首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
The ability to visualise specific genes and proteins within bacterial cells is revolutionising knowledge of chromosome segregation. The essential elements appear to be the driving force behind DNA replication, which occurs at fixed cellular positions, the condensation of newly replicated DNA by a chromosome condensation machine located at the cell 1/4 and 3/4 positions, and molecular machines that act at midcell to allow chromosome separation after replication and movement of the sister chromosomes away from the division septum prior to cell division. This review attempts to provide a perspective on current views of the bacterial chromosome segregation mechanism and how it relates to other cellular processes.  相似文献   

2.
Escherichia coli strains in which initiation of chromosome replication could be specifically blocked while other cellular processes continued uninhibited were constructed. Inhibition of replication resulted in a reduced growth rate and in inhibition of cell division after a time period roughly corresponding to the sum of the lengths of the C and D periods. The division inhibition was not mediated by the SOS regulon. The cells became elongated, and a majority contained a centrally located nucleoid with a fully replicated chromosome. The replication block was reversible, and restart of chromosome replication allowed cell division and rapid growth to resume after a time delay. After the resumption, the septum positions were nonrandomly distributed along the length axis of the cells, and a majority of the divisions resulted in at least one newborn cell of normal size and DNA content. With a transient temperature shift, a single synchronous round of chromosome replication and cell division could be induced in the population, making the constructed system useful for studies of cell cycle-specific events. The coordination between chromosome replication, nucleoid segregation, and cell division in E. coli is discussed.  相似文献   

3.
Chromosome Mapping in Staphylococcus aureus   总被引:3,自引:2,他引:1       下载免费PDF全文
The genome of Staphylococcus aureus was mapped by enumerating mutants induced by nitrosoguanidine during synchronous chromosomal replication following release from phenethanol inhibition. Both chromosomal replication time and cell division time were 120 min for this strain of S. aureus. Duplication of genes occurred within a 10-min period of the 120 min required for chromosomal replication. A high-resolution method was devised to determine the gene order of four genes that duplicated in the same 10-min interval of replication of the chromosome. A genomic map locating the positions of 10 genes was derived.  相似文献   

4.
The duplication of DNA and faithful segregation of newly replicated chromosomes at cell division is frequently dependent on recombinational processes. The rebuilding of broken or stalled replication forks is universally dependent on homologous recombination proteins. In bacteria with circular chromosomes, crossing over by homologous recombination can generate dimeric chromosomes, which cannot be segregated to daughter cells unless they are converted to monomers before cell division by the conserved Xer site-specific recombination system. Dimer resolution also requires FtsK, a division septum-located protein, which coordinates chromosome segregation with cell division, and uses the energy of ATP hydrolysis to activate the dimer resolution reaction. FtsK can also translocate DNA, facilitate synapsis of sister chromosomes and minimize entanglement and catenation of newly replicated sister chromosomes. The visualization of the replication/recombination-associated proteins, RecQ and RarA, and specific genes within living Escherichia coli cells, reveals further aspects of the processes that link replication with recombination, chromosome segregation and cell division, and provides new insight into how these may be coordinated.  相似文献   

5.
6.
To investigate the co-ordination between DNA replication and cell division, we have disrupted the DNA replication cycle of Escherichia coli by inserting inverted Ter sites into the terminus region to delay completion of the chromosome. The inverted Ter sites (designated Inv Ter :: spc r) were initially inserted into the chromosome of a Δ tus strain to allow unrestrained chromosomal replication. We then introduced a functional tus gene by transforming the Inv Ter :: spc r strain with a plasmid carrying the tus gene under control of an arabinose-inducible promoter. In the presence of 0.2% arabinose, the cells formed long filaments, suggesting that activation of the inverted Ter sites by Tus arrested DNA replication and delayed the onset of cell division. Induction of sfiA , a gene in the SOS regulon, was observed following arrest of DNA replication; however, when a sfiB114 allele was introduced into Inv Ter :: spc r strain, long filaments were still formed, suggesting that the sfi -independent pathway also caused filamentation. Either recA :: cam r or lexA3 alleles suppressed filamentation when introduced in the Inv Ter strain. Interestingly, in both the recA :: cam r and lexA3 mutants, virtually all cells had a nucleoid, suggesting that cell division was proceeding even though DNA replication was not complete. These results suggest that DNA replication and cell division are uncoupled when recA is inactivated or when genes repressed by LexA cannot be induced.  相似文献   

7.
R Bernander  S Dasgupta  K Nordstr?m 《Cell》1991,64(6):1145-1153
In E. coli strain EC::71CW chromosome replication is under the control of the R1 miniplasmid pOU71. A dnaA850::Tn10 derivative of EC::71CW was viable, which confirmed that R1 can replicate in the absence of the DnaA protein. The frequency of initiation of replication was, however, lowered and cell division was severely disturbed due to underreplication of the chromosome. Both replication and cell division could be restored to normal by increasing the production of RepA, the rate-limiting protein for initiation of replication from the integrated R1 origin. Therefore, the RepA protein seems to compensate for the absence of DnaA in the initiation of replication and assembly of replisomes. The role of the DnaA protein in the initiation of DNA replication, and as an overall regulator of the chromosome replication and cell division cycles of E. coli, is discussed in view of these results.  相似文献   

8.
The genetic structure of the 42.84-43.6 F (BamHI-PstI) segment of the F plasmid, which contains all the F DNA sequences necessary for coupling cell division of F+ bacteria with plasmid DNA replication, was analyzed by isolating a series of amber mutants. Two cistrons were found in this region and they were designated letA and letD (an abbreviation for lethal mutation). The letA and letD cistrons were mapped on the 42.84-43.35 F (BamHI- XmaI ) segment and the 43.07-43.6 F (HincII-PstI) segment, respectively, and are presumed to correspond to the first (43.04-43.26 F) and second (43.26-43.57 F) open reading frames, respectively, which were found in this region by nucleotide sequencing. The letD gene product acts to inhibit cell division of the host bacteria and to induce prophages in lysogenic bacteria, whereas the letA gene product acts to suppress the activity of the letD gene product. Taking into consideration the fact that the 42.84-43.6 F segment carries all the F plasmid genes necessary for coupling cell division with plasmid DNA replication, and that the expression of the genes is likely to be controlled by plasmid DNA replication, we constructed the following hypothesis. Before completion of plasmid DNA replication, LetD protein acts to prevent cell division of the host bacteria. When plasmid DNA replication is completed, synthesis of LetA protein (and also LetD protein) takes place and the LetA protein synthesized acts to suppress the activity of LetD protein and make the cell ready for cell division. Actual cell division will take place when replication of both chromosomal and plasmid DNA is completed and the termination protein of the chromosome and the LetA protein of F plasmid are both synthesized. When cell division takes place LetA protein is consumed, and as a result LetD protein becomes active and prevents cell division until the next round of DNA replication is completed.  相似文献   

9.
In this report, we have investigated cell division after inhibition of initiation of chromosome replication in Escherichia coli. In a culture grown to the stationary phase, cells containing more than one chromosome were able to divide some time after restart of growth, under conditions not allowing initiation of chromosome replication. This shows that there is no requirement for cell division to take place within a certain time after initiation of chromosome replication. Continued growth without initiation of replication resulted in filamented cells that generally did not have any constrictions. Interestingly, FtsZ rings were formed in a majority of these cells as they reached a certain cell length. These rings appeared and were maintained for some time at the cell quarter positions on both sides of the centrally localized nucleoid. These results confirm previous findings that cell division sites are formed independently of chromosome replication and indicate that FtsZ ring assembly is dependent on cell size rather than on the capacity of the cell to divide. Disruption of the mukB gene caused a significant increase in the region occupied by DNA after the replication runout, consistent with a role of MukB in chromosome condensation. The aberrant nucleoid structure was accompanied by a shift in FtsZ ring positioning, indicating an effect of the nucleoid on the positioning of the FtsZ ring. A narrow cell length interval was found, under and over which primarily central and non-central FtsZ rings, respectively, were observed. This finding correlates well with the previously observed oscillatory movement of MinC and MinD in short and long cells.  相似文献   

10.
Harry EJ 《Biochimie》2001,83(1):75-81
Progress in solving the long-standing puzzle of how a cell coordinates chromosome replication with cell division is significantly aided by the use of synchronous cell populations. Currently three systems are employed for obtaining such populations: the Escherichia coli 'baby machine', the developmentally-controlled cell cycle of Caulobacter crescentus, and Bacillus subtilis germinated and outgrowing spores. This review examines our current understanding of the relationship between replication and division and how the use of B. subtilis outgrowing spores and, more recently its combination with immunofluorescence microscopy, has contributed significantly to this important area of biology. About 20 years ago, and also more recently, this system was used to show convincingly that termination of DNA replication is not essential for a central septum to form, raising the possibility that the early stages of division occur well before termination. It has also been demonstrated that there is no major synthesis of the division initiation proteins, FtsZ and DivIB, linked to initiation, progression or completion of the first round of chromosome replication accompanying spore outgrowth. This has led to the suggestion that the primary link between chromosome replication and cell division at midcell is not likely to occur through a control over the levels of these proteins. Very recent work has employed a combination of the use of B. subtilis outgrowing spores with immunofluorescence microscopy to investigate the relationship between midcell Z ring assembly and the round of chromosome replication linked to it. The results of this work suggest a role for initiation and progression into the round of replication in blocking midcell Z ring formation until the round is complete or almost complete, thereby ensuring that cell division occurs between two equally-partitioned chromosomes.  相似文献   

11.
Chromosome replication does not trigger cell division in E. coli   总被引:7,自引:0,他引:7  
R Bernander  K Nordstr?m 《Cell》1990,60(3):365-374
An essential part of the chromosome replication origin of E. coli K-12 and B/r was replaced by the plasmid pOU71. The average initiation mass of replication for pOU71 decreases with increasing temperature. The constructed strains were grown exponentially at different temperatures, and cell sizes and DNA content were measured by flow cytometry. The average DNA content increased with increasing temperature, but the cell size distribution was largely unaffected. Furthermore, cells in which DNA replication had not yet initiated (cells in the B period) became less abundant with increasing temperature. The increased DNA content could not be explained by an increase in the length of the C period. It is concluded that chromosome replication does not trigger cell division in E. coli, but that the chromosome replication and cell division cycles of E. coli run in parallel independently of each other.  相似文献   

12.
The timing of replication of an F'lac plasmid during the division cycle of Escherichia coli B/r lac(-)/F'lac was examined in relation to the timing of initiation of chromosome replication. This was accomplished by measuring the induction of beta-galactosidase and the incorporation of radioactive thymidine into cells at different ages in cultures growing exponentially at various rates. In cells growing with interdivision times of 27, 36, and 55 min, the F'lac replicated at various stages in the division cycle but always at approximately the same time as initiation of chromosome replication. In cells growing with an interdivision time of 85 min, the F'lac episome replicated midway through the division cycle, whereas chromosome replication initiated at the start of the cycle. Measurements of absorbance at 450 nm per cell suggested that the F'lac replicated when the cells reached a mass which was a constant multiple of the number of episomes per cell at each growth rate. In contrast, the mass per cell at initiation of chromosome replication in cells with an 85-min interdivision time was significantly lower than this constant value. A possible explanation for the apparent coupling between F'lac replication and initiation of chromosome replication at the higher growth rates, and the lack of coupling at the lowest growth rate, is discussed.  相似文献   

13.
Caulobacter crescentus exhibits cell-type-specific control of chromosome replication and DNA methylation. Asymmetric cell division yields a replicating stalked cell and a nonreplicating swarmer cell. The motile swarmer cell must differentiate into a sessile stalked cell in order to replicate and execute asymmetric cell division. This program of cell division implies that chromosome replication initiates in the stalked cell only once per cell cycle. DNA methylation is restricted to the predivisional cell stage, and since DNA synthesis produces an unmethylated nascent strand, late DNA methylation also implies that DNA near the replication origin remains hemimethylated longer than DNA located further away. In this report, both assumptions are tested with an engineered Tn5-based transposon, Tn5Omega-MP. This allows a sensitive Southern blot assay that measures fully methylated, hemimethylated, and unmethylated DNA duplexes. Tn5Omega-MP was placed at 11 sites around the chromosome and it was clearly demonstrated that Tn5Omega-MP DNA near the replication origin remained hemimethylated longer than DNA located further away. One Tn5Omega-MP placed near the replication origin revealed small but detectable amounts of unmethylated duplex DNA in replicating stalked cells. Extra DNA synthesis produces a second unmethylated nascent strand. Therefore, measurement of unmethylated DNA is a critical test of the "once and only once per cell cycle" rule of chromosome replication in C. crescentus. Fewer than 1 in 1,000 stalked cells prematurely initiate a second round of chromosome replication. The implications for very precise negative control of chromosome replication are discussed with respect to the bacterial cell cycle.  相似文献   

14.
Slowly growing Escherichia coli cells have a simple cell cycle, with replication and progressive segregation of the chromosome completed before cell division. In rapidly growing cells, initiation of replication occurs before the previous replication rounds are complete. At cell division, the chromosomes contain multiple replication forks and must be segregated while this complex pattern of replication is still ongoing. Here, we show that replication and segregation continue in step, starting at the origin and progressing to the replication terminus. Thus, early-replicated markers on the multiple-branched chromosomes continue to separate soon after replication to form separate protonucleoids, even though they are not segregated into different daughter cells until later generations. The segregation pattern follows the pattern of chromosome replication and does not follow the cell division cycle. No extensive cohesion of sister DNA regions was seen at any growth rate. We conclude that segregation is driven by the progression of the replication forks.  相似文献   

15.
Initiation of DNA replication from oriC in Escherichia coli takes place at a specific time in the cell division cycle, whether the origin is located on a chromosome or a minichromosome, and requires participation of the product of the dnaA gene. The effects of overproduction of DnaA protein on the cell cycle specificity of the initiation event were determined by using minichromosome replication as the assay system. DnaA protein was overproduced by inducing the expression of plasmid-encoded dnaA genes under control of either the ptac or lambda pL promoter. Induction of DnaA protein synthesis caused a burst of minichromosome replication in cells at all ages in the division cycle. The magnitude of the burst was consistent with the initiation of one round of replication per minichromosome in all cells. The replication burst was followed by a period of reduced minichromosome replication, with the reduction being greater at 30 than at 41 degrees C. The results support the idea that the DnaA protein participates in oriC replication at a stage that is limiting for initiation. Excess DnaA protein enabled all cells to achieve the state required for initiation of DNA polymerization by either effecting or overriding the normal limiting process.  相似文献   

16.
Chromosome replication and cell division of Escherichia coli are coordinated with growth such that wild-type cells divide once and only once after each replication cycle. To investigate the nature of this coordination, the effects of inhibiting replication on Z-ring formation and cell division were tested in both synchronized and exponentially growing cells with only one replicating chromosome. When replication elongation was blocked by hydroxyurea or nalidixic acid, arrested cells contained one partially replicated, compact nucleoid located mid-cell. Cell division was strongly inhibited at or before the level of Z-ring formation. DNA cross-linking by mitomycin C delayed segregation, and the accumulation of about two chromosome equivalents at mid-cell also blocked Z-ring formation and cell division. Z-ring inhibition occurred independently of SOS, SlmA-mediated nucleoid occlusion, and MinCDE proteins and did not result from a decreased FtsZ protein concentration. We propose that the presence of a compact, incompletely replicated nucleoid or unsegregated chromosome masses at the normal mid-cell division site inhibits Z-ring formation and that the SOS system, SlmA, and MinC are not required for this inhibition.  相似文献   

17.
The regulation and co-ordination of the cell cycle of the hyperthermophilic crenarchaeon Sulfolobus acidocaldarius was investigated with antibiotics. We provide evidence for a core regulation involving alternating rounds of chromosome replication and genome segregation. In contrast, multiple rounds of replication of the chromosome could occur in the absence of an intervening cell division event. Inhibition of the elongation stage of chromosome replication resulted in cell division arrest, indicating that pathways similar to checkpoint mechanisms in eukaryotes, and the SOS system of bacteria, also exist in archaea. Several antibiotics induced cell cycle arrest in the G2 stage. Analysis of the run-out kinetics of chromosome replication during the treatments allowed estimation of the minimal rate of replication fork movement in vivo to 250 bp s-1. An efficient method for the production of synchronized Sulfolobus populations by transient daunomycin treatment is presented, providing opportunities for studies of cell cycle-specific events. Possible targets for the antibiotics are discussed, including topoisomerases and protein glycosylation.  相似文献   

18.
19.
A method of computer analysis was developed to evaluate the kinetic changes in the rate of cell division in non-synchronous cultures of E. coli resulting from changes in the velocity or initiation of chromosome replication. This method takes into account that the cell division pathway in E. coli includes a reaction of indeterminate length described by a probability function that applies to the cell population. The analysis yields a hypothetical cell number kinetics as it would be observed if the stochastic element in the division pathway were absent. Since this derived cell number curve responds to experimentally induced perturbations of replication at defined times whereas the actual cell number curve reflects these perturbations only in a blurred fashion, replication and division events can be precisely correlated with this method. The method was applied to the evaluation of thymine starvation experiments with two Thy- derivatives of E. coli B/r; one of the strains has a mutationally altered (60% increased) cell mass at initiation of chromosome replication. In both strains, the stochastic phase of the cell cycle had the same half-life value of 10 min and began 18 min after each termination of replication. This suggests that the time of cell division is linked to replication, not to cell mass or length. This interpretation is supported by results of experiments in which the rate of cell growth was altered at the time of thymine starvation.  相似文献   

20.
The relationship between chromosome replication and cell division was investigated in a thymineless mutant of Escherichia coli B/r. Examination of the changes in average cell mass and DNA content of exponential cultures resulting from changes in the thymine concentration in the growth medium suggested that as the replication time (C) is increased there is a decrease in the period between termination of a round of replication and the subsequent cell division (D). Observations on the pattern of DNA synthesis during the division cycle were consistent with this relationship. Nevertheless, the kinetics of transition of exponential cultures moving between steady states of growth with differing replication velocities provided evidence to support the view that the time of cell division is determined by termination of rounds of replication under steady-state conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号