were no significant differences in evenness between unburned and burned forest. Matrix regression and Akaike's information criterion (AIC) revealed that the best explanatory models of similarity included both burning and the distance between sample plots indicating that both deterministic processes (related to burning) and dispersal driven stochastic processes structure post‐disturbance rainforest assemblages. Burning though explained substantially more variation in seedling assemblage structure whereas distance was a more important explanatory variable for trees and butterflies. The results indicate that butterfly assemblages in burned forest were primarily derived from adjacent unburned rainforest, exceptions being species of grass‐feeders such as Orsotriaena medus that are normally found in open, disturbed areas, whereas burned forest seedling assemblages were dominated by typical pioneer genera, such as various Macaranga species that were absent or rare in unburned forest. Tree assemblages in the burned forest were represented by a subset of fire‐resistant species, such as Eusideroxylon zwageri and remnant dominant species from the unburned forest.  相似文献   

5.
We examined long‐term responses of an Amazonian bird assemblage to wildfire disturbance, investigating how understory birds reacted to forest regeneration 1, 3, and 10 years after a widespread fire event. The bird community was sampled along the Arapiuns and Maró river catchments in central Brazilian Amazonia. Sampling took place in 1998, 2000, and 2008 using mist‐nets in eight plots (four burned, four unburned sites). Species richness did not change significantly in unburned sites. In burned sites, however, we found significantly lower richness in 1998, higher richness in 2000, and similar richness in 2008. Multi‐dimensional scaling ordination showed consistent differences in bird communities both within burned sites sampled in different sampling years, and between burned and unburned sites in all years. Of the 30 most abundant species, 12 had not recovered 10 years after the fires, including habitat specialists such as mixed flocks specialists and ant‐followers. Fire‐disturbance favored three species (two hummingbirds and a manakin) in the short term only. All other species were either favored throughout the study (seven species of omnivores and small insectivores) or did not show a clear response (eight species). In burned sites, we also found significantly lower abundance of species sensitive to disturbances and habitat specialists over the entire study period. Although the bird community seems to be recovering in terms of richness, the overall community composition and abundance of some species in post‐burned and unburned sites remain very different, and have not recovered after 10 years of forest regeneration.  相似文献   

6.
Forest fire dramatically affects the carbon storage and underlying mechanisms that control the carbon balance of recovering ecosystems. In western North America where fire extent has increased in recent years, we measured carbon pools and fluxes in moderately and severely burned forest stands 2 years after a fire to determine the controls on net ecosystem productivity (NEP) and make comparisons with unburned stands in the same region. Total ecosystem carbon in soil and live and dead pools in the burned stands was on average 66% that of unburned stands (11.0 and 16.5 kg C m−2, respectively, P<0.01). Soil carbon accounted for 56% and 43% of the carbon pools in burned and unburned stands. NEP was significantly lower in severely burned compared with unburned stands (P<0.01) with an increasing trend from −125±44 g C m−2 yr−1 (±1 SD) in severely burned stands (stand replacing fire), to −38±96 and +50±47 g C m−2 yr−1 in moderately burned and unburned stands, respectively. Fire of moderate severity killed 82% of trees <20 cm in diameter (diameter at 1.3 m height, DBH); however, this size class only contributed 22% of prefire estimates of bole wood production. Larger trees (> 20 cm DBH) suffered only 34% mortality under moderate severity fire and contributed to 91% of postfire bole wood production. Growth rates of trees that survived the fire were comparable with their prefire rates. Net primary production NPP (g C m−2 yr−1, ±1 SD) of severely burned stands was 47% of unburned stands (167±76, 346±148, respectively, P<0.05), with forb and grass aboveground NPP accounting for 74% and 4% of total aboveground NPP, respectively. Based on continuous seasonal measurements of soil respiration in a severely burned stand, in areas kept free of ground vegetation, soil heterotrophic respiration accounted for 56% of total soil CO2 efflux, comparable with the values of 54% and 49% previously reported for two of the unburned forest stands. Estimates of total ecosystem heterotrophic respiration (Rh) were not significantly different between stand types 2 years after fire. The ratio NPP/Rh averaged 0.55, 0.85 and 1.21 in the severely burned, moderately burned and unburned stands, respectively. Annual soil CO2 efflux was linearly related to aboveground net primary productivity (ANPP) with an increase in soil CO2 efflux of 1.48 g C yr−1 for every 1 g increase in ANPP (P<0.01, r2= 0.76). There was no significant difference in this relationship between the recently burned and unburned stands. Contrary to expectations that the magnitude of NEP 2 years postfire would be principally driven by the sudden increase in detrital pools and increased rates of Rh, the data suggest NPP was more important in determining postfire NEP.  相似文献   

7.
Predicting plant community responses to changing environmental conditions is a key element of forecasting and mitigating the effects of global change. Disturbance can play an important role in these dynamics, by initiating cycles of secondary succession and generating opportunities for communities of long‐lived organisms to reorganize in alternative configurations. This study used landscape‐scale variations in environmental conditions, stand structure, and disturbance from an extreme fire year in Alaska to examine how these factors affected successional trajectories in boreal forests dominated by black spruce. Because fire intervals in interior Alaska are typically too short to allow relay succession, the initial cohorts of seedlings that recruit after fire largely determine future canopy composition. Consequently, in a dynamically stable landscape, postfire tree seedling composition should resemble that of the prefire forest stands, with little net change in tree composition after fire. Seedling recruitment data from 90 burned stands indicated that postfire establishment of black spruce was strongly linked to environmental conditions and was highest at sites that were moist and had high densities of prefire spruce. Although deciduous broadleaf trees were absent from most prefire stands, deciduous trees recruited from seed at many sites and were most abundant at sites where the fires burned severely, consuming much of the surface organic layer. Comparison of pre‐ and postfire tree composition in the burned stands indicated that the expected trajectory of black spruce self‐replacement was typical only at moist sites that burned with low fire severity. At severely burned sites, deciduous trees dominated the postfire tree seedling community, suggesting these sites will follow alternative, deciduous‐dominated trajectories of succession. Increases in the severity of boreal fires with climate warming may catalyze shifts to an increasingly deciduous‐dominated landscape, substantially altering landscape dynamics and ecosystem services in this part of the boreal forest.  相似文献   

8.
Pine (Pinus spp.) plantations are a common type of managed forest in the southeastern United States that may supply habitat for early successional bird species, many of which are declining. To provide information about young pine plantations as bird habitat, we evaluated spring bird presence in 5 combinations of stand establishment practices during years 2 through 5 post-establishment in the Lower Coastal Plain of Mississippi, USA. We detected 38 species with point counts and compared bird metrics among establishment practices using mixed general linear models. Species richness, total relative abundance, and relative abundance of many species were greater by at least a factor of 1.5–4 in the chemical-only establishment practice than mechanically prepared establishment practices, and values declined by about 5–60% within mechanically prepared establishment practices as herbicide intensity increased. Tree and snag retention contributed to avian abundance and richness in the chemical-only establishment practice. Our study, in conjunction with past research, demonstrated the conservation value to early successional bird species of managed pine stands established with tree retention, indicating that silvicultural and wildlife habitat objectives can be met within the range of stand establishment treatments available to managers. © 2012 The Wildlife Society.  相似文献   

9.
Boreal flat bugs include a high proportion of species that are considered negatively affected by forestry. Knowledge on the biology and habitat demands of individual species is generally limited. We examined the influence on flat bugs of stand-age and clear-cutting, comparing five classes of spruce stands. The five classes were: clear-cut, unthinned, and thinned (all three products of current clear-cutting forestry), mature managed and old-growth stands (these two had never been clear-cut). We also compared unburned and recently burned mature pine forest. Fire, but not stand age, had a pronounced effect on species richness and total abundance. Aradus depressus showed a significant association with older forest stands. Aradus betulae occurred only in clear-cuts and burned forest indicating that this species is favored by disturbance in general. Aradus lugubris, Aradus crenaticollis and Aradus brevicollis were found only in the burned forest. Aradus brevicollis has not previously been shown to be associated with fire.  相似文献   

10.
The response of an ecosystem to disturbance reflects its stability, which is determined by two components: resistance and resilience. We addressed both components in a study of early post-fire response of natural broadleaved forest (Quercus robur, Ilex aquifolium) and pine plantation (Pinus pinaster, Pinus sylvestris) to a wildfire that burned over 6000 ha in NW Portugal. Fire resistance was assessed from fire severity, tree mortality and sapling persistence. Understory fire resistance was similar between forests: fire severity at the surface level was moderate to low, and sapling persistence was low. At the canopy level, fire severity was generally low in broadleaved forest but heterogeneous in pine forest, and mean tree mortality was significantly higher in pine forest. Forest resilience was assessed by the comparison of the understory composition, species diversity and seedling abundance in unburned and burned plots in each forest type. Unburned broadleaved communities were dominated by perennial herbs (e.g., Arrhenatherum elatius) and woody species (e.g., Hedera hibernica, Erica arborea), all able to regenerate vegetatively. Unburned pine communities presented a higher abundance of shrubs, and most dominant species relied on post-fire seeding, with some species also being able to regenerate vegetatively (e.g., Ulex minor, Daboecia cantabrica). There were no differences in diversity measures in broadleaved forest, but burned communities in pine forest shared less species and were less rich and diverse than unburned communities. Seedling abundance was similar in burned and unburned plots in both forests. The slower reestablishment of understory pine communities is probably explained by the slower recovery rate of dominant species. These findings are ecologically relevant: the higher resistance and resilience of native broadleaved forest implies a higher stability in the maintenance of forest processes and the delivery of ecosystem services.  相似文献   

11.
Giffard B  Corcket E  Barbaro L  Jactel H 《Oecologia》2012,168(2):415-424
According to the associational resistance hypothesis, neighbouring plants are expected to influence both the insect herbivore communities and their natural enemies. However, this has rarely been tested for the effects of canopy trees on herbivory of seedlings. One possible mechanism responsible for associational resistance is the indirect impact of natural enemies on insect herbivory, such as insectivorous birds. But it remains unclear to what extent such trophic cascades are influenced by the composition of plant associations (i.e. identity of ‘associated’ plants). Here, we compared the effect of bird exclusion on insect leaf damage for seedlings of three broadleaved tree species in three different forest habitats. Exclusion of insectivorous birds affected insect herbivory in a species-specific manner: leaf damage increased on Betula pendula seedlings whereas bird exclusion had no effect for two oaks (Quercus robur and Q. ilex). Forest habitat influenced both the extent of insect herbivory and the effect of bird exclusion. Broadleaved seedlings had lower overall leaf damage within pine plantations than within broadleaved stands, consistent with the resource concentration hypothesis. The indirect effect of bird exclusion on leaf damage was only significant in pine plantations, but not in exotic and native broadleaved woodlands. Our results support the enemies hypothesis, which predicts that the effects of insectivorous birds on insect herbivory on seedlings are greater beneath non-congeneric canopy trees. Although bird species richness and abundance were greater in broadleaved woodlands, birds were unable to regulate insect herbivory on seedlings in forests of more closely related tree species.  相似文献   

12.
ABSTRACT Models of habitat suitability in postfire landscapes are needed by land managers to make timely decisions regarding postfire timber harvest and other management activities. Many species of cavity-nesting birds are dependent on postfire landscapes for breeding and other aspects of their life history and are responsive to postfire management activities (e.g., timber harvest). In addition, several cavity nesters are designated as species at risk. We compare the ability of 2 types of models to distinguish between nest and non-nest locations of 6 cavity-nesting bird species (Lewis's woodpecker [Melanerpes lewis], black-backed woodpecker [Picoides arcticus], hairy woodpecker [P. villosus], northern flicker [Colaptes auratus], western bluebird [Sialia mexicana], and mountain bluebird [S. currucoides]) in the early postfire years for a ponderosa pine (Pinus ponderosa) forest in Idaho, USA. The 2 model sets consisted of 1) models based on readily available remotely sensed data and 2) models containing field-collected data in addition to remotely sensed data (combination models). We evaluated models of nesting habitat by quantifying the model's ability to correctly identify nest and non-nest locations and by determining the percentage of correctly identified nest locations. Additionally, we developed relative habitat-suitability maps for nesting habitat of black-backed and Lewis's woodpeckers from the best models. For all species except Lewis's woodpeckers, model performance improved with the addition of field-collected data. Models containing remotely sensed data adequately distinguished between nest and non-nest locations for black-backed woodpecker and Lewis's woodpecker only, whereas models containing both field-collected and remotely sensed data were adequate for all 6 species. Improvements in the availability of more accurate remote sensing technology would likely lead to improvements in the ability of the models to predict nesting locations. External validation with data from other wildfires is necessary to confirm the general applicability of our habitat-suitability models to other forests. Land managers responsible for maintaining habitat for cavity-nesting birds in postfire landscapes can use these models to identify potential nesting areas for these species and select areas in burned forests where postfire salvage logging is most likely to have minimal impacts on cavity-nesting bird habitats.  相似文献   

13.
In harvested forests, the bird community is largely determined by stand structure, which itself is determined by forestry practices. This study aimed to identify habitat variables determining the presence of Corsican Nuthatch Sitta whiteheadi – a threatened island endemic – in harvested Corsican Pine Pinus nigra laricio woods, with the aim of mitigating the impact of timber harvest on the bird. Comparison of occupied and unoccupied plots showed that this bird is found mostly in pure Corsican Pine stands, and is absent when more than 50% of trees are not this species. Nests were built in decaying pine snags between 20 and 100 cm diameter at breast height (dbh), but birds avoided stands with live pines < 70 cm dbh, and selected stands with pines > 80 cm dbh. Conservation of Corsican Nuthatch therefore depends on maintaining harvest rotations of more than 200 years, reducing the size of felling coupes in clear‐cutting systems or, preferably, practising selective cutting, maintaining a sufficient density of old trees and snags, and checking the encroachment of other tree species into Corsican Pine stands.  相似文献   

14.
Fire, which is the dominant disturbance in the boreal forest, creates substantial heterogeneity in soil burn severity at patch and landscape scales. We present results from five field experiments in Yukon Territory, Canada, and Alaska, USA that document the effects of soil burn severity on the germination and establishment of four common boreal trees: Picea glauca, Picea mariana, Pinus contorta subsp. latifolia, and Populus tremuloides. Burn severity had strong positive effects on seed germination and net seedling establishment after 3 years. Growth of transplanted seedlings was also significantly higher on severely burned soils. Our data and a synthesis of the literature indicated a consistent, steep decline in conifer establishment on organic soils at depths greater than 2.5 cm. A meta-analysis of seedling responses found no difference in the magnitude of severity effects on germination versus net establishment. There were, however, significant differences in establishment but not germination responses among deciduous trees, spruce, and pine, suggesting that small-seeded species experience greater mortality on lightly burned, organic soils than large-seeded species. Together, our analyses indicate that variations in burn severity can influence multiple aspects of forest stand structure, by affecting the density and composition of tree seedlings that establish after fire. These effects are predicted to be most important in moderately-drained forest stands, where a high potential variability in soil burn severity is coupled with strong severity effects on tree recruitment.  相似文献   

15.
Fire is an important determinant of many aspects of savanna ecosystem structure and function. However, relatively little is known about the effects of fire on faunal biodiversity in savannas. We conducted a short‐term study to examine the effects of a replicated experimental burn on bird diversity and abundance in savanna habitat of central Kenya. Twenty‐two months after the burn, Shannon diversity of birds was 32% higher on plots that had been burned compared with paired control plots. We observed no significant effects of burning on total bird abundance or species richness. Several families of birds were found only on plots that had been burned; one species, the rattling cisticola (Cisticola chiniana), was found only on unburned plots. Shrub canopy area was negatively correlated with bird diversity on each plot, and highly correlated with grass height and the abundance of orthopterans. Our results suggest that the highest landscape‐level bird diversity might be obtained through a mosaic of burned and unburned patches. This is also most likely to approximate the historical state of bird diversity in this habitat, because patchy fires have been an important natural disturbance in tropical ecosystems for millennia.  相似文献   

16.
Abstract: Manipulation of forest habitat via mechanical thinning or prescribed fire has become increasingly common across western North America. Nevertheless, empirical research on effects of those activities on wildlife is limited, although prescribed fire in particular often is assumed to benefit large herbivores. We evaluated effects of season and spatial scale on response of Rocky Mountain elk (Cervus elaphus) and mule deer (Odocoileus hemionus) to experimental habitat manipulation at the Starkey Experimental Forest and Range in northeastern Oregon, USA. From 2001 to 2003, 26 densely stocked stands of true fir (Abies spp.) and Douglas-fir (Pseudotsuga menziesii) were thinned and burned whereas 27 similar stands were left untreated to serve as experimental controls. We used location data for elk and mule deer collected during spring (1 Apr-14 Jun) and summer (15 Jun-31 Aug) of 1999–2006 to compare use of treated and untreated stands and to model effects of environmental covariates on use of treated stands. In spring, elk selected burned stands and avoided control stands within the study area (second-order selection; large scale). Within home ranges (third-order selection; small scale), however, elk did not exhibit selection. In addition, selection of treatment stands by elk in spring was not strongly related to environmental covariates. Conversely, in summer elk selected control stands and either avoided or used burned stands proportional to their availability at the large scale; patterns of space use within home ranges were similar to those observed in spring. Use of treatment stands by elk in summer was related to topography, proximity to roads, stand size and shape, and presence of cattle, and a model of stand use explained 50% of variation in selection ratios. Patterns of stand use by mule deer did not change following habitat manipulation, and mule deer avoided or used all stand types proportional to their availability across seasons and scales. In systems similar to Starkey, manipulating forest habitat with prescribed fire might be of greater benefit to elk than mule deer where these species are sympatric, and thus maintaining a mixture of burned and unburned (late successional) habitat might provide better long-term foraging opportunities for both species than would burning a large proportion of a landscape.  相似文献   

17.
18.
G. Ne'eman  H. Lahav  I. Izhaki 《Oecologia》1992,91(3):365-370
Summary The spatial distribution of seedlings of the dominant perennial plant species (Pinus halepensis, Cistus salviifolius, Rhus coriaria) and may annual species was studied after a wild fire in an eastern Mediterranean pine forest. The spatial distribution of all seedlings is affected by the location of the old burned pine trees. Seedling density of Pinus and Cistus is higher at a distance from the burned pine canopy and lower near the burned pine trunk. It is also higher beneath small burned pine trees than under big ones. Rhus seedling density is higher under big burned pine trees and also near the burned trunks. Seedlings of Pinus, Cistus and Rhus growing under the burned canopy of big pine trees tend to be taller than seedlings under small ones or outside the burned canopy. Most annual species germinate and establish themselves outside the burned canopies, and only a few annual species are found beneath them. It is suggested that variation in the heat of the fire, in the amount of ash between burned pine trees of different sizes, and in the distance from the burned canopy are responsible for the observed pattern of seedling distribution. The possible ecological significance of the spatial pattern of seedlings distribution and their differential growth rate are discussed.  相似文献   

19.
Holzmueller EJ  Jose S  Jenkins MA 《Oecologia》2008,155(2):347-356
Exotic diseases have fundamentally altered the structure and function of forest ecosystems. Controlling exotic diseases across large expanses of forest has proven difficult, but fire may reduce the levels of diseases that are sensitive to environmental conditions. We examined Cornus florida populations in burned and unburned QuercusCarya stands to determine if burning prior to anthracnose infection has reduced the impacts of an exotic fungal disease, dogwood anthracnose, caused by Discula destructiva. We hypothesized that fire has altered stand structure and created open conditions less conducive to dogwood anthracnose. We compared C. florida density, C. florida health, and species composition and density among four sampling categories: unburned stands, and stands that had burned once, twice, and 3 times over a 20-year period (late 1960s to late 1980s). Double burn stands contained the greatest density of C. florida stems (770 stems ha−1) followed by triple burn stands (233 stems ha−1), single burn stands (225 stems ha−1) and unburned stands (70 stems ha−1; P < 0.01). We observed less crown dieback in small C. florida trees (<5 cm diameter at breast height) in burned stands than in unburned stands (P < 0.05). Indicator species analysis showed that burning favored species historically associated with QuercusCarya forests and excluded species associated with secondary succession following nearly a century of fire suppression. Our results suggest that fire may mitigate the decline of C. florida populations under attack by an exotic pathogen by altering forest structure and composition. Further, our results suggest that the burns we sampled have had an overall restorative effect on forest communities and were within the fire return interval of the historic fire regime. Consequently, prescribed fire may offer a management tool to reduce the impacts of fungal disease in forest ecosystems that developed under historic burning regimes.  相似文献   

20.
In Rocky Mountain forests, fire can act as a mechanism of change in plant community composition if postfire conditions favor establishment of species other than those that dominated prefire tree communities. We sampled pre and postfire overstory and postfire understory species following recent (1988–2006) stand-replacing fires in Glacier National Park (GNP), Montana. We identified changes in relative density of tree species and groups of species (xerophytes vs. mesophytes and reseeders vs. resprouters) in early succession. Postfire tree seedling densities were adequate to maintain prefire forest structure, but relative densities among species were variously changed. Changes were directly related to individual species’ response to severe fires. Most notably, relative density of the mesophytic resprouter quaking aspen (Populus tremuloides) and the xerophytic reseeder lodgepole pine (Pinus contorta) increased substantially following fire, with a concomitant decline in proportional abundance of other tree species that, in some cases, dominated stands before fire. Trends identified in our study suggest that forest community shifts toward those dominated by lodgepole pine and quaking aspen are occurring in GNP. Cover of understory species was not affected by tree species composition or density. These forest communities will likely change throughout succession with the addition of shade-intolerant species in early seral stages and shade-tolerant species later in succession. However, with increased fire frequency, the lodgepole pine-dominated postfire communities observed in our study may become more common throughout time.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号