首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In the present study we describe a novel functional cell surface molecule, designated as Kp43, which is expressed among leukocytes by NK cells, TCR-gamma/delta + T lymphocytes, and some CD8+ CD56+TCR-alpha/beta + T cell clones. The Kp43 Ag is a 70-kDa disulfide-linked dimer, which migrates in SDS-PAGE under reducing conditions as a single 43-kDa band. Two-color immunofluorescence staining of fresh PBL revealed that only a fraction of CD16+, and of TCR-gamma/delta + T lymphocytes expressed the Ag. The analysis of TCR-alpha/beta + T cell clones showed that a small proportion (2 out of 20) weakly expressed Kp43 together with the CD8 and CD56 molecules. By immunoperoxidase staining of different tissues the anti-Kp43, reactivity was detected exclusively in lymphoid organs, where a minority of scattered cells was stained, and in some liver sinusoidal cells. Essentially all NK cells acquired Kp43 when stimulated with a B lymphoblastoid cell line. By contrast, the pattern of distribution of Kp43 remained stable upon in vitro culture of T-gamma/delta lymphocytes, thus delineating two subsets according to its expression. In lymphokine-activated killer populations, obtained by culturing either PBL or NK cells with high concentration of IL-2, most CD16+ and CD56+ cells became Kp43+. The Kp43-specific mAb inhibited the IL-2-dependent proliferative response of cultured NK and TCR-gamma/delta + T cells without affecting their non-MHC-restricted cytotoxicity. The partial inhibitory effect, which was mediated as well by pepsin digested F(ab')2 fragments, was lost upon reduction to Fab. The anti-Kp43 mAb did not interfere with the specific binding of IL-2 to its surface receptors. Altogether the data point out that the Kp43 dimer is involved in the regulation of the IL-2-dependent proliferative response of NK cells and a subset of TCR-gamma/delta + T lymphocytes.  相似文献   

2.
The role of CD3 and CD8 Ag in CD16-mediated CTL triggering was studied in TCR-alpha beta+ and TCR-gamma delta+ granular lymphocytes (GL). In TCR-alpha beta+/CD3+4-8+16+ GL obtained from patients with GL-proliferative disorders, antibody-dependent cellular cytotoxicity was inhibited by anti-CD3 and anti-CD8 mAb. Anti-CD3 mAb also inhibited antibody-dependent cellular cytotoxicity activity of TCR-gamma delta+/CD3+4-8-16+ GL from a patient and that of TCR-gamma delta+/CD3+4-8+/-16+ T cell clones established from patients with proliferating TCR-gamma delta+ GL. In TCR-gamma delta+ T cell clones, cytotoxicity against Fc gamma R+ targets was induced by stimulation of CD16 Ag with anti-CD16 mAb, and such cytotoxicity was also inhibited by anti-CD3 mAb. These results indicate that CD3 and CD8 molecules play a regulatory role in CD16-mediated CTL triggering.  相似文献   

3.
CD4+ TCR-gamma delta+ T cells comprise a very small subset of TCR-gamma delta+ T cells. CD4+ TCR gamma delta+ T cell clones were established to study the phenotypical and functional characteristics of these cells. Thirty-four CD4+ TCR-gamma delta+ T cell clones were established after sorting CD4+ T cells from a pre-expanded TCR-gamma delta+ T cell population. These clones as well as the CD4- TCR-gamma delta+ T cells from the same donor used V gamma 2 and V delta 2. In a second cloning experiment CD4+ TCR-gamma delta+ T cells were cloned directly from freshly isolated TCR-gamma delta+ T cells using a cloning device coupled to a FACS sorter. Forty-three clones were obtained, which all expressed CD4 and TCR-gamma delta. Eleven of these clones used V delta 1 and three of them coexpressed V gamma 2. The other CD4+ TCR-gamma delta+ T cell clones used both V delta 2 and V gamma 2. CD4+ TCR-gamma delta+ T cell clones expressed CD28 irrespective of the V gamma or V delta usage, and were CD11b negative. Three CD4-CD8+ TCR-gamma delta+ clones expressed CD8 alpha but not CD8 beta and were CD11b positive. CD28 expression among CD4-CD8+ and CD4-CD8- was variable but lower than on CD4+ T cell clones. CD4- TCR-gamma delta+ T cell clones using V gamma 2 and V delta 2 specifically lyse the Burkitt lymphoma cell line Daudi and secrete low levels of IFN-gamma and granulocyte-macrophage-CSF upon stimulation with Daudi. In contrast, most CD4+ T cell clones that use V gamma 2 and V delta 2 had a very low lytic activity against Daudi cells and secrete high levels of IFN-gamma and granulocyte-macrophage-CSF after stimulation with Daudi cells. The NK-sensitive cell line K562 was killed efficiently by the CD4- TCR-gamma delta+ T cell clones, but not by CD4+ TCR-gamma delta+ T cell clones, and could not induce cytokine secretion in CD4+ or CD4- T cell clones. CD4+ TCR-gamma delta+ T cell clones, but not the CD4- clones, could provide bystander cognate T cell help for production of IgG, IgM, and IgA in the presence of IL-2 and IgE in the presence of IL-4. Thus, CD4+ TCR-gamma delta+ T cells are similar to CD4+ TCR-alpha beta+ T cells in their abilities to secrete high levels of cytokines and to provide T cell help in antibody production.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

4.
In the present study the transplant specific CTL repertoire of a patient (HLA:A1,3, B8,18, Cw5,7 DR3, DQw2, DPw3) with a long term surviving HLA mismatched kidney graft (HLA: A1,24 B8,27 Cw2,7, DR3, w13 DQw2,6 DPw1,3) has been investigated. This patient was unable to generate specific cytolytic activity against donor-derived PHA-blasts in the MLC in which donor spleen cells or B lymphoblastoid cell line were used as stimulator cells. In addition, the CTL precursor frequencies against donor alloantigens were very low (1/67,000). The patient had otherwise normal immune responses in vivo and in vitro and no signs of transplant rejection. Transplant specific CTL clones were generated in high frequencies (1/195) from T cell bulk cultures activated by PHA in the absence of any sensitization by donor Ag in vitro. The repertoire of 14 donor-reactive CTL clones (12 TCR-alpha beta+ and 2 TCR-gamma delta+) was analyzed. Two TCR-alpha beta+ CD8+ clones were specific for B27. Ten TCR-alpha beta+ CTL clones directed against class II HLA Ag were isolated. Seven of these were CD4+ and recognized DRw13 (3), DQw6 (3), and DPw1 (1), whereas three of these clones were CD4-CD8+ recognizing DRw13 (1) and DQw6 (2). In addition, two donor-specific TCR-gamma delta+ CTL clones were obtained recognizing HLA-A9(23,24) and DQw6. Our data indicate that the precursors of CTL clones specifically directed against donor class I or II HLA Ag are not deleted from the repertoire and that part of this reactivity resides in the TCR-gamma delta+ fraction.  相似文献   

5.
This study follows our previous investigation describing the production of four cytokines (IL-2, IL-4, IFN-gamma, and TNF-alpha) by subsets of thymocytes defined by the expression of CD3, 4, 8, and 25. Here we investigate in greater detail subpopulations of CD4-CD8- double negative (DN) thymocytes. First we divided immature CD25-CD4-CD8-CD3- (CD25- triple negative) (TN) thymocytes into CD44+ and CD44- subsets. The CD44+ population includes very immature precursor T cells and produced high titers of IL-2, TNF-alpha, and IFN-gamma upon activation with calcium ionophore and phorbol ester. In contrast, the CD44- subset of CD25- TN thymocytes did not produce any of the cytokines studied under similar activation conditions. This observation indicates that the latter subset, which differentiates spontaneously in vitro into CD4+CD8+, already resembles CD4+CD8+ thymocytes (which do not produce any of the tested cytokines). We also subdivided the more mature CD3+ DN thymocytes into TCR-alpha beta- and TCR-gamma delta-bearing subsets. These cells produced cytokines upon activation with solid phase anti-CD3 mAb. gamma delta TCR+ DN thymocytes produced IL-2, IFN-gamma and TNF-alpha, whereas alpha beta TCR+ DN thymocytes produced IL-4, IFN-gamma, and TNF-alpha but not IL-2. We then studied alpha beta TCR+ DN T cells isolated from the spleen and found a similar cytokine production profile. Furthermore, splenic alpha beta TCR+ DN cells showed a TCR V beta gene expression profile reminiscent of alpha beta TCR+ DN thymocytes (predominant use of V beta 8.2). These observations suggest that at least some alpha beta TCR+ DN splenocytes are derived from alpha beta TCR+ DN thymocytes and also raises the possibility that these cells may play a role in the development of Th2 responses through their production of IL-4.  相似文献   

6.
The expression of TCR-associated molecules was examined in human fetal and postnatal tissues. From gestational wk 7 onward in the fetal liver, putative prothymocytes have been identified with cytoplasmic CD3 positivity (cCD3+). These immature cells are TdT- and do not express membrane CD3 (mCD3-) or TCR beta identified by beta F1, but show CD7 and CD45 positivity without CD1, CD2, CD5, CD4, CD8, CD10, and class II Ag. Their high proliferative activity is indicated by greater than 85% Ki67 positivity. After the 10th wk, beta F1+, mCD3+ cells also appear in the liver and these are mostly Ki67- but no TCR gamma delta-bearing cells can be identified at such an early stage of extrathymic development. In the mCD3- TdT-fetal thymus (10 1/2 to 18th wk) cCD3+, mCD3- CD1-blasts proliferate (Ki67+) and lack TCR-beta or TCR-gamma delta. The TdT-, CD1+ cortical thymocytes develop into TCR-beta + and WT31-positive (TCR-alpha beta +) cells. Subsequently TdT-positive thymocytes become detectable around 19 to 20 wk, and in such glands the peak of proliferative activity is seen among TdT+, cCD3+ cells which appear to acquire, in a regular sequence, cytoplasmic beta F1 (TCR-beta), mCD3, and TCR-alpha beta (WT31 positivity) together with the loss of TdT and Ki67 positivity. A newly described transitional population of cells is TdT-, beta F1+ but exhibits no detectable WT31 positivity. These cells correspond to the CD1+, mCD3+ thymocytes and are probably the targets of thymic selection. The cells of the TCR-gamma delta lineage, detected by mAb TCR-delta-1 and delta TCS1, are rare (0.02 to 0.5%) among thymocytes from gestational wk 10 1/2 onward through the whole span of thymic development, but these cells include a proportion (18 to 59%) of cells expressing CD1 Ag, suggesting that these TCR-gamma delta cells differentiate in the thymus. Among the CD1+, TCR-gamma delta + thymocytes, no TdT positivity can be detected.  相似文献   

7.
TCR-gamma delta+ CTL clones were generated from CD4-CD8- T cells that were stimulated twice with the cell line JY. Either IL-2 or IL-4 was used as growth factor. A number of TCR-gamma delta+ clones were found to lyse the stimulator cell line JY. Two of these clones secreted N alpha-benzyloxycarbonyl-L-lysine thiobenzyl ester serine esterase activity after stimulation with JY cells. The cytotoxic activity of these two clones was blocked by a mAb specific for HLA-A2. Moreover, these two TCR-gamma delta+ clones selectively lysed human fibroblast line M1 and murine P815 cells transfected with DNA fragments encoding HLA-A2 but not those transfected with HLA-B7 encoding DNA, indicating that these clones recognize HLA-A2. Analysis of the recognition of HLA-A2 by using target cells transfected with mutated HLA-A2 encoding genes revealed that the nature of the amino acid at position 152 of the molecule is critical for recognition of the TCR-alpha beta+ as well as the TCR-gamma delta+ CTL clones since replacement of Val for Ala at that position resulted in abrogation of recognition of one TCR-gamma delta+ and one TCR-alpha beta+ clone and substitution of Val for Glu affected recognition of all clones. Substitution of Leu for Trp at position 156 abrogated recognition by one TCR-gamma delta+ and one TCR-alpha beta+ T cell clone, but recognition by the other clones was not changed. All clones were able to secrete IL-2, IFN-gamma, and GM-CSF but not IL-4 after activation.  相似文献   

8.
A TCR heterodimer composed of a TCR gamma-chain and a TCR delta-chain was found to be expressed in association with CD3 by a small population of human peripheral blood T cells, thymocytes, and certain leukemic T cell lines. The leukemic T cell lines PEER and Lyon-1 express such a TCR-gamma delta/CD3 complex at the cell surface. In addition, PEER and Lyon-1 cells transcribe a productively rearranged TCR-beta gene. Introduction of TCR alpha-chain cDNA of human or murine origin resulted in cell surface expression of a TCR-alpha beta/CD3 complex on PEER and Lyon-1 cells. The expression of the TCR-gamma delta/CD3 complex on PEER cells was not affected by introduction of TCR-alpha cDNA. In contrast, introduction of a TCR-alpha cDNA and expression of the TCR-alpha beta/CD3 complex in Lyon-1 cells resulted in the disappearance of the TCR-gamma delta/CD3 complex. These data were confirmed by indirect immunofluorescence, at the protein level and by gene expression analysis. Triggering of the TCR-alpha beta/CD3 complexes by anti-CD3 mAb or anti-TCR mAb resulted in increased internal Ca2+ levels, indicating that these receptors were functional in signal transduction. These results indicate that, besides TCR gene rearrangements, membrane expression of TCR-alpha beta heterodimers may be important in regulating TCR-gamma delta cell surface expression.  相似文献   

9.
The functional capabilities of human peripheral blood CD3+CD4-CD8- and CD3+CD4+CD8+ T cell clones were examined. The clones were generated by culturing purified populations of CD3+CD4-CD8- and CD3+CD4+CD8+ T cells at limiting dilution (0.3 cell/well) in the presence of PHA, rIL-2, and irradiated PBMC as feeders. Twelve CD3+CD4-CD8- and 5 CD3+CD4+CD8+ clones were generated. Clonality was documented by analyzing TCR gamma- and beta-chain rearrangement patterns. All CD3+CD4-CD8- clones were stained by the TCR-delta 1 mAb that identifies a framework epitope of the TCR delta-chain, but not by mAb WT31 that identifies the TCR-alpha beta on mature T cells. In contrast, the CD3+CD4+CD8+ clones were all stained by WT31 and not by TCR-delta 1. All 17 clones were screened for various functional activities. Each secreted IL-2, IFN-gamma, and lymphotoxin/TNF-like factors when stimulated with immobilized mAb to CD3 (64.1), albeit in varying quantities. These clones secreted far less IL-2 and IFN-gamma than CD3+CD4+CD8- or CD3+CD4-CD8+ alpha beta expressing clones, but comparable amounts of lymphotoxin/TNF. All clones also functioned as MHC-unrestricted cytotoxic cells. This activity was comparable to that mediated by the CD3+CD4+CD8- or CD3+CD4-CD8+ alpha beta clones. Nine of 12 CD3+CD4-CD8- and 4 of 5 CD3+CD4+CD8+ clones were able to support B cell differentiation when activated by immobilized anti-CD3, but usually not as effectively as the CD3+CD4+CD8- or CD3+CD4-CD8+ alpha beta clones. The differences in the functional capabilities of the various clones could not be accounted for by alterations in the signaling capacity of the CD3 molecular complex as mAb to CD3 induced comparable increases in intracellular free calcium in each clone examined. When clones were stimulated with PWM, each suppressed B cell differentiation supported by mitomycin C-treated fresh CD4+ T lymphocytes. Suppression was dependent on the number of clone cells added to culture, but could be observed with as few as 12,500 cells per microtiter well. Phenotypic analysis of the clones revealed that all expressed CD29, CD11b, and the NKH1 surface Ag. These results demonstrate that the CD3+CD4-CD8- and CD3+CD4+CD8+ T cell clones exhibit many of the functional characteristics of mature T cells, although they produce IL-2 and IFN-gamma and provide help for B cell differentiation less effectively than CD3+CD4+CD8- and CD3+CD4-CD8+ alpha beta T cell clones.  相似文献   

10.
Thymocyte cell suspensions, prepared from mice at different ages, were cultured in vitro with human rIL-2. This stimulation resulted in a cell population that contained almost 50% TCR-gamma delta-positive cells if thymocytes were taken from fetal day 17 until just after birth. Analysis of the variable (V gamma) region used by the TCR-gamma delta cells revealed that 90% of them expressed TCR-V gamma 3, and less than 5% expressed TCR-V gamma 2. Cells positive for TCR-alpha beta were barely detectable. If fetal day 18 organ cultured thymus lobes, instead of a cell suspension, were stimulated with IL-2, no rise in the number of TCR-V gamma 3+ or TCR-delta+ cells was observed, whereas a partial outgrowth of TCR-alpha beta+ cells occurred. From day 1 after birth, the number of TCR-gamma delta cells recovered from an IL-2-stimulated thymocyte cell suspension dropped to reach a plateau of 15% of the total cell number, whereas TCR-V gamma 3+ cells became undetectable in older animals. TCR-alpha beta+ cells, on the other hand, quickly rose in cell number after birth. Kinetic analysis showed that the preferential outgrowth of TCR-V gamma 3+ cells in IL-2-stimulated fetal day 18 thymocyte cell suspensions was present from the onset of the culture; a significant proliferation of CD4 or CD8 single positive TCR-alpha beta cells was never observed. This lack of proliferation of TCR-alpha beta cells was not due to inhibition by the activated TCR-V gamma 3+ cells. Throughout the IL-2 culture, one-fourth of the TCR-V gamma 3+ thymocytes was positive for CD8. Analysis of the DNA content and the IL-2 receptor (IL-2R) p55 expression showed that during the first days of culture the TCR-V gamma 3+ cells had a much higher proliferation rate than the TCR-V gamma 3- cells, although TCR-V gamma 3+ IL2R p55+ cells could not be detected. From day 3 to 4 of culture, the proliferation rate of TCR-V gamma 3+ cells equaled that of the rest of the cells and less than 20% of the TCR-V gamma 3+ cells expressed the IL-2R p55. The biologic significance of our findings is discussed.  相似文献   

11.
Murine CD3+,CD4-,CD8- peripheral T cells, which express various forms of the TCR-gamma delta on their cell surface, have been characterized in terms of their cell-surface phenotype, proliferative and lytic potential, and lymphokine-producing capabilities. Three-color flow cytofluorometric analysis demonstrated that freshly isolated CD3+,CD4-, CD8- TCR-gamma delta lymph node cells were predominantly Thy-1+,CD5dull,IL-2R-,HSA-,B220-, and approximately 70% Ly-6C+ and 70% Pgp-1+. After CD3+,CD4-,CD8-splenocytes were expanded for 7 days in vitro with anti-CD3-epsilon mAb (145-2C11) and IL-2, the majority of the TCR-gamma delta cells expressed B220 and IL-2R, and 10 to 20% were CD8+. In comparison to CD8+ TCR-alpha beta T cells, the population of CD8+ TCR-gamma delta-bearing T cells exhibited reduced levels of CD8, and about 70% of the CD8+ TCR-gamma delta cells did not express Lyt-3 on the cell surface. Functional studies demonstrated that splenic TCR-gamma delta cells proliferated when stimulated with mAb directed against CD3-epsilon, Thy-1, and Ly-6C, but not when incubated with an anti-TCR V beta 8 mAb, consistent with the lack of TCR-alpha beta expression. In addition, activated CD3+,CD4-,CD8- peripheral murine TCR-gamma delta cells were capable of lysing syngeneic FcR-bearing targets in the presence of anti-CD3-epsilon mAb and the NK-sensitive cell line, YAC-1, in the absence of anti-CD3-epsilon mAb. Finally, activated CD3+, CD4-,CD8-,TCR-gamma delta+ splenocytes were also capable of producing IL-2, IL-3, IFN-gamma, and TNF when stimulated in vitro with anti-CD3-epsilon mAb.  相似文献   

12.
The effect of cyclosporin A (CsA) on early T cell development was studied by two-color flow cytometric and biochemical analyses using the fetal thymus organ culture system. Addition of CsA to organ culture resulted in a decreased cell yield and complete inhibition of the appearance of TCR-alpha beta-bearing, single positive thymocytes (both CD4+CD8- and CD4-CD8+). Furthermore, the generation of CD4+CD8+ thymocytes was markedly inhibited by CsA treatment, whereas the development of CD3-, CD4-CD8+ thymocytes and TCR-gamma delta-bearing, CD4-CD8- thymocytes was not affected. These results suggest that CsA induces a maturational arrest of T cells entirely within the thymic environment, and indicate that CsA-induced inhibition occurs at more than one stage of intrathymic T cell development.  相似文献   

13.
A novel thymocyte subpopulation expressing an unusual TCR repertoire was identified by high surface expression of the Ly-6C Ag. Ly-6C+ thymocytes were distributed among all four CD4/CD8 thymocyte subsets, and represented a readily identifiable subpopulation within each one. Ly-6C+ thymocytes express TCR-alpha beta, arise late in ontogeny, and appear in the CD4/CD8 developmental pathway after birth in a sequence that resembles that followed by conventional Ly-6C- cells during fetal ontogeny. Most interestingly, adult Ly-6C+ thymocytes express an unusual TCR-V beta repertoire that is identical to that expressed by CD4-CD8-TCR-alpha beta+ thymocytes in its overexpression of TCR-V beta 8 and in its expression of some potentially autoreactive TCR-V beta specificities. This unusual TCR-V beta repertoire was even expressed by Ly-6C+ thymocytes contained within the CD4+ CD8- 'single positive' thymocyte subset. Thus, expression of this unusual TCR-V beta repertoire is not limited to CD4-CD8-thymocytes, and is unlikely to be a consequence of their double negative phenotype. Rather, we think that Ly-6C+TCR-alpha beta+ thymocytes and CD4-CD8-TCR-alpha beta+ are developmentally interrelated, a conclusion supported by several lines of evidence including the selective failure of both Ly-6C+ and CD4-CD8-TCR-alpha beta+ thymocyte subsets to appear in TCR-beta transgenic mice. In contrast, peripheral Ly-6C+ T cells are developmentally distinct from Ly-6C+ thymocytes in that peripheral Ly-6C+ T cells expressed a conventional TCR-V beta repertoire and developed normally in TCR-beta transgenic mice in which Ly-6C+ thymocytes failed to arise. We conclude that: 1) expression of a skewed TCR-V beta repertoire is a characteristic of Ly-6C+TCR-alpha beta+ thymocytes as well as CD4-CD8-TCR-alpha beta+ thymocytes, and is not unique to thymocytes expressing neither CD4 nor CD8 accessory molecules; and 2) Ly-6C+ thymocytes are developmentally linked to CD4-CD8-TCR-alpha beta+ thymocytes, but not to Ly-6C+ peripheral T cells. We suggest that Ly-6C+TCR-alpha beta+ thymocytes are not the developmental precursors of Ly-6C+ peripheral T cells, but rather may be the developmental precursors of CD4-CD8-TCR-alpha beta+ thymocytes.  相似文献   

14.
Thymic shared Ag-2 (TSA-2) is a 28-kDa, glycophosphatidylinitosol-linked cell surface molecule expressed on various T cell and thymic stromal cell subsets. It is expressed on most CD3-CD4-CD8-, CD4+CD8+, and CD3highCD4-CD8+ thymocytes but is down-regulated on approximately 40% of CD3highCD4+CD8- thymocytes. Expression on peripheral TCR-alphabeta+ T cells is similar to that of CD3+ thymocytes, although a transient down-regulation occurs with cell activation. Consistent with the recent hypothesis that emigration from the thymus is an active process, recent thymic emigrants are primarily TSA-2-/low. TSA-2 expression reveals heterogeneity among subpopulations of CD3highCD4+CD8- thymocytes and TCR-gamma delta+ T cell previously regarded as homogenous. The functional importance of TSA-2 was illustrated by the severe block in T cell differentiation caused by adding purified anti-TSA-2 mAb to reconstituted fetal thymic organ culture. While each CD25/CD44-defined triple-negative subset was present, differentiation beyond the TN stage was essentially absent, and cell numbers of all subsets were significantly below those of control cultures. Cross-linking TSA-2 on thymocytes caused a significant Ca2+ influx but no increase in apoptosis, unless anti-TSA-2 was used in conjunction with suboptimal anti-CD3 mAb. Similar treatment of mature TSA-2+ T cells had no effect on cell survival or proliferation. This study reveals TSA-2 to be a functionally important molecule in T cell development and a novel indicator of heterogeneity among a variety of developing and mature T cell populations.  相似文献   

15.
M Yasukawa  Y Inoue  N Kimura    S Fujita 《Journal of virology》1995,69(12):8114-8117
Herpesvirus saimiri (HVS) has recently been shown to immortalize human CD4+ and CD8+ T cells expressing T-cell receptor alpha beta (TCR-alpha beta) with the maintenance of their original phenotypes and functional properties. However, the immortalization of human T cells expressing TCR-gamma delta by HVS has not been successful. Here we report that HVS can also infect and immortalize human T cells expressing TCR-gamma delta. Two human TCR-gamma delta+ T-cell clones, which continuously proliferated in interleukin-2-containing culture medium without any exogenous stimulation or addition of feeder cells for more than 8 months, were established by HVS infection. Morphologically, the HVS-transformed TCR-gamma delta+ T-cell clones were granular lymphocytes which exhibited wide-range HLA-unrestricted cytotoxicity as untransformed TCR-gamma delta+ T cells. Their phenotypes and cytotoxic activities were not altered during long-term culture. The immortalization of human TCR-gamma delta+ T cells by HVS infection would be useful for functional analysis of this lymphocyte population, which is believed to play an important role in protection against various infectious diseases.  相似文献   

16.
IL-7 maintains the T cell precursor potential of CD3-CD4-CD8- thymocytes.   总被引:10,自引:0,他引:10  
We and other investigators have reported that IL-4 (in the presence of PMA) or IL-7 (used alone) induce proliferation of both adult and fetal (gestation day 15) CD4-CD8- thymocytes. These results suggested that these cytokines may be growth factors for pre-T cells. However, we recently observed that among adult CD4-CD8- thymocytes, only the CD3+ subset proliferates in response to IL-7, whereas IL-4 + PMA induces proliferative responses in both CD3- and CD3+ subsets. Thus, we concluded that IL-7 used alone is not a potent growth stimulus for adult thymic CD3-CD4-CD8- triple negative (TN) T cell precursors. Interestingly, the viability of adult TN thymocytes in culture was improved by IL-7 for up to 1 wk, in spite of the inability of IL-7 to induce significant [3H]TdR incorporation in these cells. After culture in IL-7 for 4 days, the viable cells remained CD4-CD8-, but 25 to 35% expressed CD3 whereas the rest remained CD3-. In contrast, most of the cells cultured with IL-4 + PMA for 4 days remained TN. To investigate whether adult TN thymocytes that survive in vitro in the presence of IL-4 + PMA or IL-7 retain T cell progenitor potential, we tested whether they could reconstitute lymphoid cell-depleted (2-deoxyguanosine-treated) fetal thymus organ cultures. Our results demonstrate that TN cells cultured in IL-7 retain T cell progenitor potential.  相似文献   

17.
We have examined the appearance of thymocytes expressing gamma delta TCR within the developing thymus by using immunohistochemical techniques and flow cytometry in conjunction with the mAb 3A10, which recognizes a determinant associated with the constant region of the delta-chain. gamma delta+ Cells were first detected at day 16 of gestation, attained maximal levels at day 17 of gestation, and declined thereafter. By using the Ulex europeus agglutinin to identify medullary epithelial cells in situ, we observed a striking colocalization of gamma delta+ thymocytes and U. europeus agglutinin-positive medullary epithelial cells during late fetal and neonatal periods of development. In the thymuses of adult mice, gamma delta+ thymocytes were scattered throughout cortical and medullary areas of the thymus and most concentrated in the subcapsular areas of the thymus. Ultrastructural immunohistochemistry confirmed the close association between medullary thymic epithelial cells and gamma delta+ thymocytes in the neonatal thymus and also showed that some TCR-gamma delta molecules were patched to areas of contact with medullary epithelial cells. In contrast to the cellular distribution of either CD3 molecules or the TCR-alpha beta, where extensive intracellular labeling of thymocytes has been observed, cytoplasmic accumulation of delta-chain was not detected.  相似文献   

18.
The signals required for activation and the differentiation of human triple negative postnatal thymocytes were studied in vitro. Highly purified populations of CD4-, CD8-, CD3- (triple negative) thymocytes were isolated by combined panning and preparative cell sorting and the ability of triple negative thymocytes to proliferate in response to various cytokines determined. Maximal triple negative proliferation was obtained using a mitogenic combination of CD2 antibodies and either rIL-2 or the phorbol ester, PMA. Long term growth (2 to 6 wk) of postnatal triple negative thymocytes was best achieved using CD2 antibodies and rIL-2. After in vitro culture with CD2 antibodies and rIL-2, triple negative thymocytes gave rise to TCR-delta+ cells beginning on day 2 of culture (approximately 15% CD3/TCR-delta+) reaching maximum (approximately 60% CD3/TCR-delta+) on day 7 with stable number of TCR-delta+ cells observed in vitro for up to 6 wk. Analysis of 30 clones of human postnatal triple negative thymocytes demonstrated 9 of 30 (30%) were TCR-delta+, beta F1-, essentially ruling out overgrowth of the triple negative population over time by a minor pool of contaminating TCR-delta+ cells. Thus, these studies have defined an in vitro culture system for human postnatal T cell precursors and demonstrated that precursors of human TCR-gamma delta+ T cells reside in the triple negative thymocyte pool.  相似文献   

19.
Lymphocytes from the human (h) IL-2R alpha chain transgenic mice (TGM) constitutively express high affinity binding sites for hIL-2, consisting of transgenic h-IL-2R alpha and endogenous murine IL-2R beta, and therefore easily proliferate in vitro in response to hIL-2. Our study was undertaken to clarify the hIL-2-responsive lymphocyte subsets in the TGM, which should most likely reflect the normal distribution of m IL-2R beta expression. In both thymus and spleen, the majority of expanded cells by hIL-2 was CD3+CD4-CD8+ TCR alpha beta+ cells. The proliferation of CD4+ cells was not observed at all from either organ despite the expression of transgenic hIL-2R alpha. Potent cellular proliferation was also observed from the thymocytes that had been depleted of CD8+ cells, the expanded cells consisting of CD3- (15-40%) and CD3+ populations (60-85%). Among CD3+ cells, approximately the half portion expressed TCR alpha beta, whereas the other half was suggested to express TCR gamma delta. A variable portion (5-20%) of the CD3+ cells expressed CD8 (Lyt-2) in the absence of Lyt-3, and the CD3+CD8+ cells were confined preferentially to the TCR alpha beta- (TCR gamma delta+) population. In the culture of splenocytes depleted of CD8+ cells, however, the proliferated cells were mostly CD3-CD4-CD8-TCR-Mac1-, whereas a minor portion (10-30%) was CD3+CD4-CD8-TCR alpha beta- (TCR gamma delta+. Analysis of TCR genes at both DNA and mRNA levels confirmed the phenotypical observations. These results strongly suggested that IL-2R beta was constitutively and selectively expressed on the primary murine thymocytes and splenic T and NK cells, except for CD4+ cells in both organs.  相似文献   

20.
To evaluate the capability of NK cells and cytotoxic T lymphocytes to interact with normal hematopoietic progenitor cells (HPC), as compared to neoplastic lymphohematopoietic cells, we investigated inhibition of colony growth of these cell populations in semi-solid culture systems, after incubation with cloned cytotoxic effector cells. Three different types of cloned effector cells were investigated: TCR-/CD3- NK cells, TCR-gamma delta+/CD3+ cells, and TCR-alpha beta+/CD3+ cytotoxic T lymphocytes. Effector cells showed differential levels of tumor cell colony inhibition, but no MHC-non-restricted lysis of normal HPC was observed. Pre-stimulation of normal HPC by culturing on established stromal layers had no effect. Cell-mediated lysis of HPC only occurred by Ag-specific MHC-restricted lysis by CTL, or by antibody-dependent cellular cytotoxicity. In cell mixing experiments, irradiated tumor cells, but not normal bone marrow cells inhibited tumor cell lysis. Furthermore, cloned effector lymphocytes were able to specifically eliminate malignant cells from tumor contaminated bone marrow without damaging normal HPC. When fresh leukemic cells were used as targets, growth of acute myeloblastic leukemia colonies was inhibited after incubation with several cytotoxic effector clones, whereas chronic myeloid leukemia precursor cells showed limited sensitivity to MHC-non-restricted cytolysis. These results indicate that MHC-non-restricted cytolysis by NK cells is selectively directed against neoplastic cells and not against normal HPC.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号